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In this paper, a Bañados-Teitelboim-Zanelli (BTZ) black hole [Phys. Rev. Lett. 69, 1849 (1992)] is

constructed from an exact solution of the Einstein field equations in a (2þ 1)—dimensional anti—de

Sitter spacetime in the context of noncommutative geometry. The BTZ black hole turns out to have either

two horizons, no horizon, or a single horizon corresponding to a minimal mass. Certain thermodynamical

properties are investigated, including Hawking temperature, entropy, and heat capacity. Also discussed is

the geodesic structure of BTZ black holes for both massless and massive particles. In particular, it is

shown that bound orbits for test particles are possible.
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I. INTRODUCTION

Recent years have seen rapid advances in the applica-
tions of noncommutative geometry, an outgrowth of string
theory. The approach is based on the realization that coor-
dinates may become noncommuting operators on a D
brane [1–4]. The result is a discretization of spacetime
due to the commutator ½x�;x�� ¼ i���, where ��� is an
antisymmetric matrix. It is similar to the way that the
Planck constant ℏ discretizes phase space [1]. The non-
commutativity eliminates pointlike structures and replaces
them with smeared objects. The noncommutative geome-
try is an intrinsic property of spacetime and does not
depend on particular features such as curvature.

A number of studies inspired by noncommutative ge-
ometry can be found in the literature. In one of the earlier
studies, Garattini and Lobo [5] obtained exact wormhole
solutions that were then analyzed in semiclassical gravity.
In a subsequent study [6], they found an exact gravastar
solution and explored its physical characteristics. Rahaman
et al. [7], discussing galactic rotation curves, concluded
that a noncommutative-geometry background is sufficient

for producing stable circular orbits without the need for

dark matter. Kuhfittig [8] found that a special class of thin-

shell wormholes that are unstable in classical general

relativity exhibit small regions of stability in noncommu-

tative geometry. In another study by Rahaman et al. [9]

on higher-dimensional wormholes, it is shown that worm-

hole solutions exist in the usual four, as well as in five

dimensions, but they do not exist in higher-dimensional

spacetimes. In a more recent study, Radinschi et al. [10]

calculated the energy momentum for a noncommuting

radiating Schwarzschild black hole in order to obtain the

expression for energy. Common to all these studies is that

the effect of the smearing is mathematically implemented

by using a Gaussian distribution of minimal length
ffiffiffi
�

p
instead of the Dirac delta function.
Interest in ð2þ 1Þ—dimensional gravity has increased

in recent years due to the discovery of various aspects of
black hole solutions. Some general works in this line are
quasinormal modes of charged dilaton black holes in
ð2þ 1Þ—dimensional solutions in low-energy string the-
ory with asymptotically anti—de Sitter spacetimes [11];
branes with naked singularities, analogous to linear or
planar defects in crystals and showing that zero-branes in
AdS spacetimes are ‘‘negative-mass black holes’’ [12];
Hawking radiation from covariant anomalies in ð2þ 1Þ—
dimensional black holes [13]; and so on. On the other hand,
specialized investigations have been carried out by
Rahaman et al. [14] on gravastars in ð2þ 1Þ anti—de
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Sitter spacetimes with charge as an alternative to charged
black holes. Also, nonstatic charged BTZ-like black holes
in ðN þ 1Þ dimensions have been considered by Ghosh
[15], which in the static limit, for N ¼ 2, reduces to
ð2þ1Þ BTZ black hole solutions. There are also charged,
regular extensions of the BTZ black hole solutions avail-
able in the literature by employing nonlinear Born-Infeld
electrodynamics to eliminate the inner singularity [16].

There are several proposals in the literature for
constructing noncommutative black holes [17–20].
However, following Nicolini et al. [2], we construct a
BTZ black hole solution from the Einstein field equations
in ð2þ 1Þ—dimensional anti—de Sitter spacetime, given a
noncommutative-geometry background. This is followed
by a discussion of the black hole’s thermodynamical prop-
erties such as Hawking temperature, entropy and heat
capacity, as well as the geodesic structure for both massless
and massive particles. Some of the thermodynamical prop-
erties are similar to those obtained by Liang and Liu [21],
who used a Lorentzian smeared mass distribution instead
of a Gaussian one in AdS3 spacetime. One consequence of

this is that in the limit r=
ffiffiffi
�

p ! 1, the solution reduces to a
rotating BTZ black hole. Returning to a Gaussian frame-
work, rotating black holes in ð2þ 1Þ dimensions are also
discussed in Ref. [22] by Tejeiro and Larranaga. They also
describe charged black holes and compare them to charged
BTZ black holes [23].

II. THE INTERIOR SPACETIME

Let us write the line element describing the interior
spacetime of a static, spherically symmetric distribution
of matter in ð2þ 1Þ dimensions in the following form:

ds2 ¼ �fðrÞdt2 þ ½fðrÞ��1dr2 þ r2d�2; (1)

where fðrÞ is denoted by e2�ðrÞ and ½fðrÞ��1 by e2�ðrÞ. We
take the matter distribution to be anisotropic in nature and
therefore choose the most general energy-momentum ten-
sor in the form

Tij ¼ ð�þ ptÞuiuj þ ptgij þ ðpr � ptÞ�i�j; (2)

where �, pr and pt represent the energy density, radial

pressure and tangential pressure, respectively. Also, �i ¼
e��ðrÞ�i

r is a unit 4-vector along the radial direction, and u
i

is the 4-velocity of the fluid.
The Einstein field equations with cosmological constant

�< 0, together with the general energy-momentum tensor
given in Eq. (2), yield (letting G ¼ c ¼ 1)

2��þ� ¼ �0e�2�

r
; (3)

2�pr �� ¼ �0e�2�

r
; (4)

2�pt �� ¼ e�2�ð�02 þ �00 � �0�0Þ: (5)

We have, in addition, the conservation equation in ð2þ 1Þ
dimensions:

ð�þ prÞ�0 þ p0
r þ 1

r
ðpr � ptÞ ¼ 0: (6)

In ð2þ1Þ dimensions, the maximally localized source
of energy of the static and spherically symmetric distri-
butions having a minimal-spread Gaussian profile is taken
as [3]

� ¼ M

4��
exp

�
� r2

4�

�
: (7)

Here M is the total mass of the source. Due to the
uncertainty, it is diffused throughout a region of linear

dimension
ffiffiffi
�

p
.

The vacuum Einstein field equations in ð2þ 1Þ space-
time dimensions, with a negative cosmological constant,
admit a black hole solution known as a Bañados-
Teitelboim-Zanelli (BTZ) solution [24]. For a BTZ black
hole, we have grr ¼ g�1

tt . So to retain the structure, we
require that

pr ¼ ��: (8)

This ansatz is known in the literature as a ‘‘� vacuum’’ or
‘‘vacuum equation of state’’ in connection with the
‘‘zero-point energy of quantum fluctuation,’’ [25–28]
where pressure is of a repulsive nature.
With this equation, one can solve Eq. (6) to yield

pt ¼
Mðr22� � 1Þ

4��
exp

�
� r2

4�

�
: (9)

Using the field equations, we get the following solution for
the metric coefficients:

e�2� ¼ e2� ¼ �Aþ 2M exp

�
� r2

4�

�
��r2; (10)

where A is an integration constant.
In the limit, rffiffi

�
p ! 1, so that Eq. (10) reduces to a

BTZ black hole, where the integration constant A plays
the role of the mass of the BTZ black hole, i.e.,
A ¼ M. Observe that asymptotically far away, � ¼
pr ¼ pt ¼ 0.
To determine the mass distribution from Eq. (7), we use

an approach similar to that in Refs. [3,5]:

mðrÞ ¼ M

�ð ~m�2Þ=2 	
�
~m

2
; 
2

�
r

2M

�
2
�
; (11)

where 
2 ¼ M2=�, and 	 is the lower incomplete gamma
function:

	

�
a

b
; x

�
¼

Z x

0
ua=be�u du

u
: (12)

For a BTZ black hole, ~m ¼ 2, and we obtain from

2r2=4M2 ¼ r2=4� the expression for mass as
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mðrÞ ¼ M
Z r2=4�

0
e�tdt ¼ M

�
1� exp

�
� r2

4�

��
: (13)

The parameter 
 plays a critical role in determining the
horizons, as we will see later on. At the origin, mð0Þ ¼ 0,
which is consistent with Eq. (11).

Near the origin, the geometry is given by

e�2� ¼ e2� ¼ �Aþ 2M�
�
2M

4�
þ�

�
r2 þOðr4Þ:

One can identify this result with a BTZ black hole space-
time, where the total mass M and the noncommutative
parameter � combine to modify the cosmological constant,
a point also made in Ref. [3]. This indicates that different
mass particles experience different cosmological con-
stants. We therefore conclude that our line element de-
scribes the geometry of a noncommutative-geometry
inspired BTZ black hole.

III. FEATURES OF THE BLACK HOLE

In this section, we study some of the effects of the
noncommutative geometry on BTZ black holes. Let
A ¼ M in Eq. (10). Then the equation gttðrhÞ ¼ 0 gives
the event horizon(s):

r2h ¼
M

�

�
2 exp

�
� r2h
4�

�
� 1

�
: (14)

Even though we cannot obtain a closed-form solution for
rh in Eq. (14), we can readily write the mass M as a
function of rh:

M ¼ �r2h

2 exp ð� r2
h

4�Þ � 1
: (15)

The existence of horizons and their radii can be found at
the points where gtt cuts the r axis, as shown in Fig. 1,

using �
ffiffiffi
�

p ¼ �0:02. Here, three possibilities present
themselves graphically in terms of the approximate value
of 
:

(i) Two horizons when 
> 0:214, or M>M0 ¼
0:214

ffiffiffi
�

p
.

(ii) One horizon corresponding to the extremal black
hole with M ¼ M0, i.e., 
 ¼ 0:214;

(iii) No horizon for 
< 0:214.
Fig. 1 shows that a noncommutative-geometry-inspired
BTZ black hole has two horizons, and that the distance
between the horizons will increase with an increasing
black hole mass. Figure 1 also indicates that there is a
minimal mass M0 below which no black hole exists.
Moreover, at the minimal mass M ¼ M0, the two hori-
zons coincide at the minimal horizon radius r0, which
lies between the horizons. This r0 is therefore the hori-
zon radius of the extremal black hole. It can also be

determined from the conditions f ¼ 0 and df
dr ¼ 0, lead-

ing to the equation

2 exp

�
r20
4�

�
þ r20=�

1� 2 exp ð� r2
0

4�Þ
¼ 0: (16)

Using the condition �
ffiffiffi
�

p ¼ �0:02 in Fig. 1, we can

obtain r0=
ffiffiffi
�

p ¼ 2:59, showing that the two approaches
are consistent.
The minimal mass of the extremal black hole can be

written in terms of the minimal radius r0, so that

M0ffiffiffi
�

p ¼
r2
0

� ð�
ffiffiffi
�

p Þ
2 exp ð� r2

0

4�Þ � 1
¼ 0:214: (17)

The variation of this factor with respect to the horizon
radius is shown in Fig. 2. At this point, let us also plot

�
ffiffiffi
�

p
from Eq. (7) for various values of M=

ffiffiffi
�

p
(Fig. 3).

Similarly, Fig. 4 shows pt

ffiffiffi
�

p
plotted against r=

ffiffiffi
�

p
from

Eq. (9).
It is worth noting that the radius of the extremal black

hole is always less than the radius of the outer horizon. The
result is significant: if the initial mass of the black hole is
M>M0, then it can radiate until the value M0 is reached.
It follows that evaporation of the black hole may indeed be
occurring.
Next, consider the Hawking temperature, which is

given by

FIG. 1 (color online). Singularities occur where gtt cuts
the r axis. Representation: the solid curve for M ¼ 1:2

ffiffiffi
�

p
and

dotted curve for M ¼ 0:8
ffiffiffi
�

p
indicate two horizons. The dashed

curve for M ¼ 0:214
ffiffiffi
�

p
represents one degenerate horizon

r0 � 2:59
ffiffiffi
�

p
—i.e., an extremal black hole. For M ¼ 0:1

ffiffiffi
�

p
,

no horizon exists (chain curve). The intercepts on the r axis
give the radii of the event horizons.
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TH ¼ 1

4�

�
dgtt
dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr
p jr¼rh

¼ � rh
4�

�
2�þM

�
exp

�
� r2h
4�

��
: (18)

The plot, Fig. 5, is obtained from

TH ¼ � rh=
ffiffiffi
�

p
4�

�
2�

ffiffiffi
�

p þ Mffiffiffi
�

p exp

�
� r2h
4�

��
: (19)

Equation (19) and Fig. 5 show that the noncommutative
geometry leads to the minimal horizon radius r0, since TH

cannot be negative. This is exactly where dgtt
dr ¼ 0 in

Eq. (10). Observe that the temperature sinks to absolute
zero at r0. For

rhffiffi
�

p � 1, the Hawking temperature assumes

the value

FIG. 3 (color online). Plot for �
ffiffiffi
�

p
vs. rffiffi

�
p for different values

of Mffiffi
�

p . Representation: the solid curve for M ¼ 1:2
ffiffiffi
�

p
, dotted

curve for M ¼ 0:8
ffiffiffi
�

p
, dashed curve for M ¼ 0:214

ffiffiffi
�

p
, and

chain curve for M ¼ 0:1
ffiffiffi
�

p
.

FIG. 4 (color online). Plot for pt

ffiffiffi
�

p
vs. rffiffi

�
p for different values

of Mffiffi
�

p . Representation: the solid curve for M ¼ 1:2
ffiffiffi
�

p
, dotted

curve for M ¼ 0:8
ffiffiffi
�

p
, dashed curve for M ¼ 0:214

ffiffiffi
�

p
, and

chain curve for M ¼ 0:1
ffiffiffi
�

p
. Note that up to the degenerate

horizon r0 � 2:59
ffiffiffi
�

p
for an extremal black hole, pt assumes

negative values, and beyond that, positive values. For large
values of r, i.e., for rffiffi

�
p � 1, it dies out.

FIG. 5 (color online). Plot for Hawking temperature vs. rffiffi
�

p for
different values of Mffiffi

�
p . Representation: the solid curve for M ¼

1:2
ffiffiffi
�

p
, dotted curve for M ¼ 0:8

ffiffiffi
�

p
, dashed curve for M ¼

0:214
ffiffiffi
�

p
, and chain curve for M ¼ 0:1

ffiffiffi
�

p
.

FIG. 2. The variation of mass Mffiffi
�

p with respect to horizon
radius rhffiffi

�
p .
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TH � � rh�

2�
: (20)

For completeness, let us also state the closely related
surface gravity

� ¼ 1

2

�
dgtt
dr

���������r¼rh

¼ � rh
2

�
2�þM

�
exp

�
� r2h

4�

��
; (21)

as well as the Bekenstein-Hawking entropy (S) of the black
hole. It is twice the perimeter L of the event horizon:

S ¼ 2L ¼ 4�rh: (22)

As a final comment, the noncommutative-geometry-
inspired BTZ black hole is stable if the heat capacity C
is positive [21], where

C ¼ @MðrhÞ
@TðrhÞ ¼

@MðrhÞ
@rh

1
@TðrhÞ
@rh

:

The nature of the heat capacity is shown in Fig. 6. The
plot shows that C vanishes at the extremal event horizon r0
and becomes negative for rhffiffi

�
p < r0ffiffi

�
p , just as in the case of the

Hawking temperature. So this region is definitely unphys-
ical. On the other hand, for rhffiffi

�
p > r0ffiffi

�
p , C is positive, which

implies that the BTZ black hole is stable.
At this point, we would like to comment on how the

physical quantities such as temperature, entropy, etc.,
could be affected by the noncommutativity for small �.
We calculate the different physical quantities of the stan-
dard BTZ black hole plus perturbative terms. The BTZ
black hole has the horizon located at

rh ¼
ffiffiffiffiffi
M

p
l; (23)

where � ¼ � 1
l2
to emphasize that � is negative.

Equation (14) can be solved by iteration. The result is

rh ¼
ffiffiffiffiffi
M

p
l

�
1� 2 exp

�
�Ml2

4�

��1
2
: (24)

For small � and rhffiffi
�

p �1, the above equation can be

written as

rh �
ffiffiffiffiffi
M

p
l

�
1� exp

�
�Ml2

4�

��
: (25)

Here, the first term is the BTZ black hole horizon radius,
while the second term is the � correction.
It now becomes apparent that the effect of noncommu-

tativity is small, as expected, because spacetime should be
a smooth classical manifold at large distances.
The next step is to find the � corrections of the

Bekenstein-Hawking entropy (S) of the BTZ black hole:

S ¼ 4�rh � 4�
ffiffiffiffiffi
M

p
l� 4�

ffiffiffiffiffi
M

p
l exp

�
�Ml2

4�

�
: (26)

Here, the first term is the Bekenstein-Hawking entropy (S)
of the BTZ black hole, while the second term is the �
correction.
Our final task is to find the � corrections for the Hawking

temperature and surface gravity of the BTZ black hole.
From Eq. (18), we have

TH¼� 1

4�

� ffiffiffiffiffi
M

p
l

�
1�exp

�
�Ml2

4�

���

�
�
� 2

l2
þM

�
exp

�
�Ml2

4�

�
1�2exp

�
�Ml2

4�

����
: (27)

Keeping the first order of exp ð�Ml2

4� Þ, the above expression
yields

TH�
ffiffiffiffiffi
M

p
2�l

�
�
M

ffiffiffiffiffi
M

p
l

4��
exp

�
�Ml2

4�

�
þ

ffiffiffiffiffi
M

p
2�l

exp

�
�Ml2

4�

��
:

(28)

Note that the first term is the Hawking temperature of the
BTZ black hole, while the second term is the � correction.
The correction term of the surface gravity is given by

� �
ffiffiffiffiffi
M

p
l

�
�
M

ffiffiffiffiffi
M

p
l

2�
exp

�
�Ml2

4�

�
þ

ffiffiffiffiffi
M

p
l

exp

�
�Ml2

4�

��
:

(29)

IV. THE GEODESICS

From the geodesics equation

d2x�

d�2
þ �

�
�

dx�

d�

dx

d�
¼ 0; (30)

we obtain [29]FIG. 6. Plot for C vs. rhffiffi
�

p .
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1

fðrÞ
�
dr

d�

�
2 ¼ E2

fðrÞ �
p2

r2
þ L; (31)

r2
�
d�

d�

�
¼ p; (32)

and

dt

d�
¼ E

fðrÞ ; (33)

where fðrÞ ¼ �Mþ 2M exp ð� r2

4�Þ ��r2, and the con-

stants E and p are identified as the energy per unit mass and
angular momentum, respectively. Here � is the affine
parameter, and L is the Lagrangian having values 0 and
�1, respectively, for massless and massive particles.

From the geodesic [Eq. (31)], we can write

1

2

�
dr

d�

�
2 ¼ 1

2

�
E2 þ fðrÞ

�
L� p2

r2

��
: (34)

Now, comparing Eq. (34) with _r2

2 þ Veff ¼ 0, the effec-

tive potential can be written

Veff ¼ � 1

2

�
E2 þ fðrÞ

�
L� p2

r2

��
: (35)

A. Null geodesics

For massless particles, i.e., for photons, we have L ¼ 0,
and the corresponding effective potential is

Veff ¼�E2

2
þp2

r2

�
�Mþ2Mexp

�
� r2

4�

�
��r2

�
: (36)

As r ! 0, the effective potential VeffðrÞ becomes very

large, but it approaches � E2

2 ��p2 as r ! 1. At the

horizons, Veff ¼ � E2

2 .

The shape of VeffðrÞ, shown in Fig. 7, indicates that a
photon will fall into a black hole [29]. Taking various
values for the masses does not alter the nature of the
geodesics.

B. Timelike geodesics

For massive particles, L ¼ �1, and the corresponding
effective potential is

Veff ¼�E2

2
þ
�
1þp2

r2

��
�Mþ2Mexp

�
� r2

4�

�
��r2

�
;

(37)

as shown in Fig. 8. The effective potential becomes very
large as r ! 0, as well as when r ! 1. At the minimal

horizon r0, it assumes the constant value Veff ¼ � E2

2 ,

while Fig. 9 shows that the roots of the Veff coincide with
the horizons. Also, the shape of the effective potential

indicates that the particle can move only inside the black
hole. Since the effective potential assumes negative values
between the horizons, the particle is confined to the region
between the two horizons, and as a result, cannot hit the
singularity. Finally, observe that the minimum of VeffðrÞ
occurs between the horizons, which means that stable
circular orbits are going to exist.

FIG. 7 (color online). Plot for Veff

ffiffiffi
�

p
vs. rffiffi

�
p for different values

of Mffiffi
�

p . Representation: the solid curve for M ¼ 1:2
ffiffiffi
�

p
, dotted

curve for M ¼ 0:8
ffiffiffi
�

p
, dashed curve for M ¼ 0:214

ffiffiffi
�

p
, and

chain curve for M ¼ 0:1
ffiffiffi
�

p
. The shape of the Veff

ffiffiffi
�

p
indicates

that a photon will fall into black hole.

FIG. 8 (color online). Plot for Veff

ffiffiffi
�

p
vs. rffiffi

�
p for different values

of Mffiffi
�

p . Representation: the solid curve for M ¼ 1:2
ffiffiffi
�

p
, dotted

curve for M ¼ 0:8
ffiffiffi
�

p
, dashed curve for M ¼ 0:214

ffiffiffi
�

p
, and

chain curve for M ¼ 0:1
ffiffiffi
�

p
. The effective potential has a mini-

mum between two horizons; i.e., stable circular orbits do exist.
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V. TEST PARTICLES

Let us consider a test particle having mass m0 and
moving in the gravitational field of the BTZ black hole
inspired by noncommutative geometry and described by
the metric ansatz [Eq. (1)]. The Hamilton-Jacobi (HJ)
equation for the test particle is [30,31]

� 1

f

�
@S

@t

�
2 þ f

�
@S

@r

�
2 þ 1

r2

�
@S

@�

�
2 þm2

0 ¼ 0: (38)

As there is no explicit dependence on t and�, let us choose
the HJ function S as [30,31]

Sðt; r; �; �Þ ¼ �Etþ S1ðrÞ þ p�;

where E and p are identified as the energy and angular
momentum of the particle.

The radial velocity of the particle is given by

dr

dt
¼ f

3
2

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E2

f
�m2

0 �
p2

r2

�s
: (39)

For detailed calculations, see Refs. [30,31].
The turning points of the trajectory are determined

from dr
dt ¼ 0 and, as a consequence, the potential curve is

given by

VðrÞ � E

m0

¼ ffiffiffi
f

p �
1þ p2

m2
0r

2

�
1=2

: (40)

The extremals of the potential curve are the solutions of the
equation dV

dr ¼ 0, and are found to be

dV

dr
¼� 2p2

m0r
3

�
�Mþ2Mexp

�
� r2

4�

�
��r2

�

þ
�
1þ p2

m0r
2

��
�Mr

�
exp

�
� r2

4�

�
�2�r

�
¼0:

While difficult to tell from the equation, the plot of dV
dr ,

given in Fig. 10, shows that real positive solutions exist
wherever 1ffiffi

�
p dV

dr cuts the
rffiffi
�

p axis. Hence, bound orbits for the

test particles exist. In other words, the test particles can be
trapped by BTZ black holes inspired by noncommutative
geometry.

VI. CONCLUSION

This paper investigates the properties of a BTZ black
hole constructed from the exact solution of the Einstein
field equations in a ð2þ 1Þ—dimensional anti—de Sitter
spacetime in the context of noncommutative geometry.
It finds that a BTZ black hole has either two horizons, no

horizons, or a single horizon r ¼ r0 corresponding to a
minimal mass M ¼ M0. In this connection, we note the
comments by Mazharimousavi et al. [16]: ‘‘It is well
known that unlike its chargeless version the charged
Banados-Teitelboim-Zanelli (BTZ) black hole solution in
(2þ 1)—dimensional spacetime is singular.’’ Thus, they
construct a charged, regular extension of the BTZ black
hole solution by employing nonlinear Born-Infeld electro-
dynamics, supplemented with the Hoffmann term and glu-
ing different spacetimes. However, our observation is that
even the noncommutative-geometry-inspired BTZ black
hole is not free from any singularity.

FIG. 10. Plot for dV
dr

ffiffiffi
�

p
vs. rffiffi

�
p . Note that dV

dr

ffiffiffi
�

p
is zero for a

certain value of rffiffi
�

p . This implies that VðrÞ has at least one

extremal.

FIG. 9 (color online). Plot for Veff

ffiffiffi
�

p
vs. rffiffi

�
p for different values

of Mffiffi
�

p . Representation: the solid curve for M ¼ 0:8
ffiffiffi
�

p
, dashed

curve for M ¼ 0:214
ffiffiffi
�

p
, and chain curve for M ¼ 0:1

ffiffiffi
�

p
.

The effective potential has a minimum between two horizons;
i.e., stable circular orbits do exist.
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Besides this, in the present paper we continue our
investigation with a discussion of Hawking temperature,
entropy and heat capacity. We observe that the noncom-
mutativity leads to the same minimal radius r0 at which the
black hole cools down to absolute zero. A discussion of the
geodesic structure leads to the effective potential for both
massless and massive particles. It is shown that photons
will fall into the black hole, while massive particles are
trapped between the two horizons. The use of the
Hamilton-Jacobi equation confirms that bound orbits are
possible for test particles.
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