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Gravitational perturbations of neutron stars and black holes are well-known sources of gravitational

radiation. If the compact object is immersed in or endowed with a magnetic field, the gravitational

perturbations would couple to electromagnetic perturbations and potentially trigger synergistic electro-

magnetic signatures. We present a detailed analytic calculation of the dynamics of coupled gravitational

and electromagnetic perturbations for both neutron stars and black holes. We discuss the prospects for

detecting the electromagnetic waves in these scenarios and the potential that these waves have for

providing information about their source.
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I. INTRODUCTION

Multimessenger astronomy has arrived. Already astro-
particle observations (neutrinos and cosmic rays) are com-
plementing traditional electromagnetic observations. The
third pillar is almost ready with near future gravitational-
wave observations by interferometric detectors like LIGO,
Virgo, GEO600, and LCGT [1,2]. This new astronomy will
enable multichannel observations of astrophysical phe-
nomena such as �-ray bursts, supernovae, or flaring mag-
netars, unveiling an unprecedented view of the nature of
the source and its environment.

An important component in many astrophysical phe-
nomena is strong magnetic fields, as demonstrated by the
active role they play in the accretion processes of low-mass
x-ray binaries and gamma-ray bursts [3]. The presence of
strong magnetic fields opens up the possibility for interest-
ing effects. Among them, which is the central topic of this
work, is the coupling between electromagnetic and gravi-
tational emissions that could yield synergistic multimes-
senger observations. In particular, it is important to assess
the conditions in which electromagnetic and gravitational
emissions influence each other. There are already hints for
such scenario. It is believed that the flare activity of mag-
netars seems to be associated with starquakes [4]. These
quakes are responsible not only for dramatic perturbations
and rearrangements of the magnetic field, but also for the
breaking of the neutron star crust and internal motions,
possibly resulting in the emission of gravitational waves.
Detailed studies of magnetar flare activity have revealed a
number of features in the afterglow, which can be associated
with the crust oscillations as well as with Alfvén waves
propagating from the core towards the surface [5–17].

The link or coupling between electromagnetic radia-
tion and gravitational waves has been investigated for
some cases. One of them looked at the propagation of

gravitational waves linearly coupled to an external mag-
netic field [18]. It was shown that this configuration trig-
gers magnetohydrodynamics waves in the plasma [19–23].
Furthermore, the linear nature of the coupling limits the
electromagnetic waves to low frequencies, in the best
case a few tenths of kHz, which will be easily absorbed
by the interstellar medium or plasma. In order to produce
high frequency and detectable electromagnetic waves,
nonlinear couplings are needed, requiring much stronger
gravitational waves. In most of these studies, the gravita-
tional waves were assumed to propagate on a flat space-
time background. This is a reasonable assumption when
the interaction between the gravitational and electromag-
netic waves takes place far from the source. There have
been only very few attempts to treat the electromagnetic-
gravity coupling in the strong field regime [24].
The aim of this work is to study the interaction of

electromagnetic and gravitational waves in the vicinity of
magnetized neutron stars or black holes immersed in
strong magnetic fields using perturbation theory, paying
particular attention to how gravitational modes drive the
excitation of electromagnetic perturbations. Our work also
includes estimates of the energy transferred between the
gravitational and electromagnetic sectors. As expected, we
find that the excited electromagnetic waves have roughly
the same frequency as the driving gravitational waves, i.e.,
of the order of a few kHz. Electromagnetic waves at these
low frequencies can be easily absorbed by the interstellar
medium. As a consequence, one needs to associate them
with secondary emission mechanisms (e.g., synchrotron
radiation) in order to be able to trace the effects of gravi-
tational waves on the strong magnetic fields. The later
process can be studied following the mechanisms de-
scribed in Refs. [19–23], and there is work in progress
for the special case of strong gravitational fields.
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This article is organized as follows: Sec. II gives details
of the space-time background configuration. In Sec. III, we
review the general form of the perturbation equations, their
couplings, and the angular dependences of the various
types of electromagnetic and gravitational perturbations.
In Sec. IV, we reduce the equations to the particular case of
dipole electromagnetic perturbations driven by the quad-
rupole gravitational mode for the case of a neutron star
background. In Sec. V, we do the same as in Sec. IV but for
the case of a black hole and consider both the case of axial
and polar gravitational perturbations. In Sec. VI we show
numerical results or dipole electromagnetic waves driven
by quadrupole gravitational waves with axial parity for
both neutron stars and black holes. Conclusions are given
in Sec. VII. We adopt geometric units, c ¼ G ¼ 1, where c
and G denote the speed of light and the gravitational
constant, respectively, and the metric signature is
ð�;þ;þ;þÞ.

II. EQUATIONS FOR THE BACKGROUND

The background space-times we are considering
(neutron stars and black holes) are governed by the
Einstein-Maxwell equations, which read

G�� ¼ 8�ðT�� þ E��Þ; (2.1)

ðT�� þ E��Þ;� ¼ 0; (2.2)

F��
;� ¼ 4�J�; (2.3)

F��;� þ F��;� þ F��;� ¼ 0: (2.4)

The tensors that appear in these equations are the Einstein
tensor G��, the Faraday antisymmetric tensor F��, the

electromagnetic four-current J�, the energy-momentum
tensor of the matter fluid T��, and the energy-momentum

tensor of the electromagnetic field is E��. The energy-

momentum tensors are explicitly given by

T�� ¼ ð�þ pÞu�u� þ pg��; (2.5)

E�� ¼ 1

4�

�
g��F��F�� � 1

4
g��F��F

��

�
; (2.6)

where � stands for the energy density, p for the pressure,
and u� for the four-velocity of the matter fluid.

The presence of a magnetic field could in principle
induce deformations to the neutron star or black hole we
are considering. However, even for astrophysically strong
magnetic fields, B� 1016G, as in the case of magnetars,
the energy of the magnetic field EB is much smaller than
the gravitational energy EG, by several orders of magni-
tude. In fact, EB=EG � 10�4ðB=1016½G�Þ2. Therefore, in
setting up the background space-time metric, one can
ignore the magnetic field. That is, the background metric
has the form

ds2 ¼ �e�dt2 þ e�dr2 þ r2ðd�2 þ sin 2�d	2Þ; (2.7)

where the functions �ðrÞ and �ðrÞ in the interior of a
neutron star are determined by the well-known Tolman-
Oppenheimer-Volkoff equations (see, e.g., Ref. [25]) and

the matter fluid four-velocity u� ¼ ðe��=2; 0; 0; 0Þ. In the
exterior of a neutron star, and in the case of a black
hole, they are determined by the standard Schwarzschild
solution: e�� ¼ e� ¼ 1� 2M=r.

A. A dipole background magnetic field: Exterior region

Next, we compute the magnetic field for both the neu-
tron star and the black hole. We consider first the exterior
(vacuum) solution. In this case, the component of Maxwell
equations given by Eq. (2.4) is automatically satisfied. The
magnetic field is then obtained by solving the remaining
Maxwell equations, Eq. (2.3), which in vacuum read

F��
;� ¼ 0; (2.8)

with F�� ¼ A�;� � A�;�. Since the background space-

time is static, it is natural to assume that the magnetic field
is also static. In addition, we require the magnetic field to
be axisymmetric and poloidal,

B�ðexÞ ¼ ð0; e��=2BðexÞ
1 ðrÞ cos�; e��=2BðexÞ

2 ðrÞ sin�; 0Þ;
(2.9)

which has a dependence on the polar coordinate, �. From
the relation between the magnetic field, the matter fluid
velocity u�, and the field strength

B� ¼ 
����u
�F��=2 ¼ 
����u

�A�;�; (2.10)

where 
���� is the complete antisymmetric tensor deter-

mined by the convention 
0123 ¼ ffiffiffiffiffiffiffi�g
p

. It is not difficult to

show that the only nonvanishing component of the vector
potential A� is the 	 component, which we will denote as

AðexÞ
	 . Therefore, the vacuum Maxwell equation (2.8) in the

Schwarzschild background becomes

r2
@

@r

��
1� 2M

r

� @AðexÞ
	

@r

�
þ sin�

@

@�

�
1

sin �

@AðexÞ
	

@�

�
¼ 0:

(2.11)

Expanding AðexÞ
	 in vector spherical harmonics as

AðexÞ
	 ¼ aðexÞlM

ðrÞ sin �@�PlM ðcos �Þ; (2.12)

we rewrite Eq. (2.11) as

r2
d

dr

��
1� 2M

r

� daðexÞlM

dr

�
� lðlþ 1ÞaðexÞlM

¼ 0: (2.13)

The solution of this equation for the dipole case (lM ¼ 1)
has the form [26]
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aðexÞ1 ¼ � 3�d

8M3
r2
�
ln

�
1� 2M

r

�
þ 2M

r
þ 2M2

r2

�
; (2.14)

where�d is the magnetic dipole moment for an observer at
infinity. With the solution of Eqs. (2.14) and (2.10), the
coefficients of the magnetic field in Eq. (2.9) are given by

BðexÞ
1 ðrÞ ¼ 2aðexÞ1

r2
¼ � 3�d

4M3

�
ln

�
1� 2M

r

�
þ 2M

r
þ 2M2

r2

�
;

(2.15)

BðexÞ
2 ðrÞ ¼ � aðexÞ1;r

r2

¼ 3�d

4M3r

�
ln

�
1� 2M

r

�
þM

r
þ M

r� 2M

�
: (2.16)

Notice that in the limit r ! 1,

BðexÞ
1 ðrÞ � 2�d

r3
and BðexÞ

2 ðrÞ � �d

r4
: (2.17)

B. A dipole background magnetic field: Interior region

We assume that the magnetic field inside the star is also
axisymmetric and poloidal, with current J� ¼ ð0; 0; 0; J	Þ
[27,28]. The ideal MHD approximation is also adopted,
i.e., infinite conductivity �, which leads to E�¼F��u

�¼0,

as follows from the relativistic Ohm’s law

F��u
� ¼ 4�

�
ðJ� þ u�J

�u�Þ: (2.18)

Therefore, the vector potential A� is similar to that for the

exterior magnetic field, i.e., A� ¼ ð0; 0; 0; AðinÞ
	 Þ. The coun-

terpart equation to Eq. (2.11) but for the interior is

e��
@2AðinÞ

	

@r2
þ 1

r2
@2AðinÞ

	

@�2
þ ð�0 � �0Þ e

��

2

@AðinÞ
	

@r

� 1

r2
cos �

sin �

@AðinÞ
	

@�
¼ �4�J	: (2.19)

Expanding both, the vector potential AðinÞ
	 and the current J	,

in vector spherical harmonics, one gets

AðinÞ
	 ðr; �Þ ¼ aðinÞlM

ðrÞ sin �@�PlM ðcos �Þ; (2.20)

J	ðr; �Þ ¼ jlM ðrÞ sin �@�PlM ðcos �Þ; (2.21)

which can be use to rewrite Eq. (2.19) as

e��
d2aðinÞlM

dr2
þ ð�0 � �0Þ e

��

2

daðinÞlM

dr

� lMðlM þ 1Þ
r2

aðinÞlM
¼ �4�jlM : (2.22)

It is only feasible to obtain numerical solutions to
Eq. (2.22), even for the dipole case (lM ¼ 1), since among

other things the coefficients are also computed numerically
from the Tolman-Oppenheimer-Volkoff equations. In addi-
tion, when prescribing j1ðrÞ, it must satisfy an integrability
condition (see Refs. [29,30] for details). We adopt a current
with a functional form [28]:

j1ðrÞ ¼ f0r
2ð�þ pÞ; (2.23)

where f0 is an arbitrary constant. In addition, we should
impose the following regularity condition at center of the
neutron star:

aðinÞ1 ¼ �cr
2 þOðr4Þ; (2.24)

where �c is also an arbitrary constant. These arbitrary con-
stants f0 and�c are determined by thematching conditions at
the surface of the star, namely that a1 and a1;r are continuous
across the stellar surface. Finally, oncewe have the numerical
solution for a1ðrÞ, the magnetic field is obtained from

B�ðinÞ ¼ ð0; e��=2BðinÞ
1 ðrÞ cos �; e��=2BðinÞ

2 ðrÞ sin �; 0Þ
(2.25)

with

BðinÞ
1 ðrÞ ¼ 2aðinÞ1

r2
and BðinÞ

2 ðrÞ ¼ �aðinÞ1;r

r2
: (2.26)

With the magnetic field determined both in the interior and
exterior regions, the Faraday tensor for the background field
becomes

F�� ¼ 
����B
�u�

¼ r2 sin �

0 0 0 0

0 0 0 B2 sin �

0 0 0 �B1 cos �

0 �B2 sin � B1 cos� 0

0
BBBBB@

1
CCCCCA:

(2.27)

III. PERTURBATION EQUATIONS

We consider small perturbations of both the gravitational
and electromagnetic fields, which can be described as

~g�� ¼ g�� þ h��; (3.1)

~F �� ¼ F�� þ f��; (3.2)

where g�� and F�� are the background quantities derived in

the previous section. The tensors h�� and f�� denote small

perturbations, i.e., h�� ¼ g�� and f�� ¼ F��.

Linearization of the Einstein-Maxwell equations yields

G�� ¼ 8�ðT�� þ E��Þ; (3.3)

ðT��
;� þ E��

;�Þ ¼ 0; (3.4)
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@�½ð�gÞ1=2f��� ¼ 4�½ð�gÞ1=2J�� � @�½F��ð�gÞ1=2�;
(3.5)

f��;� þ f��;� þ f��;� ¼ 0: (3.6)

From Eq. (3.5), we find that the electromagnetic
perturbations are driven by the gravitational perturbations

via the term containing ð�gÞ1=2 in the right-hand side. On
the other hand, for simplicity, we omit the backreaction of
the electromagnetic perturbations on the gravitational per-
turbations, i.e., we set E�� ¼ ðE��

;�Þ ¼ 0 in Eqs. (3.3)

and (3.4). This simplification is based on the assumption
that the energy stored in gravitational perturbations is
considerably larger than that in electromagnetic perturba-
tions, which are typically driven by the former. On the
other hand, in the giant flares of SGR1806� 20 and

SGR1900þ 14 [31–33], whose peak luminosities are in
the range of 1044–1046 ergs s�1, the dramatic rearrange-
ment of the magnetic field might lead to emission of
gravitational waves. Nevertheless, recent nonlinear MHD
simulations [34–38] do not support these expectations.
The first two perturbative equations, Eqs. (3.3) and (3.4),

have been studied extensively in the past, in the absence of
magnetic fields, both for stellar and black hole back-
grounds (see, e.g., Refs. [39–44]). Thus, in this article we
use the perturbation equations derived in earlier works, and
we derive the analytic form of the perturbation equations
for the electromagnetic field together with their coupling to
the gravitational perturbations.
The metric perturbations h�� in the Regge-Wheeler

gauge [39] can be decomposed into tensor spherical har-
monics in the following way:

h�� ¼ X1
l¼2

Xl
m¼�l

e�H0;lm H1;lm �h0;lmsin
�1�@	 h0;lm sin �@�

� e�H2;lm �h1;lmsin
�1�@	 h1;lm sin �@�

� � r2Klm 0

� � 0 r2sin 2�Klm

0
BBBBB@

1
CCCCCAYlm; (3.7)

where H0;lm, H1;lm, H2;lm, and Klm are the functions of ðt; rÞ describing the polar perturbations, while h0;lm and h1;lm
describe the axial ones. On the other hand, the tensor harmonic expansion of the electromagnetic perturbations, f��, for the
magnetic multipoles (or axial parity) are given by

fðMÞ
�� ¼ X1

l¼2

Xl
m¼�l

0 0 fðMÞ
02;lmsin

�1�@	 �fðMÞ
02;lm sin �@�

0 0 fðMÞ
12;lmsin

�1�@	 �fðMÞ
12;lm sin �@�

� � 0 fðMÞ
23;lm sin �

� � � 0

0
BBBBBBB@

1
CCCCCCCA
Ylm; (3.8)

while the expansion for the electric multipoles (or polar
parity) can be written as

fðEÞ��¼
X1
l¼2

Xl
m¼�l

0 fðEÞ01;lm fðEÞ02;lm@� fðEÞ02;lm@	

� 0 fðEÞ12;lm@� fðEÞ12;lm@	

� � 0 0

� � 0 0

0
BBBBBB@

1
CCCCCCAYlm: (3.9)

Hereafter, the quantities describing the magnetic- and
electric-type electromagnetic perturbations will be denoted
with the indices (M) and (E), respectively. We point

out that h�� is a symmetric tensor, while both fðMÞ
�� and

fðEÞ�� are antisymmetric tensors, i.e., fðMÞ
�� ¼ �fðMÞ

�� and

fðEÞ�� ¼ �fðEÞ��. From the perturbed Maxwell equation,
Eq. (3.6), we can obtain the following relations connecting
the above perturbative functions:

fðMÞ
12;lm ¼ 1

�

@fðMÞ
23;lm

@r
and fðMÞ

02;lm ¼ 1

�

@fðMÞ
23;lm

@t
; (3.10)

fðEÞ01;lm ¼ @fðEÞ02;lm

@r
� @fðEÞ12;lm

@t
; (3.11)

where � � lðlþ 1Þ. Notice that fðEÞ23;lm and ~� defined as

~� ¼ � r2

�
fðEÞ01;lm (3.12)

are gauge-invariant variables (see Eq. (II-27) in Ref. [45]
and Eq. (II-11) in Ref. [46]).

A. Perturbations of a dipole magnetic field:
Exterior region

In the exterior vacuum region, we adopt the con-
dition J� ¼ 0. With this condition, the perturbed elec-
tromagnetic fields will be determined via the linearized
form of the Maxwell equation, Eq. (3.5) (assuming that
J� ¼ J� ¼ 0),

@�½ð�gÞ1=2f��� ¼ � 1

2
@�½ð�gÞ1=2F��g��h���; (3.13)
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together with the perturbed Maxwell equation (3.6).
Equation (3.13) for � ¼ t and � ¼ r can be written
down as

X
l;m

fAðI;EÞ
lm Ylm þ ~AðI;AÞ

lm cos �Ylm þ BðI;AÞ
lm sin �@�Ylm

þ CðI;PÞ
lm @	Ylmg ¼ 0ðI ¼ 0; 1Þ; (3.14)

where the indices ‘‘A’’ and ‘‘P’’ stand for axial and polar
gravitational perturbative quantities, and obviously ‘‘I’’
stands for the t and r components of Eq. (3.13). The
coefficients of Eq. (3.14) have the following expressions:

Að0;EÞ
lm ¼1

2

�
�0 þ�0 �4

r

�
fðEÞ01;lm�fðEÞ001;lmþ

�

r2
e�fðEÞ02;lm; (3.15)

~Að0;AÞ
lm ¼ �

r2
e�B1h0;lm; (3.16)

Bð0;AÞ
lm ¼

�
� 1

2

�
�0 þ �0 � 4

r

�
B2 þ B0

2 þ
1

r2
e�B1

�
h0;lm

þ B2h
0
0;lm; (3.17)

Cð0;PÞ
lm ¼ �B2H1;lm; (3.18)

Að1;EÞ
lm ¼ r2 _fðEÞ01;lm ��e�fðEÞ12;lm; (3.19)

~Að1;AÞ
lm ¼ ��e�B1h1;lm; (3.20)

Bð1;AÞ
lm ¼ �e�B1h1;lm � r2B2

_h0;lm; (3.21)

Cð1;PÞ
lm ¼ r2e�B2H0;lm: (3.22)

One can decompose the equations above for a specific
mode with fixed harmonic numbers ðl; mÞ, by multiplying
with Y�

lm and integrating over the two-sphere, i.e.,

AðI;EÞ
lm þ imCðI;PÞ

lm þQlm½ ~AðI;AÞ
l�1m þ ðl� 1ÞBðI;AÞ

l�1m�
þQlþ1m½ ~AðI;AÞ

lþ1m � ðlþ 2ÞBðI;AÞ
lþ1m� ¼ 0 ðI ¼ 0; 1Þ:

(3.23)

In a similar way, from the two remaining equations, i.e.,
Eq. (3.13) for � ¼ � and � ¼ 	, one gets the relationsX
l;m

fð�lm þ ~�lm cos �Þ@�Ylm � ð�lm þ ~�lm cos�Þ

� ð@	Ylm= sin �Þ þ �lm sin �Ylm þ �lm sin �Wlmg ¼ 0;

(3.24)

X
l;m

fð�lm þ ~�lm cos �Þ@�Ylm þ ð�lm þ ~�lm cos �Þ

� ð@	Ylm= sin �Þ þ �lm sin �Ylm þ �lm sin �Xlmg ¼ 0;

(3.25)

where

Wlm ¼
�
@2� � cot�@� � 1

sin 2�
@	

�
Ylm; (3.26)

Xlm ¼ 2@	ð@� � cot�ÞYlm: (3.27)

These equations lead to an extra set of evolution equations
for a specific mode ðl; mÞ by multiplying with Y�

lm and

integrating over the two-sphere:

��lm � im½ ~�lm þ �lm� þQlmðlþ 1Þ½ðl� 2Þðl� 1Þ�l�1m

þ ðl� 1Þ~�l�1m ��l�1m� �Qlþ1ml½ðlþ 2Þðlþ 3Þ�lþ1m

� ðlþ 2Þ~�lþ1m ��lþ1m� ¼ 0; (3.28)

��lm þ im½ðl� 1Þðlþ 2Þ�lm þ ~�lm þ �lm�
þQlmðlþ 1Þ½ðl� 1Þ ~�l�1m � �l�1m�
þQlþ1ml½ðlþ 2Þ ~�lþ1m þ �lþ1m� ¼ 0; (3.29)

where the coefficients are given by

�lm ¼ 1

2
ð�0 � �0ÞfðEÞ12;lm þ e��� _fðEÞ02;lm � fðEÞ12;lm

0
; (3.30)

�lm ¼ 1

2
ð�0 ��0ÞfðMÞ

12;lm� e��� _fðMÞ
02;lmþfðMÞ

12;lm

0 � 1

r2
e�fðMÞ

23;lm;

(3.31)

~�lm ¼
�
1

2
ð�0 � �0ÞB1 � B1

0 þ B2

�
h1;lm

� B1h
0
1;lm þ e���B1

_h0;lm; (3.32)

~�lm ¼ e�B1Klm; (3.33)

�lm ¼ �

2
B2h1;lm; (3.34)

�lm ¼ 1

2
B2h1;lm; (3.35)

�lm ¼
�
r2

2
ð�0 � �0ÞB2 � 2rB2 � r2B2

0
�
H0;lm

� r2B2H
0
0;lm � e�B1Klm þ e��r2B2

_H1;lm: (3.36)
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B. Perturbations of a dipole magnetic field:
Interior region

In the stellar interior, because we have adopted the
ideal MHD approximation for which F��u

� ¼ 0, the

components of the perturbed electromagnetic field tensor
are determined by using the perturbed Maxwell equation
(3.6), i.e.,

f0� ¼ e�=2F��u
�; (3.37)

where u� is the perturbed fluid four-velocity defined as

u�¼
�
1

2
e��=2H0;lm;Rlm;Vlm@�

�Ulmsin
�1�@	;Vlmsin

�2�@	þUlmsin
�1�@�

�
Ylm:

(3.38)

From Eq. (3.37) one can get the following equations:X
l;m

ffðEÞ01;lmYlm� r2B2e
�=2ðVlm@	YlmþUlm sin�@�YlmÞg¼ 0;

(3.39)

X
l;m

fðAlm þ ~Alm cos �Þ@�Ylm

� ðBlm þ ~Blm cos�Þð@	Ylm=sin �Þg ¼ 0; (3.40)

X
l;m

fðBlm þ ~Blm cos �Þ@�Ylm

þ ðAlm þ ~Alm cos �Þð@	Ylm=sin �Þ
þ ~Clmðsin �YlmÞg ¼ 0; (3.41)

where the coefficients Alm and Blm are functions of the

perturbed electromagnetic fields, while ~Alm,
~Blm, and ~Clm

are functions of the perturbed matter fluid four-velocity.
The expressions for these coefficients are

A lm ¼ fðEÞ02;lm; (3.42)

Blm ¼ �fðMÞ
02;lm; (3.43)

~Alm ¼ r2B1e
�=2Ulm; (3.44)

~Blm ¼ �r2B1e
�=2Vlm; (3.45)

~Clm ¼ r2B2e
�=2Rlm: (3.46)

By multiplying Eqs. (3.39), (3.40), and (3.41) with Y�
lm and

integrating over the two-sphere we can obtain the follow-
ing system of equations that depends only on r:

fðEÞ01;lm � r2B2e
�=2½imVlm þQlmðl� 1ÞUl�1m

�Qlþ1mðlþ 2ÞUlþ1m� ¼ 0; (3.47)

�Alm � im½ ~Blm þ ~Clm� þQlmðl� 1Þðlþ 1Þ ~Al�1m

þQlþ1mlðlþ 2Þ ~Alþ1m ¼ 0; (3.48)

�Blm þ im ~Alm þQlmðlþ 1Þ½ðl� 1Þ ~Bl�1m � ~Cl�1m�
þQlþ1ml½ðlþ 2Þ ~Blþ1m þ ~Clþ1m� ¼ 0; (3.49)

where

Qlm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðlþmÞ
ð2l� 1Þð2lþ 1Þ

s
: (3.50)

Finally, we should compute Eqs. (3.23), (3.28), and
(3.29), for the exterior region, and Eqs. (3.47), (3.48), and
(3.49) for the interior region of the star. From this system of
equations, we can see the specific couplings between the
electromagnetic and gravitational perturbations. For ex-
ample, an electromagnetic perturbation of specific parity
with harmonic indices ðl; mÞ depends on the gravitational
perturbations of the same parity with ðl; mÞ as well as the
gravitational perturbations of the opposite parity with
(l� 1, m). In other words, for the special and simpler
case of axisymmetric perturbations (m ¼ 0), we arrive at
the following conclusions: (1) Dipole electric (polar) elec-
tromagnetic perturbations will be driven by axial quadru-
pole gravitational perturbations, and (2) dipole magnetic
(axial) electromagnetic perturbations will be driven by
polar quadrupole and radial gravitational perturbations.
These two types of couplings will be discussed in detail
in the next sections.

C. Junction conditions for perturbed
electromagnetic fields

In order to close the system of equations derived in
the previous subsection, we should impose appropriate
junction conditions on the stellar surface. Such junction
conditions for the perturbed electromagnetic fields can be
derived from the conditions

n�BðinÞ
� ¼ n�BðexÞ

� ; (3.51)

q�
�EðinÞ

� ¼ q�
�EðexÞ

� ; (3.52)

where n� is the unit outward normal vector to the stellar
surface, while q�

� is the corresponding projection tensor

associated with n�. These junction conditions lead to the
following set of equations:

fðMÞðinÞ
23 ¼ fðMÞðexÞ

23 ; (3.53)

fðMÞðinÞ
02 ¼ fðMÞðexÞ

02 ¼ 0; (3.54)

fðEÞðexÞ02 ¼ 0: (3.55)

SOTANI et al. PHYSICAL REVIEW D 87, 084018 (2013)

084018-6



IV. DIPOLE PERTURBATIONS OFA MAGNETIC
FIELD ON A STELLAR BACKGROUND

In the previous section, we provided the general form
of the perturbative equations. In order to focus on a
simple case, we only consider axisymmetric perturbations
(m ¼ 0) in this section. In this way, the various couplings
become less complicated. Under these conditions, we
study the excitation of dipole electric perturbations driven
by axial gravitational ones and dipole magnetic perturba-
tions driven by polar gravitational ones. These perturbative
modes are actually the most important ones from the
energetic point of view.

A. Dipole electric perturbations driven by axial
gravitational perturbations

Here, we consider only dipole ‘‘electric-type’’
perturbations driven by quadrupole axial gravitational
perturbations. Since we neglect the backreaction of
electromagnetic perturbations on the gravitational ones,
the quadrupole axial gravitational perturbations of a
spherically symmetric star can be described by a single
wave equation [40,47], which is given by

@2Xlm

@t2
�@2Xlm

@r2�
þe�

�
�

r2
�6m

r3
þ4�ð��pÞ

�
Xlm¼0; (4.1)

where

Xlm ¼ eð���Þ=2

r
h1;lm and

@

@r
¼ eð���Þ=2 @

@r�
: (4.2)

Note that r� is the tortoise coordinate defined as r� ¼ rþ
2M ln ðr=2M� 1Þ. Since there are no fluid oscillations if
the matter is assumed to be described as a perfect fluid
(unless we introduce rotation), the space-time only con-
tains pure space-time modes, i.e., the so-called w modes
[42,47,48]. In this case, the axial component of the fluid

perturbation Ulm has the form Ulm¼�e��=2h0;lm=r
2,

while the component of h0;lm is computed from the

equation

@

@t
h0;lm ¼ eð���Þ=2Xlm þ r

@

@r�
Xlm; (4.3)

which is used later to simplify the coupling terms between
the two types of perturbations.

On the other hand, in the same way as in the case of
electromagnetic perturbations in the exterior region,
Eqs. (3.11) and (3.23) for I ¼ 1, and Eq. (3.28) lead to
three simple evolution equations for the three perturbation

functions fðEÞ12;10, f
ðEÞ
01;10, and fðEÞ02;10:

@fðEÞ12;10

@t
¼ e��

@fðEÞ02;10

@r�
� fðEÞ01;10; (4.4)

@fðEÞ01;10

@t
¼ 2

r2
e�fðEÞ12;01 þ Sð1Þ20 ; (4.5)

@fðEÞ02;10

@t
¼ e�

@fðEÞ12;10

@r�
þ �0e2�fðEÞ12;10 þ Sð2Þ20 ; (4.6)

where Sð1Þ20 and Sð2Þ20 are the source terms describing the

coupling of the electromagnetic perturbations with the
gravitational ones, and are given by

Sð1Þ20 ¼ 3Q20

��
1

r
B1 � e�B2

�
X20 � rB2

@X20

@r�

�
; (4.7)

Sð2Þ20 ¼ 3

2
Q20re

�B1
0X20: (4.8)

In order to derive second-order wave-type equations for
the electromagnetic perturbations, we introduce a new
function �lm ¼ �lmðt; rÞ given by

�lm ¼ e�fðEÞ12;lm: (4.9)

With this variable, the above evolution equations can be
written as

@�10

@t
¼ @fðEÞ02;10

@r�
� e�fðEÞ01;lm; (4.10)

@fðEÞ01;10

@t
¼ 2

r2
�10 þ Sð1Þ20 ; (4.11)

@fðEÞ02;10

@t
¼ @�10

@r�
þ Sð2Þ20 : (4.12)

From this system of evolution equations, one can
construct a single wave-type equation for the ‘‘electric’’
perturbations

@2�10

@t2
� @2�10

@r2�
þ 2

r2
e��10 ¼ SðEÞ20 ; (4.13)

where the source term SðEÞ20 is given by

SðEÞ20 ¼ @Sð2Þ20

@r�
� e�Sð1Þ20 : (4.14)

Without the coupling term, this wave equation outside
the star is the well-known Regge-Wheeler equation for
electromagnetic perturbations. It should be pointed out
that � is not a gauge-invariant quantity while the function
~� given by Eq. (3.12) is a gauge-invariant variable, where

both variables� and ~� can be related to each other via the
evolution equation (4.11), i.e.,

@ ~�10

@t
¼ ��10 � r2

2
Sð1Þ20 : (4.15)
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Finally, the electromagnetic perturbations in the inte-
rior region are determined from Eqs. (3.47), (3.48), and
(3.11), i.e.,

fðEÞ01;10 ¼ B2S
ð3Þ
20 ; (4.16)

fðEÞ02;10 ¼
1

2
B1S

ð3Þ
20 ; (4.17)

@fðEÞ12;10

@t
¼ @fðEÞ02;10

@r
� fðEÞ01;10; (4.18)

where

Sð3Þ20 ¼ �3Q20r
2e�=2U20: (4.19)

B. Dipole magnetic perturbations driven by polar
gravitational perturbations

As it was mentioned earlier in Sec. III for the case of
axisymmetric perturbations, the ‘‘magnetic (axial)-type’’
perturbations of the electromagnetic field with harmonic
index l are driven by polar gravitational perturbations with
harmonic index l� 1. Here, we consider the axisymmetric
perturbations (m ¼ 0) for the dipole (l ¼ 1) electromag-
netic fields, which are driven by quadrupole (l ¼ 2) gravi-
tational perturbations.

For the description of the perturbations of the space-time
and the stellar fluid, we adopt the formalism derived by
Allen et al. in Ref. [44]. In this formalism, the perturba-
tions are described by three coupled wave-type equations,
in such a way that two equations describe the perturbations
of the space-time and the other one the fluid perturbations.
In addition to these three wave equations, there is also a

constraint equation. The two wave-type equations for the
space-time variables are

� @2Slm
@t2

þ @2Slm
@r2�

þ 2e�

r3
½2�r3ð�þ 3pÞ

þm� ðnþ 1Þr�Slm
¼ � 4e2�

r5

�ðmþ 4�pr3Þ2
r� 2m

þ 4��r3 � 3m

�
Flm;

(4.20)

�@2Flm

@t2
þ@2Flm

@r2�
þ2e�

r3
½2�r3ð3�þpÞþm�ðnþ1Þr�Flm

¼�2½4�r2ðpþ�Þ�e���Slmþ8�ð�þpÞre�
�
1� 1

C2
s

�
Hlm;

(4.21)

where Flm, Slm, and Hlm are given by

Flmðt; rÞ ¼ rKlm; (4.22)

Slmðt; rÞ ¼ e�

r
ðH0;lm � KlmÞ; (4.23)

Hlmðt; rÞ ¼ plm

�þ p
; (4.24)

while plm is the perturbation in the pressure, n �
ðl� 1Þðlþ 2Þ=2, and Cs is the sound speed. On the other
hand, the wave equation for the perturbed relativistic en-
thalpy Hlm describing the fluid perturbations is

� 1

C2
s

@2Hlm

@t2
þ @2Hlm

@r2�
þ eð�þ�Þ=2

r2

�
ðmþ 4�pr3Þ

�
1� 1

C2
s

�
þ 2ðr� 2mÞ

�
@Hlm

@r�

þ 2e�

r2

�
2�r2ð�þ pÞ

�
3þ 1

C2
s

�
� ðnþ 1Þ

�
Hlm ¼ ðmþ 4�pr3Þ

�
1� 1

C2
s

�
eð���Þ=2

2r

�
e�

r2
@Flm

@r�
� @Slm

@r�

�

þ
�ðmþ 4�pr3Þ2

r2ðr� 2mÞ
�
1þ 1

C2
s

�
�mþ 4�pr3

2r2

�
1� 1

C2
s

�
� 4�rð3pþ �Þ

�
Slm

þ e�

r2

�
2ðmþ 4�pr3Þ2
r2ðr� 2mÞ

1

C2
s

�mþ 4�pr3

2r2

�
1� 1

C2
s

�
� 4�rð3pþ �Þ

�
Flm: (4.25)

This third wave equation (4.25) is valid only inside the star, while the first two are simplified considerably outside the star,
which can be reduced to a single wave-type equation, i.e., the Zerilli equation (see Ref. [44] and Sec. VB). Finally, the
Hamiltonian constraint

@2Flm

@r2�
� eð�þ�Þ=2

r2
ðmþ 4�r3pÞ @Flm

@r�
þ e�

r3
½12�r3��m� 2ðnþ 1Þr�Flm � re�ð�þ�Þ=2 @Slm

@r�

þ
�
8�r2ð�þ pÞ � ðnþ 3Þ þ 4m

r

�
Slm þ 8�r

C2
s

e�ð�þ pÞHlm ¼ 0 (4.26)

can be used for setting up initial data and monitoring the evolution of the coupled system.
Regarding the quadrupole gravitational perturbations, the perturbation equation for the ‘‘magnetic-type’’ dipole in the

exterior region is obtained from Eq. (3.29) as
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@2�10

@t2
� @2�10

@r2�
þ 2

r2
e��10 ¼ SðMÞ

20 ; (4.27)

where �lm � fðMÞ
23;lm and

SðMÞ
20 ¼�Q20e

�

�
ð2B2þrB2

0Þr2S20

þ
�
e�B2þre�B2

0 �2

r
B1

�
F20þrB2

@F20

@r�

�
: (4.28)

In order to derive the wave equation (4.27), we have used
Eq. (3.10) and the ðr; 	Þ component of the perturbed
Einstein equations, i.e., e�� _H1 �H0

0 þ K0 � �0H0 ¼ 0.
We remark that the wave equation (4.27) without the
source terms is the same as the one derived in
Refs. [49,50]. In addition, the other components of the

electromagnetic perturbations fðMÞ
12;10 and fðMÞ

02;10 can be

determined with �10 via the relation (3.10).
Finally, from Eqs. (3.49) and (3.10), we can obtain

the equation that determines the dipole ‘‘magnetic-type’’
perturbations for the interior region:

@�10

@t
¼ Q20r

2e�=2ðB2R20 � 3B1V20Þ; (4.29)

where the perturbations of the fluid velocity, R20 and V20,
in the source term are given by

@R20

@t
¼ e�=2��

��
� 11pþ 3�

2ðpþ �Þ þ
3r�0

2

�
e��S20

� 3

2
re��S020 þ

3p� �

2r2ðpþ �Þ ðF20 � rF0
20Þ �H0

20

�
;

(4.30)

@V20

@t
¼ 1

2r2
e�=2

�
re��S20 þ �� 3p

pþ �

F20

r
� 2H20

�
: (4.31)

V. PERTURBATIONS OF DIPOLE MAGNETIC
FIELD ON A BLACK HOLE BACKGROUND

The perturbations of a dipole magnetic field on a
Schwarzschild black hole background are described by
the same set of perturbation equations as in the exterior
region of the star except for the boundary conditions, i.e.,
the boundary conditions for the neutron star imposed on
the stellar surface are Eqs. (3.53), (3.54), and (3.55), while
for the black hole case one should impose the pure ingoing
wave conditions at the event horizon. Then, even in the
case of the black hole background, we observe the same
coupling of the various harmonics of the electromagnetic
and gravitational perturbations as for the neutron star
background. That is, for the axisymmetric perturbations,
the ‘‘electric’’ dipole (l ¼ 1) perturbations of the electro-
magnetic fields will be driven by axial quadrupole (l ¼ 2)
gravitational perturbations, while the ‘‘magnetic’’ dipole
(l ¼ 1) perturbations of the electromagnetic fields will be
driven by polar quadrupole (l ¼ 2) gravitational ones. In

this specific case, our study is similar to the work in
Ref. [24], although they use a different formalism.

A. Dipole electric perturbations driven by axial
gravitational perturbations (BH)

The axial quadrupole (l ¼ 2) gravitational perturbations
are described by the Regge-Wheeler equation

@2Xlm

@t2
� @2Xlm

@r2�
þ e�

�
�

r2
� 6M

r3

�
Xlm ¼ 0; (5.1)

where

Xlm ¼ e�

r
h1;lm: (5.2)

In accordance with the results of Sec. IVA, the perturba-
tions of the electromagnetic fields will be described by a
single wave equation, that is, the Regge-Wheeler equation
for electromagnetic perturbations given by

@2�10

@t2
� @2�10

@r2�
þ 2

r2
e��10 ¼ SðEÞ20 ; (5.3)

where the source term becomes of the same form as in

Sec. IVA: �lm ¼ e�fðEÞ12;lm.

B. Dipole magnetic perturbations driven by polar
gravitational perturbations (BH)

The equation describing the ‘‘magnetic-type’’ perturba-
tions driven by the gravitational perturbations is the same
equation as the one derived for a neutron star background
[see Eq. (4.27)], that is

@2�10

@t2
� @2�10

@r2�
þ 2

r2
e��10 ¼ SðMÞ

20 ; (5.4)

where �lm ¼ fðMÞ
23;lm, and the source term is also of the

same form as in Eq. (4.28). The perturbative equation for
the space-time variables can be written in the form of the
Zerilli equation

@2Zlm

@t2
� @2Zlm

@r2�
þ VZðrÞZlm ¼ 0; (5.5)

VZðrÞ¼2e�½�2
1ð�1þ1Þr3þ3M�2

1r
2þ9M2�1rþ9M3�

r3ðr�1þ3MÞ2 ;

(5.6)

where�1 � ðlþ 2Þðl� 1Þ=2. Meanwhile, in the sameway
as for the neutron star background, one can also adopt Flm

and Slm as the perturbation variables for the space-time. In
this case, the two wave equations simplify to become

@2Slm
@t2

� @2Slm
@r2�

þ e�
�
�

r2
� 2M

r3

�
Slm

¼ � 4M

r5
e�
�
3� 7M

r

�
Flm; (5.7)
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@2Flm

@t2
� @2Flm

@r2�
þ e�

�
�

r2
� 2M

r3

�
Flm ¼ �2e�Slm; (5.8)

which have to be supplemented with the Hamiltonian
constraint equation

@2Flm

@r2�
�M

r2
@Flm

@r�
� �

r2
e�Flm � r

@Slm
@r�

� 1

2
ð4e� þ�ÞSlm ¼ 0: (5.9)

Note that there are useful relations between the perturba-
tion variables ðFlm; SlmÞ and the Zerilli function (Z), i.e.,

Flm¼ r
dZlm

dr�
þ�1ð�1þ1Þr2þ3�1Mrþ6M2

rð�1rþ3MÞ Zlm; (5.10)

Slm ¼ 1

r

dFlm

dr�
� ð�1 þ 2Þr�M

r3
Flm

þ ð�1 þ 1Þð�1rþ 3MÞ
r3

Zlm; (5.11)

which can be used in constructing initial data (since the
Zerilli function is gauge invariant and unconstrained), or
for the extraction of the Zerilli function.

VI. APPLICATIONS

As an application, we consider the case in which dipole
‘‘electric-type’’ perturbations are driven by axial gravita-
tional ones and present numerical results. First, we study the
coupling on a Schwarzschild black hole background and
later on the background of spherical neutron stars, as dis-
cussed in Secs. VA and IVA, respectively. The more com-
plicated cases that involve the driving of ‘‘magnetic-type’’
electromagnetic field perturbations driven by polar gravita-
tional ones will be discussed elsewhere in the future.

A. Perturbations on a black hole background

In order to calculate the waveforms in the black hole
background, we need to modify the background magnetic
field near the event horizon. The reason for this is that the
solution for a dipole magnetic field in vacuum diverges at
the event horizon [see Eqs. (2.15) and (2.16)]. In fact, the
isolated black hole cannot have magnetic fields due to

the no-hair theorem. But, according to the simulations of
the accretion onto the black hole, the magnetic field can
reach almost to the event horizon, because the accreting
matter will fall into the black hole with infinite time
[51,52]. Thus, we adopt a simple modification of the dipole
magnetic field near the event horizon, that is, we set
B1ðrÞ ¼ B1ð6MÞ and B2ðrÞ ¼ B2ð6MÞ for r 	 6M, where
the position at r ¼ 6M corresponds to the innermost stable
circular orbit for a test particle around the Schwarzschild
black hole. The magnetic dipole moment �d is identified
with the normalized magnetic field strength B15 defined
as B15 � Bp=ð1015½G�Þ, where Bp is the field strength at

r ¼ 6M and � ¼ 0.
We assume vanishing electromagnetic perturbations,

i.e., �10 ¼ @�10=@t ¼ 0 at the initial time slice t ¼ 0,
while the initial gravitational perturbations X20 are pre-
scribed in terms of a Gaussian wave packet. Under these
initial conditions, the electromagnetic waves will result
from the coupling to the gravitational ones. In the numeri-
cal calculations, we adopt the iterated Crank-Nicholson
method [53] with a grid choice of �r� ¼ 0:1M and �t ¼
�r�=2 (see Ref. [54] for the dependence of the choice of
�r� and �t on the waveforms).
The energy emitted in the form of either gravitational

(EGW) or electromagnetic waves (EEM) is estimated by

integrating the luminosity (LðAÞ
GW;l) for the axial gravitational

waves and for electric-type electromagnetic waves (LðEÞ
EM;l),

which are described by the following formulas [45,46]:

LðAÞ
GW;l ¼

1

16�

ðl� 2Þ!
ðlþ 2Þ!

��������@Xl0

@t

��������
2

; (6.1)

LðEÞ
EM;l ¼

1

4�

ðlþ 1Þ!
ðl� 1Þ!

��������@�l0

@t

��������
2

: (6.2)

In practice, we can find a relation between the energy
emitted in gravitational and electromagnetic waves for a
given initial space-time perturbation, which has the form

EEM ¼ �B2
15EGW; (6.3)

where � is a ‘‘proportionality constant.’’
In the simulation that we describe we set the magnetic

field strength to the value Bp ¼ 1015 gauss. Figure 1 shows
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FIG. 1 (color online). Gravitational waveform observed at r ¼ 2000M. In the right panel, we also show the absolute value of X20.
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the waveform of the gravitational wave observed at r ¼
2000M, the amplitude is normalized to correspond to an
emitted energy of EGW � 1:8� 1049ðM=50M
Þ ergs. On
the other hand, the waveforms of electromagnetic waves
driven by the gravitational waves are shown in Fig. 2. From
this figure, we can observe somewhat complicated wave-
forms of electromagnetic waves due to the coupling with
the gravitational waves. From the specific waveforms, one
can estimate the value of the proportionality constant in
the relation [Eq. (6.3)] to be � ¼ 8:02� 10�6. This effi-
ciency might not be very high, but the radiated energy
of gravitational waves can reach �1051 ergs for a black
hole formation due to the merger of a neutron stars binary
(see, e.g., Ref. [55]). In this case the strength of the

magnetic field can be amplified by the Kelvin-Helmholtz
instability to reach values of the order of 1015–17 gauss
[56]. Although this is not an ideal situation for the black
hole case we are considering in this paper, if one adopts the
above efficiency for the case of a black hole formed after
merger, one can expect that energies of the order of
�1046–50 ergs can be emitted in the form of electromag-
netic waves which can be potentially driven by the gravi-
tational field perturbations.
Furthermore, in Fig. 3, we show the fast Fourier trans-

form (FFT) of the electromagnetic waveforms shown in
Fig. 2, where for comparison we also add the frequencies
of the quasinormal modes for l ¼ 1 electromagnetic waves
(dashed line) and for l ¼ 2 gravitational waves (dot-dash
line) radiated from the Schwarzschild black hole [45].
From this figure, one can obviously see that the driven
electromagnetic waves have two specific frequencies
corresponding to the l ¼ 1 quasinormal mode of
electromagnetic waves and the l ¼ 2 quasinormal mode
of gravitational waves. This means that it might be possible
to see the effect of gravitational waves via observation of
electromagnetic waves. However, electromagnetic waves
with such low frequencies could be coupled/absorbed by
the interstellar medium (and/or accretion disk around the
central object) during the propagation and it will be almost
impossible to directly detect the driven electromagnetic
waves. The only possible way to see the driven electro-
magnetic waves is the observation of indirect effects, such
as synchrotron radiation.
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FIG. 2 (color online). Waveform of the driven electromagnetic waves observed at r ¼ 2000M for Bp ¼ 1015 gauss. In the right
panel, we also show the absolute value of �10.
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B. Perturbations on a neutron star background

In order to examine the coupling between the emitted
gravitational and electromagnetic waves in a neutron star
background, we adopt the same initial conditions as for
the black hole case, i.e., the electromagnetic perturba-
tions are set to zero and the initial gravitational pertur-
bations are approximated by an ingoing Gaussian wave
packet. In the numerical calculations, we adopt a grid
spacing of �r ¼ R=200 and a time step �t=�r ¼ 0:05,
where R is the stellar radius. For the background stellar
models, we adopt the polytropic equation of state (EOS)
of the form P ¼ K��. Then, one can get the waveforms
of the reflected gravitational waves and the induced
electromagnetic ones.

As an example, we show results for a stellar mode with
� ¼ 2 and K ¼ 200 km2. Figure 4 shows the waveforms
of the gravitational waves (solid line) and the electromag-
netic waves (dotted line) observed at r ¼ 300 km, where
we adopt two stellar models with different compactness
M=R (see Table I for the stellar properties). Compared with
the fast damping of gravitational waves, one can see the
long-term oscillations in the electromagnetic waves, which
can be driven not only by the quasinormal ringing of
gravitational waves but also during the tail phase of the

gravitational waves. For the waveforms shown in Fig. 4,
the FFT is plotted in Fig. 5, where the left and right panels
correspond to the FFT of the gravitational and electromag-
netic waves, respectively. From this figure, one can see the
same features as in the case of a black hole. Namely, the
FFT of the electromagnetic waves driven by the gravita-
tional waves has two specific frequencies, i.e., one is the
proper electromagnetic oscillation (first peak in the right
panel of Fig. 5) and the other one is the oscillation corre-
sponding to the gravitational waves (second peak in the
right panel of Fig. 5). We remark that electromagnetic
waves with such low frequencies could be absorbed by
the interstellar medium and then, their direct detection is
almost impossible. Namely, we should consider the sec-
ondary emission mechanism such as a synchrotron radia-
tion. Maybe the plasma around the central object will be
excited after receiving the energy from the electromagnetic
waves driven by the gravitational waves and move along
with the magnetic field lines. Anyway, such a secondary
emission mechanism will be discussed somewhere.
Furthermore, we find that as in the case for a black hole,
the relationship between the emitted energies of gravita-
tional and electromagnetic waves can be described by
Eq. (6.3), even for neutron stars, if Bp is considered as

the magnetic field strength at the stellar pole (r ¼ R and
� ¼ 0). In practice, for the specific stellar models in Fig. 4,
the proportionality constant becomes � ¼ 1:61� 10�5

and 4:37� 10�6 for the particular stellar models with
M=R ¼ 0:162 and 0.237, respectively.
In order to see the dependence on the stellar properties,

we study a variety of stellar models with different stiffness
of the EOS and with different central densities, radii, and
masses, which are given in Table I. As a result, we find that
the proportionality constant � can be written as a function
of the stellar compactness, which is almost independent of
the stellar models and the adopted EOS. In fact, in Fig. 6
we plot the values of � for various stellar models, where
the circles, diamonds, and squares correspond to the results
for the stellar models characterized by ð�; KÞ ¼ ð2; 100Þ,
(2,200), and (2.25,600). From this figure, one can see that
the proportionality constant � depends strongly on the
stellar compactness, as expected, with typical values rang-
ing from 10�6 up to �10�4.
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FIG. 5 (color online). FFT of the gravitational waves (left panel) and electromagnetic waves (right panel) shown in Fig. 4.

TABLE I. Stellar parameters adopted in this article.

� K �c (g=cm3) M=M
 R (km) M=R

2 100 1:0� 1015 0.802 10.8 0.109

2 100 1:5� 1015 0.998 10.2 0.145

2 100 2:0� 1015 1.126 9.67 0.172

2 100 3:0� 1015 1.266 8.86 0.211

2 200 0:7� 1015 1.365 14.6 0.138

2 200 0:9� 1015 1.528 14.0 0.162

2 200 1:0� 1015 1.592 13.7 0.172

2 200 1:5� 1015 1.791 12.5 0.211

2 200 2:0� 1015 1.876 11.7 0.237

2.25 600 1:0� 1015 0.732 9.69 0.111

2.25 600 1:5� 1015 1.008 9.44 0.158

2.25 600 2:0� 1015 1.197 9.12 0.194

2.25 600 3:0� 1015 1.404 8.48 0.245

2.25 600 4:0� 1015 1.486 7.95 0.276
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VII. CONCLUSION

We have considered the coupling between gravitational
and electromagnetic waves emitted by compact objects,
i.e., black holes and neutron stars. We have derived a
coupled system of equations describing the propagation
of gravitational and electromagnetic waves. In our study
we have investigated the driving of electromagnetic per-
turbations via their coupling to the gravitational ones.
However, for simplicity, we have neglected the backreac-
tion from the electromagnetic waves on the gravitational
waves, because the magnetic energy of the compact ob-
jects, even for magnetars, was quite small as compared
with the gravitational energy. We found that the electro-
magnetic waves of specific parity with harmonic indices
ðl; mÞ can be coupled to gravitational waves of the same
parity and with harmonic indices ðl; mÞ (for m � 0) and
harmonic indices (l� 1, m), for every value of m. In
particular, our findings led to the result that, for the axi-
symmetric perturbations, i.e., m ¼ 0, the dipole electric
electromagnetic waves will be driven by axial quadrupole
gravitational waves, while the dipole magnetic electromag-
netic waves will be driven by polar gravitational waves.

As an application of our perturbative framework, we
presented numerical calculations for the case in which
dipole-electric electromagnetic waves were driven by the
axial gravitational ones, both for the case of a black hole

and a neutron star background. We found that the emitted
energy in electromagnetic waves driven by the gravita-
tional waves was proportional to not only the emitted
energy in gravitational waves but also to the square of
the strength of the magnetic field of the central object.
For the case of a black hole background, the ratio of the
emitted energy of the electromagnetic waves to that of the
gravitational waves was around 8� 10�6ðBp=10

15 GÞ2,
where Bp was the magnetic field strength at r ¼ 6M. On

the other hand, in the case of a neutron star background, we
found that this proportionality constant can be written as a
function of the stellar compactness.
Although we have considered only the case of axial

gravitational waves and the associated induced electro-
magnetic waves, the polar oscillations also play an impor-
tant role in extracting the information about the neutron
star structure since in the case of nonrotating stars, the
matter oscillations are typically coupled to the polar gravi-
tational waves. This is a direction that we are currently
investigating.
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