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Several approaches to the quantum-gravity problem predict that spacetime should be ‘‘fuzzy,’’ but so far

these approaches have been unable to provide a crisp physical characterization of this notion. An intuitive

picture of spacetime fuzziness has been proposed on the basis of semiheuristic arguments and, in

particular, involves an irreducible Planck-scale contribution to the uncertainty of the energy of a particle.

These arguments also inspired a rather active phenomenological program that looks for the blurring of

images of distant astrophysical sources that would result from such energy uncertainties. Here we report

the first ever physical characterization of spacetime fuzziness derived constructively within a quantum

picture of spacetime, the one provided by spacetime noncommutativity. Our results confirm earlier

heuristic arguments suggesting that spacetime fuzziness, while irrelevantly small on terrestrial scales,

could be observably large for propagation of particles over cosmological distances. However, we find no

Planck-scale-induced lower bound on the uncertainty of the energy of particles; we observe that this

changes how we should picture a quantum spacetime, and it also imposes a reanalysis of the associated

phenomenology.

DOI: 10.1103/PhysRevD.87.084023 PACS numbers: 04.60.Bc, 98.62.Gq

There has been growing interest [1–5] in the possibility
of testing the hypothesis of spacetime fuzziness at the
Planck scale (EP � 1028 eV), exploiting an associated ef-
fect of blurring the images of distant astrophysical sources,
such as quasars. The arguments providing encouragement
for these phenomenological studies are merely heuristic,
but this could be a rare opportunity [6–8] for experimentally
testing an aspect of the interplay between gravitational
and quantum-mechanical phenomena. The scenario con-
sidered in Refs. [1–5] (building on earlier analogous
pictures, such as those in Refs. [9–12]) is centered on the
possibility that the quantum-gravity contribution to the fuz-
ziness of a particle’s worldline might grow with propagation
distance, in such a way that, in spite of its ultra-microscopic
characteristic scale (which we assume [6–8] to be of the
order of the Planck length ‘ ’ 10�35 m), it could turn into a
macroscopic effect for propagation over suitably large
(cosmological) distances.

The most crucial aspect of the phenomenological
proposals is the assumption [1–5,11,12] that in a quantum
spacetime there should be an irreducible Planck-scale con-
tribution to the uncertainty of energies, governed by a law
of the form

�E½‘� � ‘�E1þ�; (1)

where we assume that � [1–5,11,12] takes values between
1=2 and 1, since it is the single parameter that should
discriminate, in this respect, among different proposals
for a quantum spacetime. [We shall consistently place an
index ‘‘½‘�,’’ as done in (1), when reporting an estimate of
the Planck-scale contribution to a given quantity.]

As first observed in Ref. [11], Eq. (1) would in turn
produce uncertainties in the phase velocity vp ¼ E=p and

in the group velocity vg ¼ dE=dp, both of order �E½‘�=E
and uncorrelated. This would imply that as a wave prop-
agates it will experience [11] essentially random mis-
matches, of order �E½‘�=E, between its phase velocity

and its group velocity. In turn, one can then notice [11]
that during the propagation time tprop ¼ D=vg the phase

should normally advance from its initial value by an
amount 2�vptprop=�, i.e., 2�ðvp=vgÞD=� (denoting with

� the wavelength). The net result would be [1–5,11,12] an
uncertainty for the phase of a wave governed by a law of
the type

��½‘� ¼ 2�
D�

��
�

�
vp
vg

�
½‘�

�D�

��

2�

E
�E½‘�; (2)

where � is an additional phenomenological parameter
concerning whether or not the random mismatches be-
tween phase and group velocity should add coherently: if
they add coherently [11] then � ¼ 1, while, according to
the most popular picture where they do not add coherently
[1], one should have � ¼ 1� �.
The debate revolving around the blurring of images

of distant astros that would result from this phase uncer-
tainty has revolved exclusively around the � parameter
and, therefore, the hypotheses needed for the coherent
(versus incoherent) addition of mismatches between
phase and group velocity. Instead, the aspect which is of
primary interest for us here, concerning the Planck-scale-
induced energy uncertainty �E½‘� in (2), and its description

according to (1), has so far remained unchallenged, and
it provides the core feature of this whole research line.
This assumption is motivated, in the relevant heuristic
arguments, by essentially noticing that energy is operatively
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a notion derived from spacetime observations, and with
spacetime being ‘‘fuzzy’’ at the Planck scale, one should,
according to Refs. [1–4,11], inevitably get ‘‘fuzzy
energies.’’

Besides being, as we stressed, the key ingredient
of an active phenomenological program, this link from
spacetime fuzziness to irreducible contributions to energy
uncertainty could be a very significant characterization of
the quantum-gravity realm. But its only bases are indeed
heuristic arguments. Even in the most studied formaliza-
tions of quantum properties of spacetime at the Planck
scale, such as loop quantum gravity [13] and spacetime
noncommutativity [14,15], spacetime fuzziness has so far
been characterized only at a rather formal level, unsuitable
for phenomenology and inconclusive for what concerns the
description of energy uncertainties.

Here we report significant progress in formalizing
and analyzing worldline fuzziness within the quantum-
spacetime framework of spacetime noncommutativity.
And, in particular, we establish some severe limitations
to the applicability of the arguments summarized above,
suggesting that in a quantum spacetime there should
be an irreducible Planck-scale contribution to energy
uncertainties. We do this by considering the two most
studied examples of spacetime noncommutativity, the
case of Moyal noncommutativity [16] and the case of
�-Minkowski noncommutativity [15,17]. For reasons that
shall be clear in light of the outcome of our analyses, we
first specialize to the case of a 2D (1þ 1-dimensional)
�-Minkowski spacetime, so that the noncommutativity of
coordinates is fully specified by

½x1; x0� ¼ i‘x1: (3)

We are evidently working in units such that the speed-of-
light scale c and the Planck scale ℏ are set to unity, and
most of our results are derived at leading order in ‘, which
suffices for the purposes of the relevant phenomenology.

The starting point of this analysis is provided by our
previous study in Ref. [18], where we addressed one of
the challenges which had obstructed the characterization of
worldline fuzziness in noncommutative spacetimes. In
�-Minkowski spacetime the time coordinate is a noncom-
mutative observable, whereas in the standard formulation
of quantum mechanics the time coordinate is merely an
evolution parameter. This difficulty can be circumvented
[18] by resorting to results [19–21] that establish a cova-
riant formulation of quantum mechanics, where both the
spatial coordinates and the time coordinates play the same
type of role. Spatial and time coordinates are well-defined
operators on a ‘‘kinematical Hilbert space,’’ which is just
an ordinary Hilbert space of normalizable wave functions
[21]. Observable features of the quantum theory are coded
on the ‘‘physical Hilbert space,’’ obtained from the
kinematical Hilbert space by enforcing the on-shellness
constraint (this constraint codifies dynamics in the same

sense as the covariant formulation of classical mechanics;
see, e.g., Chapter 4 of Ref. [22]).
Within this formulation of quantummechanics, time and

spatial coordinates of course commute among themselves
but do not commute with their conjugate momenta; in
particular, in the 2D case one has [21]

½�0; q0� ¼ i;

½�1; q1� ¼ �i;

½�1; q0� ¼ ½�0; q1� ¼ 0:

(4)

We observed in Ref. [18] that the �-Minkowski defining
commutator (3) is satisfied by posing a relationship be-
tween the �-Minkowski coordinates and the phase-space
operators of the covariant formulation of quantummechan-
ics [the ones of Eq. (4), viewed here merely as formal
auxiliary operators [18]) of the following form:

x1 ¼ e‘�0q1; x0 ¼ q0: (5)

We also showed in Ref. [18] that the translational symme-
tries of �-Minkowski spacetime, which in terms of the x1,
x0 coordinates require a rather sophisticated formalization
(see, e.g., Refs. [15,17,23]), can be implemented in terms
of the auxiliary variables q0, q1, �0, �1 as standard trans-
lation transformations:

T a�xfðx0; x1Þ � fðq0; q1e‘�0Þ
� ia�½��; fðq0; q1e‘�0Þ�: (6)

We also established [18] that the ‘‘on-shellness opera-
tor’’ (the operator which, for massless particles, should
vanish on physical states) can be written in terms of the
auxiliary variables �1, �0 as follows:

H ¼
�
2

‘

�
2
sinh 2

�
‘�0

2

�
� e�‘�0�2

1: (7)

One more result of Ref. [18] that is relevant for the
observations we are reporting here concerns the measure
for integration over momenta, which is needed for evaluat-
ing scalar products when working in the ‘‘momentum
representation.’’ We found that the implementation of rela-
tivistic symmetries in terms of the �-Minkowski x1, x0
coordinates induces an ‘-deformed �0, �1-integration
measure: d�0d�1 ! exp ð�‘�0Þd�0d�1.
In Ref. [18] we only reached the point of analyzing

the kinematical Hilbert space. The form of the operator
H was established, but we did not explore the implica-
tions of enforcing the Hamiltonian constraint in obtaining
the physical Hilbert space. Since we are interested here in
the fuzziness of the worldline of a physical particle, we
must progress to that next level. More precisely, we char-
acterize physical observables of free relativistic quantum
particles in �-Minkowski spacetime following the cova-
riant prescription adopted in Ref. [21]: we obtain the
needed feature of invariance of physical observables under
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the action of H by introducing a new scalar product [21]
that projects all the orbit of the gauge transformation
generated by H on the same state. This allows us to
formally refer to states in the kinematical Hilbert space
(but only as representatives of an orbit) and, for free
massless particles, leads to the study of scalar products
of the type hc j�iH ¼ hc j�ðH Þ�ð�0Þj�i, where �ð�0Þ
specifies a restriction [21] to positive-energy solutions
of the on-shellness constraint. Accordingly, in the
‘‘momentum-space representation’’ one has

hc j�iH ¼
Z

e�‘�0d�1d�0�ðH Þ�ð�0Þc �ð�Þ�ð�Þ:

We focus here on the case of a localized massless
particle, describable in terms of a Gaussian state1

��q0; �q1ð��; ���;	�Þ ¼ Ne
�ð�0� ��0Þ2

4	2
0

�ð�1� ��1Þ2
4	2

1 ei�0 �q0�i�1 �q1 ;

where N is a normalization constant,

N�2¼
Z
e�‘�0d�1d�0�ðH Þ�ð�0Þj��q0; �q1ð��; ���;	�Þj2;

and ��q0; �q1 is evidently written in the momentum-space

representation, with parameters ��0, ��1, 	0, 	1, �q0, �q1
(with �q0, �q1 highlighted, in the notation ��q0; �q1 , since the

issue of localization of the particle is predominantly con-
nected with those two parameters).

Our��q0; �q1 gives a state on our physical Hilbert space of

relativistic free-particle quantummechanics, so it identifies
a fuzzy worldline [21], as shall be evident also in what
follows. The expectation in��q0; �q1 of the measurable quan-

tity described by a self-adjoint operator O is computed in
terms of h��q0; �q1 jOj��q0; �q1iH .

The next hurdle we must face concerns the identification
of a well-defined observable suitable for the characteriza-
tion of the fuzziness of the worldline. The apparently
obvious choices, x1 and x0, are actually not suitable for
this task, since they are not self-adjoint operators on our
physical Hilbert space (in particular, they do not commute
with H ). We propose to remedy this by focusing on the
following ‘‘intercept operator’’ A:

A ¼ e‘�0

�
q1 �Vq0 � 1

2
½q0;V �

�
; (8)

where V is shorthand for V � ð@H =@�0Þ�1@H =@�1.
One may notice thatA is describable as an ‘-deformed

Newton-Wigner operator [24]. And it is well known that
within special-relativistic quantum mechanics there is no
better estimator of localization than the Newton-Wigner

operator (it can only be questioned for localization
comparable to the Compton wavelength of the particle
[24], but this merely conceptual limit of ideal localization
is evidently irrelevant for the level of localization achieved
by particle production at, e.g., quasars). For our purposes it
is important to notice that A is a good observable on our
physical Hilbert space (self-adjoint, commuting with H ),
and, evidently, in the classical limit A reduces to the
intercept of the particle worldline with the x1 axis.
Let us focus, for conceptual clarity, on the analysis of

the properties of A for the case of �0;0, i.e., for �q0 ¼ 0,
�q1 ¼ 0. One then easily finds that

h�0;0jAj�0;0iH ¼ 0;

so this is a case where the particle intercepts the observer
Alice in her origin. The fact that this intercept is fuzzy
reflects the fuzziness of the worldline described by �0;0,

and, in particular, the leading ‘-dependent contribution to
this fuzziness is characterized by

�A2
½‘� ¼ ðh�0;0jA2j�0;0iH Þ½‘� � ‘h�0i	�2=2; (9)

where, for simplicity, we assumed (as we shall do through-
out) that 	1 is small enough, in comparison to 	0, ��1, to
allow a saddle point approximation in the �1 integration;
then 	 (without indices) is the effective Gaussian width
after the saddle point approximation in �1: 	

�2 � 	�2
1 þ

hV i2	�2
0 .

In our proposed interpretation of the formalism, Eq. (9)
gives the fuzziness of the worldline ‘‘at Alice’’ (at the point
of crossing the origin of Alice’s reference frame). It is
interesting to also consider the perspective of observers
reached by the particle at cosmological distances from
Alice. These observers are those who are connected to
Alice by a pure translation so that, for them, the state of
the particle is �a0;a1 , and they are such that hAi ¼ 0,

i.e., h�a0;a1 jAj�a0;a1iH ¼ 0. Finding these observers

amounts to finding the translation parameters a0, a1 such
that h�0;0jT �1AT j�0;0iH ¼ 0, where T is the one of

Eq. (6). Of course, this leads to a one-parameter family of
solutions (the family of observers ‘‘on the worldline’’),
which unsurprisingly takes the form a1 ¼ hV ia0.
Crucial for us is that these observers with a vanishing

expectation value for the intercept have values of the
uncertainty in the intercept �A given by

�A2
½‘� ¼ ðh�a0;hV ia0 jA2j�a0;hV ia0iH Þ½‘�

�
�
‘h�0i
2	2

þ ‘2a20	
2

�
: (10)

So, we do have here a quantum-spacetime picture that fits
within the intuition inspiring spacetime-fuzziness phe-
nomenology: one can in fact interpret our observer Alice,
the observer on the worldline for whom the fuzziness of the
intercept takes the minimum value, as the observer at
the source (where the particle is produced), and then the

1Of course, in the massless-particle limit of interest here, one
must proceed cautiously:��q0; �q1 ð��; ���;	�Þmust be replaced by

�

�q0 ; �q1

ð��; ���;	�Þ ¼ exp ð�
=�2
0Þ��q0; �q1 ð��; ���;	�Þ, with 


a small infrared regulator which never actually matters in the
results we exhibit here.
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intercept of the particle worldline with the origin of the
reference frames of observers distant from Alice (where
the particle could be detected) has bigger uncertainty.

However, our formalization provides a quantification of
the relevant effects that differs from what had been sug-
gested heuristically. A crucial aspect of these differences is
uncovered by evaluating the energy uncertainty �E. In
Ref. [18] we established that �0 does have a standard
role of energy for particles in our �-Minkowski spacetime,
and therefore �E is given by h�a0;hV ia0 j�2

0j�a0;hV ia0iH �
h�a0;hV ia0 j�0j�a0;hV ia0i2H , for which we find

�E2 ’ 	2 � 2‘E	2: (11)

Remarkably, this shows that, contrary to what has been
assumed on the basis of heuristic arguments, in our
quantum spacetime there is no irreducible Planck-scale
contribution to energy uncertainties (since 	 can take
unboundedly small values in our Gaussian states). This is
perhaps our most significant result, which we feel has
very strong implications for both the phenomenology and
the theoretical understanding of spacetime fuzziness.
Phenomenologically, the fact that we found no irreducible
Planck-scale contribution to energy uncertainties renders
the experimental bounds on spacetime fuzziness derived in
Refs. [1–5,11,12] completely inapplicable to �-Minkowski
spacetime.

And, it is also relatively easy to apply the strategy of
analysis adopted above for �-Minkowski spacetime to the
other much-studied noncommutative spacetime, the one
with Moyal noncommutativity. Denoting with X� the

coordinates of the Moyal spacetime, one has [16] that

½X�;X�� ¼ i‘2���;

where the dimensionless noncommutativity parameters
��� are coordinate independent. Applying our approach

centered on the manifestly covariant formulation of quan-
tum mechanics to the Moyal case is indeed easier than for
the �-Minkowski case, because of the simplicity of the
relationship between the Moyal coordinates and the phase-
space operators of the covariant formulation of quantum
mechanics [the ones of Eq. (4), here viewed again as
formal auxiliary operators]: by posing

X� ¼ q� þ ‘2
���

2
��; (12)

the Moyal commutation relations are automatically
satisfied. Comparison of (12) for the Moyal case to the
complexity of its nonlinear �-Minkowski counterpart (5)
already suggests how much simpler it is to adopt our
strategy of analysis when considering Moyal noncommu-
tativity. In particular, the seed for our �-Minkowski find-
ings is in the associated description of translations, which
according to (6) are such that

x00 ¼ x0 þ a0 ¼ q0 þ a0;

x0j ¼ ðqj þ ajÞe‘�0 ¼ xj þ aje
‘�0 :

One can easily trace back to the nontrivial e‘�0 operatorial
factor, for translations of spatial coordinates, the source of
the mechanism that gives increasing fuzziness as the par-
ticle propagates. For the Moyal case from (12) it follows
that under translations one simply has

X0
� ¼ q� þ a� þ ‘2

���

2
�� ¼ X� þ a�;

and in light of this result it is easy to follow the steps of our
�-Minkowski analysis by adapting them to the Moyal case,
ultimately finding that there is no Planck-scale-induced
increase of the fuzziness as the particle propagates.
This also explains why we chose to keep our primary

focus on �-Minkowski spacetime: the Moyal case is sim-
pler but does not even provide the starting ingredient of
the heuristic pictures of spacetime fuzziness we intended to
investigate. In �-Minkowski spacetime we did at least find
that, as argued by the heuristic arguments, the fuzziness of
a particle’s worldline increases as the particle propagates
from emission to detection. But even �-Minkowski space-
time provides no support for the other key aspect of the
intuition about (and the phenomenology on) spacetime
quantization provided by the heuristic arguments, which
concerns an irreducible Planck-scale contribution to
energy uncertainties.
In closing, it is perhaps useful to summarize what we

feel are the key findings reported in this paper. Here we
performed the first ever constructive/deductive (no heuris-
tics) derivation of the properties of fuzzy worldlines in a
class of quantum spacetimes. We established firmly that
the phenomenological parametrization based exclusively
on the parameters � and � (in the notation adopted here in
the opening remarks), which had been suggested by several
heuristic arguments, is at least not sufficiently general.
Specifically, we established that this phenomenological
parametrization is not applicable to the two most-studied
noncommutative spacetimes, the Moyal type and the
�-Minkowski type. In the �-Minkowski case we did find
that, as stated by the heuristic arguments, the fuzziness of a
particle’s worldline increases as the particle propagates
from emission to detection: combining (10) and (11) one
gets for �-Minkowski spacetime

�A½‘� ’ ‘D�E; (13)

where we only included the contribution growing with the
propagation distance and we used D ¼ a0 since the trans-
lation parameter a0 connecting the observer at emission
and the observer at detection is just the propagation dis-
tance (any difference from this would only manifest itself
at subleading orders in ‘). The propagation-distance-
dependent amplification of Planck-scale effects shown in
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(11) can provide a natural target for quantum-gravity
phenomenology, and now these plans can be pursued at a
level that goes beyond heuristics. But the phenomenology
will need to adapt to the fact that within our �-Minkowski
picture the �E in (13) receives no irreducible Planck-scale
contributions.

The absence of irreducible Planck-scale contributions
to �E also characterizes our Moyal-case results [and in
the Moyal case even the propagation-distance amplifica-
tion of type (13) is absent]. This is rather significant
since the presence of irreducible Planck-scale contribu-
tions to �E, of the type noted here in Eq. (1), was a key
aspect of the conceptualization of spacetime fuzziness
provided by previous heuristic arguments and a key
ingredient of the associated phenomenology developed
in Refs. [1–4,11,12] and references therein. The
‘‘experimental bounds on spacetime fuzziness’’ derived
in Refs. [1–4,11,12] and references therein are therefore
evidently inapplicable to Moyal and �-Minkowski

noncommutativity. And it would be reductive to view

our study as a counterexample to a general feature: this

is the first time that the expectations of the relevant

heuristic arguments have been tested in actual formal-

izations of the notion of a quantum spacetime, and they

were found to fail. There may well be some quantum

spacetimes where the relevant heuristic predictions do

happen to apply, but there is at present (with two actual

spacetime pictures analyzed, and the heuristic predictions

found to be inapplicable there) no reason to assume that

those predictions will be generic. It is still plausible that

those bounds do apply, for example, to the picture of

quantum spacetime emerging from loop-quantum-gravity

research [13], and we feel that establishing rigorously

such a link (or the lack thereof) should be one of the

next main targets for this research program.
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