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The inspiral and merger of black hole binary systems are a promising source of gravitational waves for

the array of advanced interferometric ground-based gravitational-wave detectors currently being commis-

sioned. The most effective method to look for a signal with a well understood waveform, such as the

binary black hole signal, is matched filtering against a library of model waveforms. While current model

waveforms are comprised solely of the dominant radiation mode, the quadrupole mode, it is known that

there can be significant power in the higher-order modes for a broad range of physically relevant source

parameters during the merger of the black holes. The binary black hole waveforms produced by numerical

relativity are accurate through late inspiral, merger, and ringdown and include the higher-order modes.

The available numerical-relativity waveforms span an increasing portion of the physical parameter space

of unequal mass, spin and precession. In this paper, we investigate the degree to which gravitational-wave

searches could be improved by the inclusion of higher modes in the model waveforms, for signals with a

variety of initial mass ratios and generic spins. Our investigation studies how well the quadrupole-only

waveform model matches the signal as a function of the inclination and orientation of the source and how

the modes contribute to the distance reach into the Universe of Advanced LIGO for a fixed set of internal

source parameters. The mismatch between signals and quadrupole-only waveforms can be large, dropping

below 0.97 for up to 65% of the source sky for the nonprecessing cases we studied, and over a larger area

in one precessing case. There is a corresponding 30% increase in detection volume that could be achieved

by adding higher modes to the search; however, this is mitigated by the fact that the mismatch is largest for

signals which radiate the least energy and to which the search is therefore least sensitive. Likewise, the

mismatch is largest in the directions from the source along which the least energy is radiated.

DOI: 10.1103/PhysRevD.87.084008 PACS numbers: 04.25.D�, 04.25.dg, 04.30.Db, 04.80.Nn

I. INTRODUCTION

The merger of a binary black hole (BBH) system has
long been considered a strong source of gravitational
waves for ground- and space-based gravitational-wave
observatories. These mergers are characterized by 15
parameters: nine intrinsic to the black hole systems
(two black hole masses, two spin vectors and eccentricity)
and six extrinsic to the source (binary orientation vector,
sky position and distance). The LIGO and Virgo detectors
have recently completed a joint run during which inspiral
horizon distances exceeded 40 Mpc [1] and new upper
limits have been placed on the rates of such events [2].
These observatories are currently being upgraded and
when the new design sensitivities are achieved they will
have ranges up to ten times greater and hence volumes
1000 times greater. By the end of this decade LIGO and
Virgo, along with GEO, will be joined by KAGRA in Japan
and possibly the proposed LIGO India, greatly increasing
not only the range of the global network but also the ability
to recover information about the sources [3].

When the theoretical model of the gravitational wave-
form is well understood, the most effective method to
search and recover a gravitational-wave signal is matched
filtering against a library of model waveforms called a
template bank [4]. The ability of such a templated search
to detect signals is dependent on four factors:

(i) The frequency-dependent sensitivity of the detector.
Throughout this paper we use the targeted aLIGO
zero-detuned, high-power [5] sensitivity curve.

(ii) The direction-dependent sensitivity of the detector.
This is a fixed property of interferometric instru-
ments and the orientation on Earth’s surface. Any
one detector will have blind spots; one motivation
for constructing a network of detectors is to provide
more complete coverage of the sky. We will not
consider multidetector searches in this paper.

(iii) The total energy radiated by the source from the
time it enters the sensitive band of the detectors.
This provides an upper limit on the ability to detect
different signals; a source that radiates less energy
will be visible out to a smaller distance than one that
radiates more energy, all other factors being equal.

(iv) The ability of the templates to extract signal power
from the background noise.

In this paper we will be concerned with the last two points.
For the BBH systems potentially observable by ground-

based detectors, astrophysical processes place few con-
straints on the intrinsic physical parameters that characterize
the emission of radiation from these cataclysmic events,
thus placing the burden on source models to cover nearly
the full compliment of physical parameters. Rigorous re-
quirements from matched filtering place an additional bur-
den on the source models. In order for the model waveforms
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to match potential signals to within a given tolerance, we
need not only enough waveforms to cover the parameter
space but also each waveform must represent nature effec-
tually enough to ensure the signal does not fall through
cracks in the template bank and faithfully enough to recover
the source parameters.

One source of mismatch with nature is the truncation
of the spherical harmonic series in which we have decom-
posed the model waveform. Current template waveforms
are only of the dominant, quadrupole mode, although
we know that generic signals will have many excited
harmonics present when detected. Figure 1 shows the ratio
of several nondominant modes to the dominant mode for
two nonspinning systems; note that for the system where
the masses of the component holes are not equal the
next-to-leading mode is within an order of magnitude of
the quadrupole mode, suggesting that accounting for addi-
tional modes may be important for detection, especially as
the mass ratio strongly deviates from 1 and generic spins
are explored.

This paper builds on previous work by ourselves and
other authors. In Refs. [6,7], we conducted a preliminary
study on higher modes for spinning, equal-mass systems
comparing numerical relativity waveforms containing the
largest five harmonics to an equal-mass nonspinning sys-
tem of just the dominant mode. We found that for low
spins, the nonspinning dominant mode was an effective
model waveform. McWilliams et al. [8] found that over a
range of the source orientations, the equal-mass waveform
was effective at detecting moderate mass ratios over source
orientations.

In this paper we utilize numerical-relativity waveforms
to represent both the signals that will be received by
detectors, and the templates that will be used to search
for these signals. In practice the set of available NR signals
is not dense enough to use for searches, so numerous other
model waveforms are used. The waveforms currently
used or currently being considered include various post-
Newtonian approximations (see Appendix A of Ref. [9]
and references therein), phenomenological models such

as [10], and effective-one-body models calibrated against
numerical relativity (‘‘EOBNR’’) [11]. Of these, the last is
the only family which provides higher-order modes in the
current implementations. Brown et al. [12] is exploring
the value added of higher modes in EOBNR models of
unequal-mass waveforms.
In this paper we investigate the degree to which inclusion

of additional terms of the spherical harmonic series to
template waveforms could improve matched-filter-based
searches. We use numerical relativity (NR) waveforms as
both signal and template, and we consider both unequal
masses and some generic spins generated by the MAYA code.
We study how well the quadrupole-only model waveform
matches the signal as a function of the inclination and
orientation of the source and determine how the volume
reach of advanced LIGO depends on the inclusion/exclusion
of nondominant harmonics in the model waveforms. We
concentrate on system masses greater than 100M� to give
the NR portion of the waveform prominence and negate the
need for post-Newtonian information. Our findings show
that for nonprecessing signals up to 65% of source orienta-
tions can be missed when using only the quadrupole mode,
implying a 30% gain in detection volume which could be
achieved by including higher modes. For our most precess-
ing case when using the quadrupole mode only the loss of
source orientations is nearly 100% and the potential gain in
volume over which such systems could be detected is 45%.
These potential gains in volume are mitigated by the fact
that the mismatch is largest for signals which radiate the
least energy and to which, therefore, the search is least
sensitive. Likewise, the mismatch is largest in the directions
from the source along which the least energy is radiated.
Finally, we do a preliminary investigation into how the
series truncation might impact parameter estimation by
exploring a potential degeneracy between mass and incli-
nation for full waveforms in the last section of this paper.
We proceed as follows: In Sec. II we introduce our

methodology for matched filtering, and in Sec. III the NR
waveforms used in all of our studies. In Sec. IV we con-
sider various aspects of the overlaps between the dominant

FIG. 1 (color online). Relative amplitude of higher modes for nonspinning q ¼ 1 (left) and q ¼ 4 (right) systems. For the q ¼ 1
system the (4,4) and (3,2) modes are about 2 orders of magnitude smaller than the (2,2). All others are less than 10�3. For the q ¼ 4 the
(3,3) mode is within a factor of 10 of the dominant (2,2) mode, and several other modes are within another factor of 10.
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mode and the higher modes. In Sec. V we examine the
volume of the Universe that is accessible to advanced
detectors using quadrupole-only waveforms and hypothe-
tical ideal waveforms containing most of the modes, for
several cases. We conclude in Sec. VI that the smallest
overlaps are obtained for systems and source orientations
which radiate the least total power, and hence have the
smallest accessible volumes even when an ideal waveform
is used. In this section we also present a first look at the
implications of higher modes for parameter estimation.

Conventions: Throughout this paper we adopt the
following conventions. We denote the Fourier transform
of a function gðtÞ with a tilde, as ~gðfÞ. We characterize the
mass ratio of a BBH system by q ¼ m1=m2 withm1 � m2.
The relation of the source to the detector is specified by five
angles. Two ð�; �Þ place the detector in coordinates cen-
tered at the source; it is these angles in which the decom-
position into spherical harmonics is performed. Two ð�;’Þ
place the source in the sky of the detector. The final angle,
c , determines the relative rotation between these two
coordinate systems; we associate c with the source be-
cause in what follows we will treat it similarly to � and �.
We define these angles in Fig. 2. The final parameter
connecting the source and detector is the distance between
them; we will be concerned with the maximum distance at
which the source can be detected and will determine this
value in what follows.

II. MATCHED-FILTER SEARCHES FOR
GRAVITATIONALWAVES

The response of an interferometric detector is described
by an antenna pattern [13],

Fþ ¼�1

2
ð1þ cos 2�Þ cos2’cos2c � cos� sin2’ sin2c ;

F� ¼ 1

2
ð1þ cos 2�Þcos2’ sin2c � cos� sin2’cos2c :

(1)

Following [14] we rewrite this in the more convenient form

Fþ ¼ F0 cos 2ðc þ c 0Þ; F� ¼ F0 sin 2ðc þ c 0Þ;
(2)

where

F0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1þ cos 2�Þ=2Þ2cos 22’þ cos 2�sin 22’

q

and

tan 2c 0 ¼ cos �

ð1þ cos 2�Þ=2 tan 2’:

For reference we show the antenna pattern in Fig. 3.
For gravitational waves, the intrinsic characteristics of a

source are fully encapsulated in the polarization strains hþ
and h�. When an incoming gravitational wave is incident
on the detector the strains give rise to a signal s given by

sð�; ’; �; �; c ; tÞ
¼ Fþð�;’; c Þhþð�;�; tÞ þ F�ð�;’; c Þh�ð�;�; tÞ
¼ F0ð�;’Þhðc ; �; �; tÞ; (3)

where we have used Eq. (2) and defined

hðc ; �; �; tÞ ¼ cos 2ðc þ c 0Þhþð�; �; tÞ
þ sin 2ðc þ c 0Þh�ð�; �; tÞ:

The output of the detector is then sþ n, where n is
the noise of the detector. Following standard practice
we incorporate the noise only as SnðfÞ and do not add it
to the signal in what follows. Wewill take h in Eq. (3) to be
the output of a numerical simulation, to be discussed in the
following section.

FIG. 2. Definition of angles used in this paper. Left: The angles
used at the detector, looking at the source. Although c refers
to a rotation of the plane containing the source, we associate it
with the detector because it enters the analysis though the
antenna pattern. Right: The angles used at the source, looking
towards the detector. These are the angles in which the spherical
harmonics are written.

×

FIG. 3 (color online). Antenna pattern for an interferometric
gravitational-wave detector in source-centric coordinates, ’ hori-
zontally and � vertically. The arms lie along � ¼ �=2,’ ¼ 0,�=2
respectively. Such a detector is most sensitive to signals directly
overhead or below, and least sensitive to signals in the plane of the
arms.The sensitivitydrops to zero along the lines between the arms,
� ¼ �=2, ’ ¼ ��=4 and � ¼ �=2, ’ ¼ �3�=4.
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We now briefly review some of the data analysis frame-
work employed in current LIGO/Virgo searches, and
which will be used throughout this paper. An inner product
on the space of real, time-dependent waveforms AðtÞ and
BðtÞ, with respect to a given noise curve described by a
power spectral density SnðfÞ, is

AðtÞjBðtÞ ¼ 4Re
Z 1

0
df

~AðfÞ ~B?ðfÞ
SnðfÞ : (4)

In stationary, Gaussian noise, the optimal measure
of the presence of a gravitational wave signal that matches
a model waveform, called a template, is the signal-
to-noise-ratio (SNR) denoted by �, with

�2 ¼ ðsjhþÞ2
ðhþjhþÞ ; (5)

and where we are studying the response of a single detector
to one polarization, typically taken to be hþ. We note in

passing that in a multidetector search the data streams from
all instruments will be filtered against the same hþ, and
that the source angles �,� will be the same at all detectors.
However, the orientations of the different detectors will
provide different values of c , making the detectors sensi-
tive to different combinations of the polarization. In addi-
tion each detector’s F0 will have a different dependence on
�, ’, providing coverage of regions of the sky to which any
one detector might be insensitive.
The signal will arrive at an unknown time which we

identify as the time of coalescence and denote t0. We
assume the template waveform h is a good approximation
to the signal s, and search for the signal at all times by
shifting the template. This has the effect in the Fourier

domain of changing ~hðfÞ to ~hðfÞ exp ð�2�ift0Þ. The signal
will also have an unknown phase at the time of coalescence,
corresponding to the value of � in Fig. 2, which we denote
�0. This introduces an additional factor of exp ð2�i�0Þ.
In practice, this leads the SNR to be evaluated as

TABLE I. Simulations used. The 28 simulations’ initial parameters and grid structures are listed. The table is split into three groups:
nonspinning, equal mass with spin, and precessing spins. The table contains q ¼ mþ=m�, the bare puncture masses mbþ=M and
mb�=M; the nondimensional spins, �i ¼ Si=m

2
i ; the initial momentum, pþ=M; the initial separation, d=M; the outer boundary, Rb=M;

and the resolution on the finest refinement level M=hfine. If only one spin value is listed, the spin is aligned with the initial angular
momentum.

ID q mbþ=M mb�=M �þ �� pþ=M d=M Rb=M M=hfine

Q01 1.00 0.485923 0.485923 0.0 0.0 (�0:00098038, 0.096107, 0) 10.00 317.44 103

Q02 1.15 0.520973 0.451009 0.0 0.0 (�0:00097306, 0.095648, 0) 10.00 317.44 103

Q03 1.30 0.551561 0.420763 0.0 0.0 (�0:00095146, 0.094500, 0) 10.00 317.44 103

Q04 1.45 0.578486 0.394310 0.0 0.0 (�0:00092318, 0.092922, 0) 10.00 317.44 103

Q05 1.50 0.586758 0.386214 0.0 0.0 (�0:00091215, 0.092328, 0) 10.00 317.44 103

Q06 1.60 0.602367 0.370978 0.0 0.0 (�0:00088915, 0.091074, 0) 10.00 317.44 103

Q07 1.75 0.623691 0.350248 0.0 0.0 (�0:00085215, 0.089076, 0) 10.00 317.44 103

Q08 1.90 0.642849 0.331709 0.0 0.0 (�0:00081702, 0.086999, 0) 10.00 317.44 103

Q09 2.00 0.654574 0.320400 0.0 0.0 (�0:00079295, 0.085598, 0) 10.00 317.44 103

Q10 2.05 0.660153 0.315030 0.0 0.0 (�0:00078063, 0.084896, 0) 10.00 317.44 103

Q11 2.20 0.675859 0.299945 0.0 0.0 (�0:00074412, 0.082799, 0) 10.00 317.44 103

Q12 2.35 0.690180 0.286237 0.0 0.0 (�0:00070983, 0.080733, 0) 10.00 317.44 103

Q13 2.50 0.703291 0.273726 0.0 0.0 (�0:00067707, 0.078713, 0) 10.00 317.44 103

H01 1.00 0.487207 0.487207 0.0 0.0 (�0:00071204, 0.090099, 0) 11.00 409.60 200

H02 2.00 0.655683 0.321576 0.0 0.0 (�0:00057168, 0.080204, 0) 11.00 409.60 200

H03 3.00 0.740897 0.239917 0.0 0.0 (�0:00041607, 0.067799, 0) 11.00 409.60 200

H04 4.00 0.792317 0.191313 0.0 0.0 (�0:00030795, 0.057941, 0) 11.00 409.60 200

H05 5.00 0.826040 0.158317 0.0 0.0 (�0:00033261, 0.053831, 0) 10.00 409.60 240

H06 6.00 0.850747 0.135461 0.0 0.0 (�0:00026264, 0.047519, 0) 10.00 409.60 200

H07 7.00 0.869309 0.118371 0.0 0.0 (�0:00021252, 0.042488, 0) 10.00 409.60 320

H08 10.00 0.907397 0.085237 0.0 0.0 (�0:00016852, 0.036699, 0) 8.39 409.60 400

H09 15.00 0.936224 0.057566 0.0 0.0 (�0:00016052, 0.029072, 0) 7.25 409.60 800

S01 1.00 0.453711 0.453711 �0:4 �0:4 (�0:00079326, 0.092237, 0) 11.00 409.60 200

S02 1.00 0.453865 0.453865 0.4 0.4 (�0:00065074, 0.088023, 0) 11.00 409.60 200

S03 1.00 0.303458 0.303458 0.8 0.8 (�0:00060332, 0.086010, 0) 11.00 409.60 200

P01 4.00 0.655334 0.156900 (0.6, 0.0, 0.0) (�0:6; 0:0, 0.0) (0, 0.066502, 0) 9.00 409.60 140

P02 4.00 0.655306 0.156762 (0.3, 0.0, �0:5) (�0:6, 0.0, 0.0) (0, 0.068787, 0) 9.00 409.60 140

P03 4.00 0.655306 0.156764 (�0:3, 0.0, �0:5) (�0:6, 0.0, 0.0) (0, 0.068758, 0) 9.00 409.60 140
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�ðs; h; t0Þ ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhþjhþÞ
p

��������
Z 1

0

~sðfÞ~h?þðfÞ
SnðfÞ e�2�ift0df

��������; (6)

where the absolute value removes the dependence on the
unknown phase. Equation (6) may be evaluated by a single
complex inverse Fourier transform, and the maximization
over t0 is then accomplished by finding the maximum of the
resulting time series. Equation (6) is only an exact calcu-
lation of the SNR if ðhþjh�Þ ¼ 0 [15], which is not true in
general; however, we expect the errors introduced by this
approximation to be small.

Note that, by Eq. (3), the dependence on the SNR of the
detector angles may be factored out in Eq. (6). Note also
that F0ð0; 0Þ ¼ 1. These imply that, given the SNR of a
signal at � ¼ ’ ¼ 0, we know the SNR of a signal in the
same orientation at all other sky positions.

Related to the SNR is the match or overlap obtained by
normalizing both waveforms:

hsjhþi ¼ max
t0;�0

ðsjhþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsjsÞðhþjhþÞ
p : (7)

The overlap is a measure from 0 to 1 of how well the
template matches the signal; an overlap of 1 indicates that
the template is an exact match to the signal and anything
lower than 1 is a diminished match.

Gravitational-wave strain falls off as the the reciprocal
of the distance between source and detector. It follows
from Eq. (5) that the SNR falls off in the same way, while
the normalization removes the distance dependence of the
template. Henceforth we place the signal s in Eq. (5) at
1 Mpc from the detector and denote the resulting SNR as
�1 Mpc. We also choose a threshold SNR, a value above

which indicates the presence of a signal in the data. Wewill
take this to be 5.5, the threshold used in current LIGO/
Virgo searches. The choice of this value is motivated by the
behavior of the noise in the detector [16]. The distance at
which a signal would have an SNR of 5.5 is then

r ¼ �1 Mpc

5:5
: (8)

We now consider two templates: hideal which exactly
matches the signal and h which in some way approximates
the signal. We can determine the fraction of the available
distance that is lost by using the approximate template as

r

rideal
¼ �1 MpcðhÞ=5:5

�1 MpcðhidealÞ=5:5 ¼ hsjhi
hsjhideali ¼ hsjhi: (9)

The first equality follows from Eq. (8), the second from
dividing both numerator and denominator by the common

factor ðsjsÞ1=2 and the third from the fact that when the
template exactly matches the signal the overlap is 1. The
overlap therefore measures the fraction of the SNR lost by
using an incorrect template, and equivalently the fraction
of the distance lost. As the Universe is approximately
uniform at distances accessible to even initial LIGO [2],

FIG. 4 (color online). Overlap of higher modes with 2,2 for q ¼ 1 (left) and q ¼ 4 (right) systems. In both cases the most significant
higher modes have poor overlaps with (2,2), suggesting that h22 will be a poor fit to the full signal in regions dominated by these modes.

FIG. 5 (color online). SNR time series for �ðs; h2;2Þ and
�ðs; hothersÞ. The specific behavior will depend on the angles;
the values here were chosen to illustrate the issue, � ¼ 2:36,
’ ¼ 2:58, � ¼ 1:54, � ¼ 5:16. At the time when the h2;2 series
peaks, hothers has dropped by 38%. The tension between the
modes means that the total SNR will be less than the sum of the
component SNRs.
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the event rate is approximately equal to the cube of
the range, although this will also depend on the antenna
pattern. However, we note that the overlap does not give
the value of rideal. As an extreme example, if rideal is
sufficiently small that the number of expected events per
observation time is close to zero, then the fractional loss of
range implied by a low overlap is inconsequential.

III. THE BINARY BLACK HOLE
COALESCENCE WAVEFORMS

This paper uses NR waveforms covering the late inspiral,
merger and ringdown for a variety of mass ratios and spins.
All of the NR simulations used in this study were produced

with GATech’s MAYA code [17–22]. The MAYA code uses
the Einstein Toolkit [23] which is based on the CACTUS
[24] infrastructure and CARPET [25] mesh refinement.
Evolution thorns were generated with the KRANC [26]
code generator. We use sixth-order spatial finite differenc-
ing and extract the waveforms at a finite radius of 75M,
whereM is a code unit set to unity and can be scaled to any
physical mass scale. All grids have ten levels of refinements
unless noted below.
We use 28 simulations in this paper and group them

according to their initial parameters in Table I. Grid details,
including outer boundary and resolution on the finest grid
are also shown. The simulations can be separated into three
groups: nonspinning, equal mass with aligned spin, or

FIG. 6 (color online). Overlaps in source-centric coordinates, � horizontally and � vertically, between the complete waveform and
the (2,2) mode for (top) the nonspinning q ¼ 1 and q ¼ 4, (middle) the precessing P01 and P02 and (bottom) the precessing P03
signals from Table I. The general features of the nonspinning images are representative of all mass ratios and (anti)aligned spin
systems; overlaps are 1.0 at � ¼ 0, � where the full signal reduces to the (2,2) mode, and are lowest at � ¼ �=2. There is more
interesting structure in the precessing cases.
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unequal mass with precessing spin. For the simulations with
q > 4, we used the coordinate-dependent gauge term as
described in Refs. [27,28]. For the q ¼ 10 and q ¼ 15
simulations, initial parameters in Ref. [29] were used.
These simulations (q > 4) have an extra level of refinement
for 11 levels total, with the exception of q ¼ 6 and q ¼ 15.
These have 10 levels and 12 levels, respectively. Another
approach to generating complete numeric waveforms with
particular attention to the (2,2), (3,3), and (2,1) modes has
been studied in Ref. [30].

The output of all simulations is the Weyl scalar, �4,
decomposed into spin-weighted spherical harmonics.
Simulations are performed in a coordinate system which
we will denote the source-centric frame, to distinguish it
from the detector-centric frame we will employ subse-
quently. See Fig. 2 for the definition of the angles used in
this frame. In terms of these angles the decomposition is

rM�4ð�;�; tÞ ¼ X
l;m

�2Y‘mð�; �ÞC‘mðtÞ: (10)

This is related to the strain measured by gravitational-wave
observatories as

�4ð�; �; tÞ ¼ �ð €hþð�; �; tÞ � i €h�ð�;�; tÞÞ
¼ X

‘m
�2Y‘mð�;�Þ €h?‘mðtÞ: (11)

The quadrupole mode is given by ð‘; jmjÞ ¼ ð2; 2Þ.
Throughout this paper we work in the frequency
domain, and therefore avoid the integration to strain since
~h ¼ ~�4=ð�4�2f2Þ.

IV. OVERLAP

We start by examining the relative importance of the non-
dominant modes in a waveform comparison. The full wave-
form involves factors of the spherical harmonics and the
amplitudes of themodes [see Eq. (10)].When the amplitudes
of the higher modes are vanishingly small, they can be
ignored; however, as we have already noted in Fig. 1, the
relative amplitudes grow in strength with mass ratio.

In Fig. 4 we plot the overlap of each mode against (2,2)
individually. If all modes matched well against (2,2) it
would suggest that a template containing only this mode
would be a good match to the full signal, regardless of the
source orientation; however, we find that not to be the case.
In both the q ¼ 1 and q ¼ 4 cases, the overlap between
(2,2) and the next most dominant modes is poor, below 0.6.
Furthermore, although the inner product, Eq. (4), and the
decomposition into modes, Eq. (10), are themselves linear,
the maximization over time and phase introduces nonline-
arities. In particular, defining hothers ¼ P

l;m�2;2hlm, the

sum is only linear if the inner products maximize at the
same time. If not, there will be a ‘‘tension’’ in the modes
and the combined SNR will be less than the sum of the
individual SNRs, i.e.,

�2ðs; hÞ � �2ðs; h22Þ þ �2ðs; hothersÞ: (12)

To quantify this we plot the time series of both SNRs on the
right-hand side of Eq. (12) in Fig. 5. The two series peak at
notably different times, and at the peak of the h22 series the
hother series has dropped by 38%; thus we can conclude that
the nonlinearities are important, and we cannot use the
linear approximation.
While Fig. 4 shows that the (2,2) mode is not an effective

representation of the other modes, how well does the (2,2)
mode cover the sky of the source? The overlap between
the full-mode waveform and the (2,2) mode is a function of

TABLE II. Summary values of the overlaps between the (2,2)
mode and the full template as a function of the orientation angles
ð�; �Þ. Names in parenthesis refer to Table I. Note that the P01
precessing system has lower overlaps, and a smaller fraction of
overlaps greater than 0.97, than the other systems.

ID q �
% of area

� 0:97 Average Median Minimum

H01 1 0 100 0.997 0.998 0.995

H03 3 0 27 0.955 0.951 0.918

H04 4 0 18 0.937 0.931 0.885

H05 5 0 16 0.927 0.920 0.868

H06 6 0 13 0.916 0.907 0.847

H07 7 0 11 0.907 0.898 0.840

H08 10 0 11 0.903 0.892 0.826

H09 15 0 11 0.897 0.886 0.817

S01 1 �0:4 100 0.997 0.997 0.993

S02 1 0.4 100 0.997 0.997 0.994

S03 1 0.8 100 0.997 0.997 0.994

P01 4 0.6 (90�) 0.01 0.844 0.861 0.498

P02 4 0.6 (150�) 17 0.937 0.937 0.880

P03 4 0.6 (210�) 14 0.933 0.934 0.824

FIG. 7 (color online). Overlaps between the completewaveform
and the (2,2) mode for nonspinning waveforms with mass ratios
from 1 to 15, with all angles and total mass chosen randomly. At
higher mass ratios more of the total power is distributed into the
higher modes and the match drops accordingly.
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the angles centered at the source, ð�;�Þ. The (2,2)-only
template depends on the angles through a single factor,

2Y22ð�; �Þ, which is canceled by the normalization; there-

fore, we simplify the overlap by placing this waveform at
� ¼ � ¼ 0. We also place both waveforms optimally in the
sky of the detector, at � ¼ ’ ¼ 0, and choose c ¼ 0. We
will generalize this momentarily. Figure 6 shows the re-
sulting overlaps for five cases: the nonspinning q ¼ 1 and
q ¼ 7, and the precessing cases from Table I. At � ¼ 0, �
the waveform is dominated by the (2,2) modes; the overlap
approaches 1.0 at these points. Equation (9) then implies
that there is no loss of distance incurred by searching with
the (2,2)-only template for systems that are oriented face-
on with respect to the detector. We can further quantify this
by determining the fraction of surface area over which the
overlap falls below 0.97%, where this value is motivated by
the allowed 3% loss of SNR from using a discrete set of
templates [2]. Table II lists this value for several simula-
tions, along with the the average, median and lowest over-
laps as further measures of the impact of the higher modes.

Figures 5–7 and Table II all tell the same story for a
single detector when the intrinsic parameters are kept fixed
to the signal: the q ¼ 1 case is well served with a (2,2)-
only waveform over all source angles. The higher the mass
ratio, the worse a (2,2)-only waveform does in matching
the signal, and this fraction of angles over which the match
does poorly increases. Furthermore, a precessing system is
badly served by a (2,2) waveform. We will explore this
matter further in future work.

We now generalize the previous results to include
other values of the detector-centric angles ð�; ’Þ and c .
Consider two templates: h22 which, as in current searches,
contains only the (2,2) mode of the NR waveform opti-
mally oriented (� ¼ ’ ¼ � ¼ � ¼ c ¼ 0), and a perfect
template hideal which exactly matches the signal. In Fig. 7
we show the overlap between the signal and h22 for several
nonspinning systems. Each colored line on the graph rep-
resents a system mass ratio; moving along the line gives
different system masses. As we move from top to bottom,
we are moving from q ¼ 1 to q ¼ 15. The difference in

colors along the line gives the overlap value. The plot
shows that for higher mass ratios the total power is distrib-
uted into the higher modes and the match drops accord-
ingly. This is consistent with Refs. [8,12].
Now consider the q ¼ 4 nonspinning system, scaled

to 100M� and placed at a distance of 1 Gpc from the
detector, and examine the overlap between the signal and
both templates. We randomly choose values for all angles
and plot results with respect to �, which has the most
significant dependence. The results are shown in Fig. 8,
which illustrates that at � ¼ 0, � the variation of the addi-
tional angles does not affect the overlap, while the spread
in results widens towards � ¼ �=2. This again shows that
the (2,2) mode only captures a face-on source orientation
and misses the source as its inclination increases toward
the edge-on case. This would imply that the higher modes
are essential for detecting nonoptimally oriented signals,
but how far away can a single detector see these cases? We
quantify how important the modes will be in terms of SNR
and volume reach in the next section.

V. SNR AND VOLUME

As noted at the end of Sec. II, the overlap is equal to
the fractional loss in distance to which a signal can be
detected, but this value should be viewed in light of the
maximum possible distance. This maximum distance de-
pends on three factors: (1) the total energy radiated by the
source, (2) the ability of the template to extract energy of
the signal from the background noise and (3) the location
of the source in the sky of the detector. For example, in the
plane of the detector along the lines 45� to the arms, the
response goes to zero. Along these lines the loss in range
implied by a low overlap is irrelevant for a single detector.
In this section we consider the accessible distances, noting
the influence of all three factors.
We start with Fig. 9, which shows the radiated energy

and distances accessible using the hideal templates, as a
function of the source orientation. As expected, the range
tends to be lowest where the least power is radiated,

FIG. 8. Left: The overlaps obtained using both templates. Since hideal ¼ s the overlap is 1. Right: The ratio of the overlaps. This is
identical to the ratio of SNRs as the additional factors of ðsjsÞ cancel.
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although the energy and distance plots are not identical
due to weighting by the noise curve. The energy
(and hence distance) plots have the same general shape
as those corresponding in Fig. 6, indicating that the over-
laps between the signal and h22 are lowest at orientations
where the energy and distance reach of the ideal template
are also lowest. This is due to the fact that the higher modes

not only have poor matches with (2,2), as shown in Fig. 4,
but they also contain less power, as shown in Fig. 1.
Figure 9 shows that orientations where the higher modes
dominate have both low matches with h22 and lower

FIG. 9 (color online). Radiated energy and distances to which
signals are visible using the optimal template, in source-centric
coordinates � horizontally and � vertically. Top to bottom: q¼1,
q ¼ 7, and the precessing P01, P02 and P03 systems. Note that
the structure is similar to the overlaps between the full signal and
the h22 template [Fig. 6].

TABLE III. Sensitivity volumes and average distances achiev-
able using both templates. ID values correspond to Table I. Angles
following spin magnitude indicate the initial angle of the spin
vector of the larger hole in the x, z plane; such systems exhibit
precession. Spins not followed by an angle indicate the spins are
(anti)aligned with the orbital angular momentum and the system
does not precess. Volumes are reduced with increased q and anti-
aligned spins, and increased with align spins due to the total power
radiated in-band. For higher q the use of the ideal template
expands the volume by up to 30% for the systems considered
here, although the fractional improvement is greatest for the
systems where the volume accessible with hideal is smallest.

ID q a

Volume using

h22 (Gpc3)

Ravg using

h22 (Gpc)

Volume using

hideal (Gpc
3)

Ravg using

hideal (Gpc)

H01 1 0.0 217 3.3 218 3.4

H03 3 0.0 91 2.5 102 2.6

H04 4 0.0 57 2.2 68 2.3

H05 5 0.0 39 1.9 47 2.0

H06 6 0.0 27 1.7 34 1.8

H07 7 0.0 19 1.5 25 1.6

H08 10 0.0 9.3 1.2 12 1.3

H09 15 0.0 3.3 0.8 4.3 0.9

S01 1 �0:4 165 3.1 166 3.1

S02 1 0.4 313 3.8 315 3.8

S03 1 0.8 458 4.3 461 4.3

P01 4 0.6 (90�) 55 2.1 80 2.4

P02 4 0.6 (150�) 34 1.8 41 1.9

P03 4 0.6 (210�) 34 1.8 41 1.9

FIG. 10. Correlation between the total energy radiated from
r ¼ 75M by the systems in Table III and the accessible volumes
using the h22 and hideal templates. Circles are nonspinning systems,
squares are spinning but nonprecessing systems, and triangles are
precessing systems. The P02 and P03 systems have close to
identical values of Erad and volumes; these points therefore lie
on top of each other. The h22 template gives a notably smaller
fraction of the volume for the P01 system than for any other; this
corresponds directly to the lower overlap noted in Table II.
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ranges. This indicates that the fractional loss in distance
incurred by using the incorrect template is greatest where
the best possible range is smallest.

Finally, in order to characterize the performance of
different templates by a single number with physical
significance we calculate the spatial volume to which the
search is sensitive. The distance to which a signal can be
seen depends on all five angles, but from Eq. (3) and the
comments at the end of Sec. II the dependence on the
detector-centric angles may be factored out:

Rð�; ’; �; �; c Þ ¼ F0ð�; ’ÞRð�; �; c Þ: (13)

Since there is no preferred orientation we define an
average visibility range, R, by averaging the distances
over the orientation angles �, �, c :

R ¼ 1

N

XN
i

�ðsð�i; �i; c iÞ; hÞ
5:5

: (14)

We evaluate this average by choosing random values for �,
cos ð�Þ, c uniform in ð0; 2�Þ, ð�1; 1Þ, ð0; 2�Þ respectively.
The average visibility distance as a function of the

detector-centric angles is therefore

Rð�; ’Þ ¼ RF0ð�; ’Þ (15)

and the volume of the Universe to which a given template is
sensitive is therefore

V ¼
Z 2�

0
d’

Z �

0
sin ð�Þd�

Z Rð�;’Þ

0
r2dr

¼ 1

3

Z 2�

0
d’

Z �

0
sin ð�Þd�R3ð�; ’Þ

¼ R3

3

Z 2�

0
d’

Z �

0
sin ð�Þd�F3

0ð�; ’Þ: (16)

The remaining integral may be done numerically, yielding
a value � 3:687.
The volumes for different waveforms, using the h22 and

hideal templates, are summarized in Table III. The trend is
for lower mass ratios and higher aligned spins to corre-
spond to both larger absolute volumes and smaller relative
differences by including higher modes in the template. The
larger volumes correspond directly to the increased total
energy radiated by such systems, which is shown in Fig. 10.
Finally, as another way of quantifying the difference

between the templates, in Fig. 11 we show histograms of
the visibility ranges over the complete set of orientations
at � ¼ ’ ¼ 0. Using hideal shifts the ranges from lower to
higher values somewhat, but does not increase the maxi-
mum distance, which occurs for face-on systems which are
dominated by (2,2).
These results include three precessing q ¼ 4, a ¼ 0:6

systems. In all cases the accessible volume is less than that
for the q ¼ 4 nonspinning system. As might be expected
from the nonprecessing cases the volume decreases as the

FIG. 11. Histograms showing the distributions of distances
using both templates for the q ¼ 4 system. Using hideal shifts
points from lower distances to higher, but does not increase the
maximum range.

FIG. 12. Histograms showing variation in distance along the � ¼ ’ ¼ 0 sky direction for (left) q ¼ 1 and (right) q ¼ 7 systems. For
q ¼ 1 the mean is 30.80, corresponding to a distance of 5.6 Gpc, and the standard deviation is 0.17. For q ¼ 7 the mean is 13.79,
corresponding to 2.51 Gpc, and the standard deviation is 0.08.
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spin becomes anti-aligned with the angular momentum
and less total energy is radiated. However, at least for
the systems considered here, this dependence becomes
smaller than our uncertainties when the angle between
the orbital angular momentum and the spin of the larger
hold exceeds 150�.

A. Error analysis

Because we choose random values in evaluating
the average Eq. (14) we are able to determine the error in
the results as the standard deviation between several runs.
Because of the computational expense of complete runs
we instead estimate this by choosing one sky position.
We show the SNR histograms obtained by 900 runs of
� ¼ ’ ¼ �=3 for two waveforms in Fig. 12. In both cases
the error is on the order of 0.5%. Since V ¼ r3 and r has

an error �r, then �V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððdV=drÞ�rÞ2p
. Here we have

�V=V ¼ 3�r=r. The error for the results in Table III is
then on the order of 1.5%. There are also uncertainties
associated with the choice of extraction radius and resolu-
tion. We show the volumes obtained using the q ¼ 4
systems and hideal template for several values of both
parameters in Table IV. The variation is on the order of
1.5%, and our two sources of uncertainty are comparable
and small enough that they do not affect our conclusions.

VI. CONCLUSIONS

As can be seen from Table III there are two conflicting
trends as the mass ratio increases. As the total radiated
energy is reduced, the volume drops. Conversely, as the
fraction of this energy is distributed into higher modes
the benefit gained by using the ideal template increases.
The energy radiated (and hence volume) increases with
spin. Together, these results imply a strong bias towards the
detection of equal-mass, aligned-spin systems when aver-
aged over the sky. This conclusion is consistent with

Refs. [31,32], while adding the fact that the inclusion of
higher modes is not important for detecting these systems.
We expect that a search using (2,2) IMRPhenB aligned-
spin templates will perform well; this will be tested as part
of the ongoing NINJA2 project [33].
For nonspinning systems with q * 3 and the mildly

precessing systems considered here, the inclusion of higher
modes in the template can improve the volume reach of the
single detector. Whether or not this translates to an increase
in detection rate depends on the unknown underlying rates
of such systems. Put another way, the inclusion of higher
modes in templates will allow the advanced detector
network to better measure or bound these unknown rates.
There are, however, some caveats. First, we stress that

the template used for the rightmost column of Table III
exactly matches the signal; that is, it assumes we exactly
know the signal for which we are looking in advance.
To the extent that matched filtering is the optimal detection
statistic any approximate inclusion of higher mode infor-
mation will of necessity do worse. Furthermore, there are
potential downsides to including higher modes in the
templates. Such an addition would require increasing
the number of templates. This entails a corresponding
increase in the computational cost of the search. In addi-
tion, these additional templates may respond to glitches in
the detector, raising the number of ‘‘background’’ events
and increasing the SNR at which a signal would need to
be observed in order to confidently claim a detection.
Concerns such as this lead to changing the mass range in
the S6 search from 35M� to 25M�—the templates at the
higher-mass end produced sufficient numbers of back-
ground triggers to impair the ability to detect lower-mass
systems [1]. It would be undesirable to allow a search for
systems to which the detector network is comparatively
insensitive to impact the ability to detect equal-mass and
aligned-spin systems. We also note that, at present, it is not
known how to construct a template bank of precessing
signals. Further studies are needed to determine the right
strategy for detecting both mildly and heavily precessing
systems.
We have not yet considered spinning systems with

q > 1. Such simulations are available for spins up to 0.6
and mass ratios up to 7; however, we defer their analysis to
future work. For spins aligned with the angular momentum
the volumes accessible will certainly be larger than the
nonspinning counterparts. It is possible that the depen-
dence on higher modes will be preserved in these cases,
leading to a potentially large volume increase by using
templates that include higher modes.
We have so far considered only a single detector.

Additional detectors will provide better sky coverage,
effectively increasing the value of the integral in
Eq. (16). Furthermore, as noted in the introduction, detec-
tors oriented differently are sensitive to different polar-
izations; it is therefore conceivable that the inclusion of

TABLE IV. Volumes obtained using the q ¼ 4 system and
hideal template for various extraction radii and simulation reso-
lutions. All values are in Gpc3. All of these runs used the same
set of points. There is a general trend downward with decreased
resolution and increased extraction radius. The latter effect is
due to the fact that the late inspiral, merger and ringdown
portions of the waveform get smaller as r ! 1. Although the
inspiral portion actually increases as r ! 1, since the majority
of the power radiated is in the last orbits and merger the volume
decreases. As the variation is small we expect the difference
from the true value to be small as well.

Resolution

Extraction radius M/160 M/180 M/200

60 M 69.59 69.62 69.64

75 M 69.12 69.14 69.16

100 M 68.57 68.59 68.61
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higher modes in templates would have more impact on the
range of the network as a whole than on any one detector.
We have also not considered other aspects of the full
search, such as signal-based vetoes. The effect of such
vetoes is being studied in Ref. [34].

One important aspect of gravitational-wave detection
we have also not considered is the fact that the data are
filtered against a bank of templates with different parame-
ters. For the initial detection it is acceptable for the signal
to be picked up by a template with the wrong parameters;
once the detection has been confirmed more computation-
ally expensive parameter estimation codes can be run.
While this freedom cannot raise the volume accessible to
hideal, as it is already a perfect match to the signal, it is quite
possible that maximization over a bank of h22 templates
will lead to larger average SNRs and hence volumes. In this
case the fractional gain by going to an approximation of
hideal may be even smaller.

This last point leads to the question of the importance of
higher modes in parameter estimation. We expect higher
modes to be important here; as a simple example the differ-
ence between a signal at � ¼ c ¼ �=4 and one at �¼c¼0
is entirely encapsulated in the mode content. We expect that
there are degeneracies between the orientation parameters
and intrinsic parameters; we intend to investigate this further

in subsequent studies. However we present a preliminary
result in Fig. 13, which shows that hsð�; c Þjh22i can be
increased by maximizing over the mass M of the template,
at the cost of misestimating the mass. The increase in over-
lap is most pronounced at � ¼ �=2, where the higher modes
are most significant. Correspondingly the mass which max-
imizes the overlap deviates the most from the true value at
this point. This suggests a degeneracy between mass and
higher-mode content. One possible explanation is that the
higher modes contain more power at higher frequencies, as
do lower-mass systems. We will explore this possibility in
our follow-up studies.
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