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We consider a Hořava theory that has a consistent structure of constraints and propagates two physical

degrees of freedom. The Lagrangian includes the terms of Blas, Pujolàs, and Sibiryakov. The theory can

be obtained from the general Horava’s formulation by setting � ¼ 1=3. This value of � is protected in the

quantum formulation of the theory by the presence of a constraint. The theory has two second-class

constraints that are absent for other values of �. They remove the extra scalar mode. There is no strong-

coupling problem in this theory since there is no extra mode. We perform explicit computations on a

model that put together a z ¼ 1 term and the IR effective action. We also show that the lowest-order

perturbative version of the IR effective theory has dynamics identical to the one of linearized general

relativity. Therefore, this theory is smoothly recovered at the deepest IR without discontinuities in the

physical degrees of freedom.
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I. INTRODUCTION

The consistency of Hořava theory [1] is a subject that
has been under intense study motivated by the search of a
perturbatively renormalizable theory of quantum gravity.
Numerous models that follow the original proposal of
Hořava of adopting the foliation-preserving diffeomorphisms
as gauge symmetry have been analyzed. An unavoidable
question for all these models is whether general relativity
(GR) can be consistently recovered at large distances, such
that the Hořava theory can be regarded as the UV completion
of GR. The originally proposed scheme for emergent GR
inside Hořava theory [1] consists of obtaining the full
action of GR (in the Arnowitt-Deser-Misner formulation)
as the lowest-order effective IR action. This scheme re-
quires the enhancing of the gauge symmetry group to the
general space-time diffeomorphisms; that is, the original
proposal is that not only the dynamics but also the sym-
metry of GR should be restored from Hořava theory in an
approximate, effective way. To achieve this, the IR effec-
tive action should satisfy the condition that the coupling
constant � multiplying the trace-kinetic term,ffiffiffi

g
p

NðKijK
ij � �K2Þ; (1.1)

must approach the value � ¼ 1 in order for this combina-
tion to match its fully covariant version.

An alternative to this scheme was noticed in Ref. [2],
where it was shown, by means of a Hamiltonian analysis,
that the lowest-order truncation of the original, nonproject-
able, Hořava theory, which is given by the Lagrangian

ffiffiffi
g

p
NðKijK

ij � �K2 þ RÞ (1.2)

is physically equivalent to a gauge-fixed version of general
relativity (the gauge in which K ¼ 0, the so-called maxi-
mal slicing gauge). This means that both theories are
dynamically identical, although their gauge symmetry
groups are different. The crucial point for the result of
Ref. [2] is that the condition K ¼ 0 emerges as one of
the constraints of the theory, hence � becomes meaningless
for the IR effective action. In particular, this result shows
how it is possible to get GR without the requisite � ! 1.
However, there is a central question about the disconti-

nuities that might arise in recovering GR. Since Hořava
theory has a reduced gauge symmetry group, generically it
has an extra degree of freedom with respect to GR (this was
already studied in Ref. [1]). There is an abundant quantity
of works devoted to the physics of this extra mode. We may
mention that in Ref. [3] it was signaled the problem of its
strong coupling in the original theory; implying, instead of
a discontinuity, the breaking down of the whole perturba-
tive analysis. We want to stress that this result is based
upon the assumption that � ! 1 at the IR as a generic rule
to get GR. In Ref. [4], using a curvature-square model, it
was shown that the extra mode is of odd nature, that is,
propagates itself with a first-order time derivative (see also
Ref. [5]). This was confirmed in Ref. [6], using again a
curvature-square model, but showing also that the algebra
of constraints closes and that the extra mode decouples at
large distances smoothly in perturbative analysis.1,2
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1The results of Refs. [2,6] were corroborated in Ref. [7].
2A perturbative analysis in a projectable model of the theory

can be found in Ref. [8].
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With the aim of curing the oddness of the extra mode, it
was noticed in Ref. [9] that the nonprojectable Hořava
action admits a large class of new terms (once the principle
of detailed balance is discarded). Since the vector ai ¼
@i lnN is covariant under the foliation-preserving diffeo-
morphisms, scalar combinations of it and the spatial metric
are admissible into the Lagrangian. Adopting the logic of
renormalizable gauge field theories, all the terms that are
compatible with the gauge symmetry must be included
in the Lagrangian. This leads us to consider the com-
plete, nonprojectable, Hořava theory as the one containing
the terms of Blas, Pujolàs, and Sibiryakov [9]. Those
authors found in Ref. [9] that the extra mode becomes
even (propagates with a second-order time derivative) in
the complete theory. However, the authors of Ref. [10]
reported that the strong coupling problem persists in the
complete theory, assuming again the condition � ! 1 at
the IR (see also Ref. [11]). It has been argued [12] that this
problem can be avoided by requiring that the scale at which
high-order operators become relevant is low enough.

On the side of the Hamiltonian analyses, in Refs. [13–15]
it was studied the closure of the algebra of constraints of the
complete theory. In Refs. [14,15] explicit computations
were performed on the lowest-order IR effective action
(second-order in derivatives). It was shown that the algebra
of constraints closes: in particular, well-behaved elliptic
partial differential equations arise (see Ref. [16]), and these
analyses confirm that the theory has an extra even scalar
mode, which is persistent at the level of the IR effective
action.

It is important to realize that there is an underlying
hypothesis behind these Hamiltonian analyses: it is assumed
that the time derivatives _gij can be completely solved in

terms of the momenta �ij [15]. This is effectively the case
when � satisfies � � 1=3. However, when � ¼ 1=3 it is not
possible to solve _gij completely in terms of �ij; instead, the

primary constraint gij�
ij ¼ 0 emerges. Since this con-

straint is not present in the case � � 1=3, it is to be expected
that the number of physical degrees of freedom is reduced
when � ¼ 1=3. Therefore, it becomes of great interest to
study the Hamiltonian formulation for the complete Hořava
theory under the special value � ¼ 1=3, since this case
might be an exception to the generic presence of the extra
mode.3 Moreover, one may ask whether the dynamics of
theory at � ¼ 1=3 is closer to the one of GR than for other
values of �. We emphasize that the gij�

ij ¼ 0 constraint

protects the value � ¼ 1=3, since any other value for �
would imply the violation of this constraint and the quantum
formulation must be done on the constrained submanifold.

With these goals in mind, in this paper we perform the
Hamiltonian analysis to the complete, nonprojectable

Hořava theory fixing the special value � ¼ 1=3. Explicit
computations on the complete Hořava theory are very
difficult since the Lagrangian has a big number of
higher-order terms. To overcome this difficulty, our first
strategy consists of dealing with a general potential and
making computations in an implicit form. This will allow
us to arrive at conclusive results on the closure of the
algebra of constraints and the number of physical degrees
of freedom. Then we move to a specific model which has a
z ¼ 3 term and the most general z ¼ 1 terms. The z ¼ 3
term is the square-Cotton tensor term and can be obtained
by the detailed balance principle [1,18]. The z ¼ 1 terms
give the relevant action for the large-distance dynamics,
the IR effective action. Of course, this is justified by the
assumption that all higher-order terms are suppressed at
low energies. This model, which will allow us to perform
explicit computations, can be regarded as a theory with soft
breaking of conformal symmetry, because the square-
Cotton term is conformally invariant, whereas the z ¼ 1
terms break the conformal symmetry.
We give in advance our three main results: The Hořava

theory we consider has a closed structure of constraints,
propagates two physical degrees of freedom, and the
linearized version of its IR effective action coincides
with linearized GR. Notice that these results imply that
linearized GR is recovered at the lowest energies without
discontinuities in the physical degrees of freedom. For the
concrete model we analyze, we also found that in a sector
of the space of parameters the energy of the model is
nonnegative.4

II. HAMILTONIAN ANALYSIS
OF THE FULL THEORY

We now start with the computations. Most of the steps
are parallel to the ones of the case � � 1=3. In order to
have a self-contained study, we shall perform the whole
analysis from the very beginning, making special emphasis
on the results that depart from the � � 1=3 case.
The action of the complete, nonprojectable Hořava

theory is written in terms of the Arnowitt-Deser-Misner
(ADM) variables gij, N and Ni as

S ¼
Z

dtd3x
ffiffiffi
g

p
NðGijklKijKkl �V Þ; (2.1)

where

Kij ¼ 1

2N
ð _gij � 2rðiNjÞÞ; (2.2)

Gijkl ¼ 1

2
ðgikgjl þ gilgjkÞ � �gijgkl; (2.3)

3The Hamiltonian formulation of the lowest-order truncation
of the original, nonprojectable, Hořava theory at the value
� ¼ 1=3 was carried out in Refs. [2,17].

4Positiveness theorems for the energy of nonprojectable
Hořava theory in the case � � 1=3 have been formulated in
Refs. [16,19].

BELLORIN, RESTUCCIA, AND SOTOMAYOR PHYSICAL REVIEW D 87, 084020 (2013)

084020-2



and the potential V ¼ V ðgij; ai; . . .Þ is the most general

combination of the spatial metric, its curvature tensor, the
vector ai and covariant spatial derivatives of these objects
that transforms as a scalar under spatial diffeomorphisms.
To ensure power-counting renormalizability, the potential
must include at least terms of order z ¼ 3, which means
that they are of sixth order in spatial derivatives. The
potential can also include a cosmological-constant term;
we put it equal to zero, hence our simplest vacuum is the
Minkowski space-time. The lowest-order terms, which
yield the effective action for large distances, are

V ð2Þ ¼ �R� �aia
i: (2.4)

� and � are coupling constants of the theory.
By expanding the kinetic term we get GijklKijKkl ¼

KijK
ij � �K2, where K¼gijKij. If we were dealing with

GR, we were forced to put � ¼ 1, since only the combina-
tionKijK

ij � K2 is covariant under transformations mixing

time with space. However, under foliation-preserving dif-
feomorphisms, both KijK

ij and K are separately covariant,

hence � is left undetermined by the gauge symmetry of the
Hořava theory. From the general relation

Gijklgkl ¼ ð1� 3�Þgij; (2.5)

we may see that the value � ¼ 1=3 is special since
the metric becomes a null eigenvector of the four-index
metric Gijlk,

Gijlkgkl ¼ 0: (2.6)

This implies that the metric Gijkl is not invertible for
� ¼ 1=3.

Let us perform the Legendre transformation to the action
(2.1) in the case � ¼ 1=3. Since general spatial diffeo-
morphisms are part of the gauge symmetries of the theory,
we know that the shift functions Ni can be regarded as the
Lagrange multipliers associated to the first-class constraint
generating this kind of transformations. Hence the phase
space is spanned by the conjugated pairs ðgij; �ijÞ and

ðN;�Þ. The action (2.1) does not depend explicitly on the
time derivative of N, hence we get the primary constraint

� ¼ 0: (2.7)

The momentum conjugated to the spatial metric is given by

�ijffiffiffi
g

p ¼ GijklKkl: (2.8)

By using (2.6) and denoting � � gij�
ij, we get the pri-

mary constraint

� ¼ 0: (2.9)

This constraint is absent in the complete, nonprojectable
Hořava theory with � � 1=3 [13–15]. � is the generator of
conformal transformations on gij and �ij. However, these

are not part of the gauge symmetries of the theory, hence

we may anticipate that � ¼ 0 is a second-class constraint.5

A similar consideration applies for � ¼ 0.
From (2.8), it is straightforward to obtain the relations

GijklKijKkl ¼ 1

g
�ij�ij; (2.10)

�ij _gij ¼ 2Nffiffiffi
g

p �ij�ij þ 2�ijriNj; (2.11)

and using them we may build the Hamiltonian. We
get, after an integration by parts that yields no boundary
contributions,

H ¼
Z

d3x

�
Nffiffiffi
g

p �ij�ij þ ffiffiffi
g

p
NV þ NiH i þ ��þ��

�

þ EADM; (2.12)

where H i ¼ 0 is a primary constraint defined by

H i � �2rj�
ij þ�@iN: (2.13)

This is the so-called momentum constraint, which is
the generator of spatial diffeomorphisms, hence it is a
first-class constraint. The term proportional to � in H i

ensures having the complete generator, since in the com-
plete Hořava theory N is part of the canonical variables.
We may add this term since � ¼ 0 is a constraint of the
theory. We have also added the rest of primary constraints
to the Hamiltonian (2.12), such that Ni, � and � enter as
Lagrange multipliers. Obviously, � does not arise in the
case � � 1=3. The ADM energy,

EADM ¼
I

d�ið@jgij � @igjjÞ; (2.14)

is included a la Regge and Teitelboim [20] in order to
obtain the equations of motion from the most general
variations of the Hamiltonian that are compatible with
the boundary conditions.
Now we study the preservation in time of the primary

constraints. Since H i ¼ 0 is a first-class constraint, we
concentrate ourselves in the preservation of � ¼ 0 and
� ¼ 0. For the time evolution of �, we need to compute
its Poisson bracket with the Hamiltonian (2.12). In com-
puting the Poisson brackets we can omit the boundary
terms of the Hamiltonian, since they do not give local
contributions to these brackets. We just need to remember
that we may discard any nonzero boundary contribution
arising in the derivative of the bulk terms, since the bound-
ary terms of the Hamiltonian account for them. Notice that
arbitrary variations of the potential with respect toN can be
written in a closed form,

5For the special case of a potential containing only the square
of the Cotton tensor, the action acquires a conformal symmetry
at � ¼ 1=3 [1].
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�N

Z
d3x

ffiffiffi
g

p
NV

¼
Z
d3x

ffiffiffi
g

p �
V�NþN

@V
@ai

�aiþN
@V

@ðrjaiÞ�rjaiþ���
�

(2.15)

¼
Z

d3x
ffiffiffi
g

p �
V�N þ N

X
r¼1

@V
@ðrir���i2ai1Þ

rir���i2�ai1

�
;

(2.16)

where we are using the shorthand rijk��� � rirjrk � � � .
After using �ai ¼ @ið�N=NÞ and integrating by parts (no
term gives boundary contributions), we get

�N

Z
d3x

ffiffiffi
g

p
NV

¼
Z
d3x

ffiffiffi
g

p
�N

�
Vþ 1

N

X
r¼1

ð�1Þrri1���ir

�
N

@V
@ðrir���i2ai1Þ

��
:

(2.17)

Therefore, the condition f�;Hg ¼ 0 leads to the secondary
constraint H ¼ 0, where

H � 1ffiffiffi
g

p �ij�ij þ ffiffiffi
g

p ~V (2.18)

and we have introduced the modified potential

~V � V þ 1

N

X
r¼1

ð�1Þrri1���ir

�
N

@V
@ðrir���i2ai1Þ

�
: (2.19)

Following the standard nomenclature of GR, we call
H ¼ 0 the Hamiltonian constraint.

The Hamiltonian given in (2.12) can be written in terms
ofH , the other constraints and boundary terms. To achieve
this, we notice that an integration by parts and the behavior
of the fields at infinity allow us to verify the identity

Z
d3xNH ¼

Z
d3x

�
Nffiffiffi
g

p �ij�ij þ ffiffiffi
g

p
NV

�
þ 2��N;

(2.20)

where �N is the flux of N at spatial infinity,

�N �
I

d�i@iN: (2.21)

To arrive at the integral (2.20), we have used the fact that all
the derivatives of the potential enter in NH inside total
divergences; the only one that does not vanish when inte-
grated at spatial infinity is the derivative of the quadratic term
in ai, which yields 2�

ffiffiffi
g

p
Nai ¼ Oðr�2Þ. Its surface integral

at infinity can be further simplified such that it gives the flux
of N. On the basis of (2.20), we may write the Hamiltonian
(2.12) as a sum of constraints plus boundary terms,

H¼
Z
d3xðNH þNiH iþ��þ��ÞþEADM�2��N:

(2.22)

From this expression, it is clear that the energy of the theory is
given by

E ¼ EADM � 2��N: (2.23)

From a mathematical point of view, the role of the boundary
term proportional to �N in the Hamiltonian (2.22) is analo-
gous to the one of the ADM energy [20]: it ensures the
differentiability of the Hamiltonian under variations of N
that behave as �N ¼ Oðr�1Þ at infinity. In particular, we
shall see below that there is a term proportional to ria

i in

themodified potential ~V . Its variationwith respect toN gives
rise to a nonzero boundary term that cancels out with the
variation of�2��N .
We now turn our attention to the preservation of

� ¼ 0. We find that the condition f�;Hg ¼ 0 leads to the
constraint C ¼ 0, where

C � 3N

2
ffiffiffi
g

p �ij�ij � ffiffiffi
g

p ~V
0
; (2.24)

and we have introduced the objects

ffiffiffi
g

p ~V
0ij� �

�gij

Z
d3y

ffiffiffi
g

p
N ~V ; ~V

0 �gij
~V

0ij
: (2.25)

Again, this constraint is absent in the complete theory with
� � 1=3. Notice that there are some similarities in the
structures of H and C. Two immediate consequences we
obtain from the vanishing of them are

~V � 0; ~V
0 ¼ � 3

2
N ~V : (2.26)

The next step is to impose the preservation in time of the
secondary constraints H ¼ 0 and C ¼ 0. By computing
Poisson brackets with the Hamiltonian, we obtain that the
condition fH ; Hg ¼ 0 leads to the equation

Z
d3y�

�

�N

Z
d3z

ffiffiffi
g

p ~V�þ
Z

d3y�gij
�

�gij

�
Z

d3z
ffiffiffi
g

p ~V�� 3�ij�ij

2
ffiffiffi
g

p �þ 2
Z

d3y
N�ijffiffiffi

g
p �

�gij

�
Z

d3z
ffiffiffi
g

p ~V�� 2�ij ~V 0
ij ¼ 0: (2.27)

The symbol � is the Dirac delta centered at the point
x at which this equation is evaluated, � ¼ �3ðz� xÞ.6
Similarly, the condition fC; Hg ¼ 0 leads us to the equation

6Let us further explain the notation. For example, the first term
of (2.27) should be read as

Z
d3y�ðyÞ �

�NðyÞ
Z

d3z
ffiffiffiffiffiffiffiffiffi
gðzÞ

q
~V ðzÞ�3ðz� xÞ

and similarly the other terms of (2.27) and (2.28) that involve
integrals and functional derivatives.
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Z
d3y�gij

�

�gij

Z
d3z

ffiffiffi
g

p ~V
0
�þ

Z
d3y�

�

�N

�
Z

d3z
ffiffiffi
g

p ~V
0
�þ 9N�ij�ij

4
ffiffiffi
g

p �� 3�ij�ij

2
ffiffiffi
g

p �

þ 2
Z

d3y
N�ijffiffiffi

g
p �

�gij

Z
d3z

ffiffiffi
g

p ~V
0
�þ 3N�ij ~V

0
ij ¼ 0:

(2.28)

Equations (2.27) and (2.28) form a system of equations for
the Lagrange multipliers� and�. Indeed, since the potential
depends on derivatives of N and gij, the first two terms of

both (2.27) and (2.28) lead to differential operators on these
multipliers. Thus, Eqs. (2.27) and (2.28) are a coupled system
of partial differential equations (PDEs) for � and �.
Whenever this system can be solved for � and �, Dirac’s
algorithm for the preservation of constraints ends consis-
tently with these equations (in the complete theory with � �
1=3 Dirac’s procedure ends with a PDE for � [14,15]).

Moreover, for the consistency of the whole Hamiltonian
formulation it is of central importance that the Eqs. (2.27)
and (2.28) can be solved for the multipliers � and �,
without any further restriction on the canonical variables.
Since the most relevant terms to determine the existence of
solutions are the highest-derivative terms, it is illustrative to
study the structure of the highest-order terms that arise in
Eqs. (2.27) and (2.28) when the full (up to z ¼ 3) potential
of the theory is considered. There is a big number of
inequivalent z ¼ 3 operators that can be constructed with
the curvature tensor and ai; thus, at first sight it seems a very
difficult task to elucidate the structure of the highest-order
terms of Eqs. (2.27) and (2.28). However, a direct analysis
on these equations may convince ourselves that some of
these operators lead to the cube of the Laplacian,r6, acting
on � or� and the other ones lead to lower-order terms. The
main point is that in Eqs. (2.27) and (2.28) the four terms

Z
d3y�

�

�N

Z
d3z

ffiffiffi
g

p ~V�;

Z
d3y�gij

�

�gij

Z
d3z

ffiffiffi
g

p ~V�;

Z
d3y�gij

�

�gij

Z
d3z

ffiffiffi
g

p ~V 0
�;

Z
d3y�

�

�N

Z
d3z

ffiffiffi
g

p ~V
0
�

(2.29)

contain derivatives of the potentialV of at least second order
and there are z ¼ 3 operators that combine all their deriva-
tives into a sixth-order derivative when they are functionally
derived twice (or more). Let us consider, for example, the
two operators O1 � ðriRjkÞ2 and O2 � ria

ir2rja
j.

When O1 is inserted in the third term of (2.29), the highest
derivative that it gives rise on the Dirac delta is r6. After
integration by parts, we get thatO1 yields a term proportional
to r6� in Eq. (2.28), whereas all its other contributions are

of lower order. Similarly, O2 yields r6 acting on the Dirac
delta when inserted in the first term of (2.29), hence it leads
to a term proportional tor6� in Eq. (2.27). The operatorsO1

andO2 must be included in the potential in their direct forms
or in terms of their equivalent operators; that is, other opera-
tors that are obtained from them by integration by parts. In
any casewe obtainr6 as the highest-order operator acting on
the Dirac delta once the functional derivatives in (2.29) are
performed. Other inequivalent operators yield the same re-
sult when inserted in some of the terms in (2.29). We could
anticipate this result by noting that there is no covariant
differential operator of sixth order acting on the Dirac delta
other than the cube of the Laplacian. Note, however, that
there are z ¼ 3 terms that do not yield sixth-order derivatives
acting on the delta when inserted in (2.29), but lower-order
derivatives. An example is ðaiaiÞ3. Another interesting ex-
ample is the square Cotton, CijCij, which we shall consider

explicitly in the next section.
In despite of the fact that some operators yield lower-order

derivatives on� and� in Eqs. (2.27) and (2.28), the ones that
yield r6 must be included in the potential and these are the
dominant ones in Eqs. (2.27) and (2.28). After all the terms
proportional tor6� andr6� are collected, the last requisite
is to impose that the matrix of their coefficients is positive
definite, which is a condition in the space of coupling con-
stants.7 Thus, we have that, when the full potential of the
theory is considered, Eqs. (2.27) and (2.28) constitute a
system of sixth-order, linear, elliptic PDEs for � and �
characterized by the highest-order terms r6� and r6�.
Having seen that the theory has a closed structure of

constraints, we now evaluate the number of degrees of
freedom. The theory has the first-class constraint H i¼0
and the second-class ones � ¼ � ¼ H ¼ C ¼ 0. They
leave four independent degrees of freedom in the phase
space, which correspond to the propagation of two even
physical degrees of freedom. This is the same number of
GR; there are not extra degrees of freedom in the complete,
nonprojectable Hořava theory at the value � ¼ 1=3. We
may regard the Hamiltonian constraint H ¼ 0 and the
constraint C ¼ 0, where H is given in (2.18) and C in
(2.24), as a coupled system of PDEs for the lapse function
N and one mode coming from the spatial metric gij.

III. SOFT BREAKING OF THE
CONFORMAL SYMMETRY

A. The full model

In order to develop explicit computations, in this section
we consider a model with z ¼ 3 and z ¼ 1 terms. This
model will help us in clarifying the structure of the above

7Notice that there is no place for nonconstant coefficients in
these terms. The potential only depends explicitly on gij and ai
and their derivatives; any coefficient that depends on them
necessarily would increase the order, and we are considering
the highest-order terms.
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equations. The quadratic (z ¼ 1) terms we consider are the

most general ones; they are grouped in V ð2Þ, which is
given in (2.4). The importance of this quadratic potential
lies on the fact that it is the leading one at the lowest
energies, such that we build the lowest-order IR effective
action with it and the kinetic term. This is the appropriated
scenario to test whether GR is recovered at the IR. For the
z ¼ 3 term we consider the square-Cotton term, which was
the original z ¼ 3 term proposed by Hořava [1] and can be
elegantly justified in the 3þ 1 action by the detailed
balance principle.

The potential is given by

V ¼ �R� �aia
i þ wCijC

ij; (3.1)

where w is a coupling constant and Cij is the Cotton tensor,

Cij ¼ 1ffiffiffi
g

p "klðirkRl
jÞ: (3.2)

Computationswith theC2 term are facilitated by the fact thatffiffiffi
g

p
CijCij transforms homogeneously (with weight �3=2)

under conformal transformations of the metric, which are
generated by �.

The modified potential (2.19) and its derivative ~V 0

(2.25) take the form (before imposing constraints)

~V ¼ �Rþ �ð2ria
i þ aia

iÞ þ wCijC
ij; (3.3)

~V
0 ¼�1

2
NRþ2Nria

iþð2��=2ÞNaia
i�3w

2
NCijC

ij;

(3.4)

such that the Hamiltonian constraint (2.18) and the C
constraint (2.24) become

H ¼ 1ffiffiffi
g

p �ij�ij � ffiffiffi
g

p
Rþ �

ffiffiffi
g

p ð2ria
i þ aia

iÞ

þ w
ffiffiffi
g

p
CijC

ij ¼ 0; (3.5)

C ¼ 3N

2
ffiffiffi
g

p �ij�ij þ 1

2

ffiffiffi
g

p
NR� ffiffiffi

g
p

Nð2ria
i

þ ð2� �=2ÞaiaiÞ þ 3w

2

ffiffiffi
g

p
NCijC

ij ¼ 0: (3.6)

Finally, we evaluate the equations (2.27) and (2.28) for the
model (3.1). As we anticipate in the previous section, these
equations lead to a coupled system of PDEs for � and �,

�ð2r2�þ Nai@i�Þ � 2g�1�ij�ij�þ ð�r2N þ 3g�1N�ij�ijÞ�þ ð3�N � 2�ÞwCijCij

¼ � 4Nffiffiffi
g

p �ijðNRij �rirjN þ �NaiajÞ þ 4�ffiffiffi
g

p @iðN@jN�ijÞ � 8wNffiffiffi
g

p CijO
ijklðN�klÞ þ 8wNffiffiffi

g
p �kl

�OijklðNCijÞ; (3.7)

r2�� �

N
ai@i�� 1

4
ðRþ �aia

i þ ð3=	Þg�1�ij�ijÞ�þ �

N
aia

i�� 3w

4	
CijC

ij�

¼ 2�

�
ffiffiffi
g

p �ijðNRij �rirjN þ �NaiajÞ � 2w

	
ffiffiffi
g

p CijO
ijklðN�klÞ þ 2w

	
ffiffiffi
g

p �kl
�OijklðNCijÞ; (3.8)

where Oijkl and �Oijkl are the differential operators

Oijkl � 1

2
ffiffiffi
g

p ð"imkrmrlrj þ gjl"imnrmrkrn � gjl"imkrmrnrn � gkl"imnrmrjrnÞ

þ 1

2
ffiffiffi
g

p ðgjk"ilnRn
mrm � gjk"imnRn

lrm � gjm"iknRn
lrmÞ;

�Oijkl � 1

2
ffiffiffi
g

p ð�"imkrjrlrm � gjl"imnrnrkrm þ gjl"imkrnrnrm þ gkl"imnrnrjrmÞ

þ 1

2
ffiffiffi
g

p rm½ð�gjk"ilnRn
m þ gjk"imnRn

l þ gjm"iknRn
lÞ��; (3.9)

and

� � ð1� �=2Þ; 	 �
�
1� �=2

1þ 3�=2

�
: (3.10)

We have made some massaging on Eqs. (3.7) and (3.8)
to bring them to their final form, in particular, by using
the constraints (3.5) and (3.6). Equations (3.7) and (3.8)

constitute a system of linear, elliptic, PDEs for the

Lagrange multipliers � and �. Notice that these equations
are of second order although the model is z ¼ 3. This is
because the

ffiffiffi
g

p
NCijC

ij term is covariant under conformal

transformations generated byN� and�. Thus, the Poisson
brackets between

ffiffiffi
g

p
NCijC

ij and ��, �� generate terms

proportional to the C2 term, � and � playing the role of
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conformal factors. Hence no derivatives of � or � are
generated by the C2 term. Equations (3.7) and (3.8) can
be solved for � and � on general grounds, hence we
conclude that Dirac’s algorithm for the preservation of
constraints ends consistently with these equations.

As we pointed out in the previous section, constraints
(3.5) and (3.6) can be regarded as a system of PDEs for N
and one mode coming from gij. We would like to empha-

size this point for N. Constraints (3.5) and (3.6) can be
combined to obtain the equation

�r2N ¼ N

�
1

g
�ij�ij þ wCijC

ij

�
: (3.11)

The structure of this equation falls on the same class
of equations we studied in Ref. [16]. There we showed
that, if the term without derivatives of N satisfies a pos-
itiveness condition, then the solution for N, in the sense of
distributions, exists and is unique. For the Eq. (3.11), the
nonderivative term is definite positive by requiring only
w � 0. Assuming also �< 2 (�> 0), then the results of
Ref. [16] imply the existence and uniqueness of N, and
moreover, it is guarantied that N � 0 over all the spatial
submanifold.

By evaluating conditions (2.26) [or directly from (3.5)
and (3.6)], we get, imposing w � 0,

R� ð1þ 3�=2Þria
i � ð1þ �=2Þaiai ¼ 0; (3.12)

R� 2�ria
i � �aia

i � 0: (3.13)

It is straightforward to deduce from these relations the
following inequalities:

�r2N � 0; 	ðRþ �aia
iÞ � 0: (3.14)

On the basis of the inequalities (3.14), we may give a
result about the positiveness of the energy of the model
(3.1). If the coupling constant � is restricted to the set

� 2

3
<� � 0; (3.15)

then the inequalities (3.14) yield r2N � 0 and R � 0. The
former implies that the flux of N at infinity is nonnegative.
The positive energy theorem of GR [21,22] establishes that
an everywhere positive R gives a positive ADM energy.
Therefore, the energy of the model, given in (2.23),

E ¼ EADM � 2��N; (3.16)

is nonnegative when � is restricted to the range (3.15).

B. The IR effective action

Now we move to the w ! 0 limit to extract the proper-
ties of the IR effective action of the complete Hořava
theory at the � ¼ 1=3 value, which has the potential

V ð2Þ ¼ �R� �aia
i. This effective theory has a consis-

tent structure of constraints by itself, which can be seen by

taking the w ! 0 limit on the constraints/equations for
multipliers of the above model. We obtain the H and C
constraints

H ¼ 1ffiffiffi
g

p �ij�ij� ffiffiffi
g

p
Rþ�

ffiffiffi
g

p ð2ria
iþaia

iÞ¼0; (3.17)

C ¼ 3N

2
ffiffiffi
g

p �ij�ij þ 1

2

ffiffiffi
g

p
NR� ffiffiffi

g
p

Nð2ria
i

þ ð2� �=2ÞaiaiÞ ¼ 0; (3.18)

and we notice that the Eqs. (3.7) and (3.8) for � and �
maintain their structure of second order, linear, elliptic
PDEs. By evaluating the Eqs. (2.26), we obtain again the
Eqs. (3.14) in the same form, hence the result about the
positiveness of the energy of the IR effective action holds.
Since the number of propagating degrees of freedom is

the same of GR, it is interesting to elucidate whether GR
can be recovered at the lowest energies from this model of
Hořava theory. The best way to analyze this point is the
perturbative analysis. We perform perturbations of the
Minkowski background in the way

gij ¼ �ij þ hij; �ij ¼ pij; N ¼ 1þ n: (3.19)

We decompose the perturbative metric into transverse and
longitudinal parts,

hij ¼ hTTij þ 1

2
½�ij � @ijð@kkÞ�1�hT

þ @ih
L
j þ @jh

L
i þ @ijð@kkÞ�1hL; (3.20)

where the boundary conditions are used in the definition of
ð@kkÞ�1. In the above we use the shorthand @ij ¼ @i@j and

so on. We also decompose pij in the same way of (3.20). In

addition, we impose the gauge in which all the longitudinal
sector of the metric is eliminated,

@ihij ¼ 0: (3.21)

We start the perturbations by analyzing the constraints of
the theory at linear order. The linear-order momentum
constraint H i ¼ 0 (2.13) yields

@ipij ¼ 0: (3.22)

Hence the longitudinal sector of pij is also eliminated.

Constraint (2.9) yields pT ¼ 0. This leaves us with only
the sector pTT

ij activated. The perturbative Hamiltonian

constraint H ¼ 0 (3.17) and the constraint C ¼ 0 (3.18)
at linear order yield, respectively,

@iih
T þ 2�@iin ¼ 0; (3.23)

@iih
T þ 4@iin ¼ 0: (3.24)

With the prescribed boundary conditions, and assuming
� � 2, there are not solutions to these equations other than
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hT ¼ n ¼ 0: (3.25)

Thus, we see that at linear order the transverse scalar
mode of the metric and the lapse function are switched
off completely. Similarly, the linearized equations (2.27)
and (2.28) yield � ¼ � ¼ 0.

After all the linear-order constraints are imposed, the
unconstrained second-order Hamiltonian (2.22) takes the
form

H ¼
Z

d3x

�
pTT
ij p

TT
ij þ 1

4
@ih

TT
jk @ih

TT
jk

�
; (3.26)

which is exactly the Hamiltonian of linearized GR. Thus,
we see that the dynamics of linearized GR is smoothly and
exactly recovered from the complete, nonprojectable
Hořava theory at the value � ¼ 1=3. There is not any
discontinuity in the degrees of freedom since the nonper-
turbative theory has also two degrees of freedom.

IV. CONCLUSIONS

We introduce a theory of gravitation based on the
principle of having the foliation-preserving diffeomor-
phisms as gauge symmetry. The theory we consider can
be obtained from the Hořava theory with the terms of Blas,
Pujolàs, and Sibiryakov by setting the coupling constant �
equal to 1=3. The terms of Blas, Pujolàs, and Sibiryakov
must be included to obtain a renormalizable theory since
they are compatible with the gauge symmetry. Unlike other
models of Hořava theory, in our model the value � ¼ 1=3
is protected under quantum corrections because of the
presence of a constraint in the theory. This implies that �
is not actually a running coupling constant.

Our Hamiltonian analysis shows that the theory has a
consistent and closed structure of constraints. It also
provides elliptic equations for the elimination of the
Lagrange multipliers associated to the primary second-
class constraints. As a remarkable feature of the theory,
we found that it has two second-class constraints that are

absent in others models based on Hořava theory. One of
them is � ¼ 0, which is a primary constraint of the
theory. These constraints get rid of the extra mode that
arises in � � 1=3 models of Hořava theory (with or
without the terms of Blas, Pujolàs, and Sibiryakov). We
would like to stress that these constraints are always
present for any choice of the potential, since they are a
consequence of the universal form of the kinetic term of
the Hořava theory and the value � ¼ 1=3. As a result, we
get that the theory has two physical degrees of freedom,
as general relativity has.
We consider a concrete potential with a z ¼ 3 term, a

square-Cotton term, and all the z ¼ 1 terms compatible with
the gauge symmetry. The square-Cotton term can be obtained
from the principle of detailed balance [1]. For this model, we
additionally show that its energy is positive definite.
Another outstanding feature of the theory is that the

linear-order perturbative version, around Minkowski
space-time, of the IR effective action is physically equiva-
lent to linearized general relativity. We obtain the IR
effective action as the z ¼ 1 truncation of the concrete
model, since it includes all the second-order terms (includ-
ing the Blas, Pujolàs, and Sibiryakov term). Thus, we have
obtained a clear and consistent way to obtain general
relativity in the low energy limit of Hořava theory.
We think that our model is a good candidate for a

renormalizable theory of quantum gravity. Since the quan-
tization must be performed on the constrained submani-
fold, the second-class constraint � ¼ 0 must be preserved
and this avoids � to move from the value � ¼ 1=3.
However, one should be careful with the treatment of the
second-class constraints when performing the quantization
of the theory.
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