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The discovery of the accelerated expansion of the Universe has had a vast resonance on a number of

physical disciplines. In recent years several viable modified gravity models have been proposed, which

naturally lead to a late-time de Sitter stage while basically reducing to General Relativity in the early

Universe. We consider a contracting cloud of pressureless dust, having arbitrary mass and initial density,

and study some aspects of these modified gravity models. We show how the increasing energy/mass

density may lead to a curvature singularity and discuss the typical time scales for its development.
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I. INTRODUCTION

The physical mechanism behind the present accelerated
cosmological expansion [1] is still unknown. A pure cos-
mological constant term is quite natural both in General
Relativity and in quantum field theory, but then there
remains the challenge of explaining the present value of
�, in particular its smallness and the fact that �m ���

(coincidence problem).
More complicated but popular scenarios involve

‘‘quintessence’’ models [2], in which a scalar field coupled
to gravity is responsible for the acceleration, or modified
gravity models, in which the acceleration is due to mod-
ifications of the Einstein-Hilbert action and therefore of the
Einstein field equations. In the simplest case, the gravita-
tional Lagrangian is a nonlinear function of the scalar
curvature R alone,1

Agrav ¼ � m2
Pl

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ

� � m2
Pl

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ FðRÞ�: (1.1)

Following the seminal paper [3], where it was found that
terms �R2 appear naturally from one-loop corrections to
the matter energy-momentum tensor, these models were
initially discussed in the ultraviolet regime [4]. In the first
infrared-modified fðRÞ models proposed [5], where F�
1=R, the negative power of R determines the predominance
of such terms at late times, resulting in an accelerated
Universe expansion.

Beside doubts about their viability and relevance [6],
these models were soon discovered to suffer from strong

instabilities in the presence of gravitating bodies [7]; see
also Ref. [8].
The constraints for the cosmological viability of fðRÞ

models were later thoroughly investigated [9], and recently
a few models have been proposed that evade all such tests,
therefore seeming to be good candidates for a gravitational
theory of dark energy [10–12] [see also below, Eq. (1.2)].
Testing modified gravity theories in astronomical or

astrophysical systems is of paramount importance in order
to constrain and possibly rule out models and, in general,
to improve our knowledge of the subject. Studies of the
stability of spherically symmetric solutions have indicated
the possibility of an infinite-R singularity developing
inside relativistic, dense stars [13]. Important steps forward
in our understanding of static, spherically or axisymmetric
astrophysical objects in fðRÞ gravity have recently been
made (see e.g., Ref. [14]) and seem to point towards the
existence of a rather general instability/singularity problem
in these theories. Indeed, it has been shown that analogous
problems occur in many different extended theories of
gravity, not only fðRÞ [15].
Furthermore, similar results are obtained in the case of

a less dense but contracting object [16,17]. In this case the
singularity is not triggered by the large mass/energy den-
sity, but rather by its increase with time. One can write the
trace of the modified Einstein equations as an oscillator
equation for the additional gravitational scalar degree of
freedom, which is sometimes dubbed ‘‘scalaron’’ and
which we will denote with � (see below), and it is easy
to see that R oscillates around the GR solution Rþ T ¼ 0.
The frequency and the amplitude of such oscillations
usually grow along with the increasing density and may
eventually lead to a singularity. The key point is that �
moves in a matter- and, therefore, time-dependent poten-
tial, in which the ‘‘energy’’ corresponding to the point
� ¼ �ðjRj ! 1Þ may be finite, rendering this singular
point, in principle, accessible by the field. This mechanism
is strictly related to that responsible for the past cosmo-
logical singularities examined e.g., in Refs. [18,19].

*reverberi@fe.infn.it
1We use natural units c ¼ ℏ ¼ k ¼ 1, and the Planck mass is

defined asm2
Pl ¼ G�1

N . The metric has signature (þ���), and
we use the conventions ��

�� ¼ 1
2g

��ð@�g�� þ � � �Þ, R�
��� ¼

@��
�
�� þ � � � , R�� ¼ R�

���, R ¼ R
�
�. With these conventions,

R < 0 for a matter-dominated Universe.
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Singularity issues in infrared-modified fðRÞ theories
could in principle be solved by the introduction of ultra-
violet corrections, as investigated e.g., in Refs. [16,17].
Moreover, oscillations lead to gravitational particle pro-
duction, and a large frequency/amplitude of the oscillating
curvature could lead to a noticeable emission of cosmic
rays [20]; in principle, this could severely affect the total
cosmic ray flux, distort the power spectrum, and even serve
as a possible mechanism to avoid the Greisen-Zatsepin-
Kuzmin cutoff [21].

In this paper, we focus again on the fðRÞ gravity models
[10,11] during the contraction of a nearly homogeneous
cloud of pressureless dust. Using a simplified approach,
namely assuming spherical symmetry, homogeneity, and
low gravity, we work out simple expressions for the evo-
lution of � and hence R, and in particular of the amplitude
and frequency of their oscillations. We confirm the exis-
tence of a finite-time, future singularity, whose appearance
depends on the duration of the contraction and on both
model and physical parameters, and derive estimates for
the typical time scales for this process.

Oncewe derive general results, wewill apply them to two
very similar models recently proposed and cited above:

FHSðRÞ ¼ � �Rc

1þ ðR=RcÞ�2n
; ½11� (1.2a)

FSðRÞ ¼ �Rc

��
1þ R2

R2
c

��n � 1

�
: ½12� (1.2b)

The subscripts stand for, respectively, Hu-Sawicki (HS) and
Starobinsky (S). For both models, if � is of order unityRc is
of the order of the present cosmological constant (for details
we refer the reader to the specific articles), which is much
smaller than the typical values of R and T in astrophysical
systems, such as pre-stellar, pre-galactic, and molecular
clouds. Hence, in many cases we will take the limit
jRc=Tj � Rc=R � 1 before presenting the final results.

For simplicity, we assume that the contraction of the
system is stationary, i.e., the mass density grows linearly
with time, on a typical time scale tcontr,

TðtÞ ¼ T0ð1þ t=tcontrÞ: (1.3)

We must stress that this evolution law should not be
regarded as accurate from a physical standpoint; the diffi-
cult task of computing the full dynamics of contraction
of a self-gravitating system goes way beyond the scope of
this paper (see e.g., Ref. [22] and references therein).

Nevertheless, unless the contraction follows a radically
different behavior, and especially until t� tcontr, results
obtained with this form should be qualitatively correct.
We will find that a faster contraction contributes posi-
tively to the formation of a singularity, so we expect that
contraction laws T � t� with � > 1 will lead to singular-
ities even more effectively than what appears from our
results. On the other hand, a slower contraction could help

delaying (� < 1) or even avoiding, if the contraction
would stop at some moment, the singularity.
In this paper we will use the following dimensionless

parameters characterizing the physical properties of the
system under scrutiny,

R29 � m2
Pl

8�

ð�RcÞ
10�29 g cm�3

; %29 � %0

10�29 g cm�3
;

t10 � tcontr
1010 years

: (1.4)

II. CURVATURE EVOLUTION
IN CONTRACTING SYSTEMS

A. Field equations

From Eq. (1.1), one obtains the field equations

f0ðRÞR���1

2
fðRÞg��þðg��D2�D�D�Þf0ðRÞ¼T��:

(2.1)

Here, D denotes covariant derivative, a prime denotes
derivative with respect to R, and

T�� � 8�

m2
Pl

2ffiffiffiffiffiffiffi�g
p 	ð ffiffiffiffiffiffiffi�g

p
LmÞ

	g�� ;

where Lm is the matter Lagrangian density. The corre-
sponding trace equation reads

3D2F0 þ RF0 � 2F� ðRþ TÞ ¼ 0: (2.2)

We consider a nearly homogeneous and spherically sym-
metric cloud of pressureless dust, hence

T ’ 8�

m2
Pl

%m; (2.3)

and %m is the mass/energy density of the cloud. The
homogeneity of the could allows us to neglect spatial
derivatives, as intuitively clear and explicitly proved in
Ref. [16]; assuming also low gravity, the D’Alambertian
operator can be replaced by the second derivative in the
time coordinate: D2 ! @2t . Of course, a more careful in-
vestigation of the problem should take into account both
time and spatial derivatives; this could be a subject for
further research. Also notice that these and following argu-
ments can also be applied to cosmology, if we consider the
evolution of the Universe, backwards in time, during the
matter-dominated epoch [18,19]. The approximation of
low gravity and the formation of curvature singularities
may seem utterly incompatible, but this is not true: in fact,
R� @2g�� may diverge even if g�� is very close to 
��

(Minkowski). Details about this statement and about the
dust assumption (p=% � 1) can be found in Sec. V.
As mentioned in the Introduction, in a typical astrophys-

ical situation we have
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T

Rc

� R

Rc

� 1; (2.4)

so that both models reduce to

FHS ’ FS ’ ��Rc

�
1�

�
Rc

R

�
2n
�
: (2.5)

In this limit, these models are basically equivalent to
adding a � term, since F is almost constant; in fact, we
clearly have

Rþ F � Rþ 2�; � ¼ ��Rc

2
: (2.6)

See also Refs. [10,11] for further details. Therefore, Rþ
T þ 2F ¼ 0 is practically equivalent to GR with the
addition of a cosmological constant �, that is the usual
�CDM model2; in what follows, when referring to ‘‘GR’’
for brevity, we will mean precisely this. We also have
F0 � �ðRc=RÞ2nþ1, thus

jRj � jFj � jF0Rj: (2.7)

Under these assumptions, Eq. (2.2) becomes

3@2t F
0 � ðRþ T þ 2FÞ ¼ 0: (2.8)

Since F�� � T, the only contribution of this effective
cosmological constant is to offset the GR solution from
Rþ T ¼ 0 to Rþ T þ 2F ¼ 0, which is a very small (and
almost constant in absolute value) correction of order
jRc=Tj. One should be careful, because it may appear
from exact numerical results that F is of the order of Rþ
T or even larger3; nevertheless, its effect in (2.8) is com-
pletely trivial, unlike the dynamical term €F0, because even
large variations of R, especially when jRj increases, result
in extremely small variations of F [see Eq. (2.5)]. From
now on, we will include these corrections using

~T � T þ 2F � T þ 4�: (2.9)

However, we will still have to consider T alone because it
is the quantity directly related to the physical energy/
matter density at a given point and a given instant of
time. Defining the new scalar field

� � �3F0; (2.10)

which in the cases considered is approximately

�HS;S ’ 6n�

�
Rc

R

�
2nþ1

; (2.11)

we rewrite (2.8) as an oscillator equation,

€�þ Rþ ~T ¼ 0 , €�þ @U

@�
¼ 0: (2.12)

Again, we stress the underlying assumption that ~T ¼ ~TðtÞ.
We are testing the behavior of curvature with a simple,
smooth external energy density evolution, which is
arbitrarily chosen. As we have already mentioned, a
more complete analysis could be subject of stimulating
further research.
Usually, it is not possible to invert (2.10) to obtain

R ¼ Rð�Þ and thus a simple form for Uð�Þ, expect perhaps
in some limit, but it is rather clear that solutions will
oscillate around the solution Rþ ~T ¼ 0, with frequency
roughly given by

!2
� ’ @2U

@�2

��������Rþ ~T¼0
’ 1

@�=@R

��������Rþ ~T¼0
: (2.13)

If !2 < 0, one expects instabilities, and this is exactly the
kind of instability of Refs. [7,8]. One can immediately see
that for the two models considered we have

!2 ’ � Rc

6n�ð2nþ 1Þ
�
� ~T

Rc

�
2nþ2

> 0; (2.14)

so there is no instability problem. We remind the reader
that with our sign conventions Rc < 0, ~T > 0. Even
with !2 > 0, however, we will show that if the model
fulfils some requirements, then curvature singularities can
develop. In particular, we require that
(i) there exists a certain value �sing corresponding to

jRj ! 1,
(ii) the potential be finite in �sing, i.e., Uð�singÞ<1.

B. Energy conservation and the scalaron potential

If the previous requirements are met, then in general it is
possible that � reach �sing and hence jRj ! 1. We can see

this, for instance, from the ‘‘energy’’ conservation equation
associated with (2.12), that is

1

2
_�2 þUð�; tÞ �

Z t
dt0

@ ~T

@t0
�ðt0Þ ¼ const; (2.15)

where

Uð�; tÞ ¼ ~TðtÞ�þ
Z �

Rð�0Þd�0: (2.16)

The last term in the lhs of (2.15) is due to the explicit time
dependence of ~T, and if @ ~T=@t > 0, as is the case in
contracting systems even without specifically assuming4

(1.3), it will produce an increase in the ‘‘canonical’’ energy
(kineticþ potential).
Note that this is true for � > 0, whereas for � < 0 it

would give the opposite behavior. However, it has been
shown that the conditionF0 < 0, corresponding to � > 0, is

2Of course, these fðRÞ models do not explain the nature of
dark matter.

3But not of the order of R or T individually!

4Assuming (1.3), @ ~T=@t ¼ T0=tcontr � ~T0=tcontr [see Eqs. (1.3)
and (2.9)], so (2.15) is further simplified, with the last term
simply being proportional to

R
t dt0�.
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crucial for the correct behavior of modified gravity models
at (relatively) low curvatures [19].

As we have previously mentioned, usually it not possible
to invert the relation � ¼ �ðRÞ in order to obtain R ¼ Rð�Þ
and solve the integral in (2.16) exactly. Nonetheless, for
the two models considered and in the limit R=Rc � 1 this
procedure is possible; apart from an additive constant,
which we can put to zero, the approximate potentials are
equal and read

U ’ ~TðtÞ�þ 3�Rcð2nþ 1Þ
�

�

6n�

� 2n
2nþ1

: (2.17)

The shape of this potential is shown in Fig. 1. The bottom
of the potential, as expected from (2.12), is in Rþ ~T ¼ 0.
Moreover, �sing ¼ 0 and Uð�singÞ ¼ const.

III. ADIABATIC REGION

For simplicity, let us initially assume that the oscillations
of � in its potential are ‘‘adiabatic,’’ in the sense that at
each oscillation � moves between two values

�min ðtÞ; �max ðtÞ; (3.1)

at roughly the same ‘‘height,’’ that is with

Uð�min Þ ¼ Uð�max Þ:
We should stress that �min and �max are considered to be
slowly varying, so that it makes sense to compare these two
values even though they do not correspond to the same
instant of time, but are rather evaluated at different times
with a 	t of order !�1.

The validity of this approximation can be understood as
follows: the potential is roughly of the order of ~T�,
whereas the variation of the integral term in (2.15) in one

oscillation is of order _~T�=!. If ! is much larger than the
inverse contraction time, that is

! �
_~T
~T
;

which is the case for the models considered below [see
Eq. (1.2)] provided that the contraction is sufficiently slow,
then the integral term can be considered approximately
constant over a large number of oscillations. Assuming
(1.3), this basically results in the condition

!tcontr
2�

� 1; (3.2)

where the factor 2� only indicates that the period of the
oscillations of � is 2�!�1, not !�1. For the models under
investigation, this gives roughly

%2nþ2
29 t210

n�ð2nþ 1ÞR2nþ1
29

� 142: (3.3)

Later, we will relax this assumption and work in the

opposite regime, where _~T= ~T * !.
Let us expand � around the ‘‘average’’ value,

�aðtÞ � �ðR ¼ � ~TÞ; (3.4)

which corresponds to the value of � if the behavior of
the system were described by the usual GR solution Rþ
~T ¼ 0. We could be misled to infer from (2.8) that with this
definition �a must exactly satisfy

€�a ¼ 0; (3.5)

so that �a � t. This is not true, because near the GR
solution we can no longer neglect subleading terms in
(2.2) and hence use (2.8). In some sense, (3.5) remains
true provided that we interpret it as the statement,

j €�aj � jRj; ~T: (3.6)

Ultimately, �a is the reference point for � because it corre-
sponds to the bottom of its potential [see Eq. (2.12)].
Nonetheless �a is not the solution of (2.12), but merely a
test function helping us quantifying how the behavior of R
in fðRÞ gravity differs from that of GR. After all, � in GR is
identically zero.
Thus we write

�ðtÞ ¼ �aðtÞ þ �1ðtÞ (3.7a)

� �aðtÞ þ �ðtÞ sin�ðtÞ; (3.7b)

where

�ðtÞ ’
Z t

dt0!: (3.7c)

The function � is also assumed to be relatively slowly
varying, that is

_�

�
� !: (3.8)

In terms of the quantities of (3.1), we have

�min ’ �a � �; �max ’ �a þ �: (3.9)

0

U

FIG. 1. Qualitative shape of potentials for models (1.2), as-
suming R=Rc � 1. For both models � ¼ �sing ¼ 0 (the black

dot) corresponds to the singular point jRj ! 1. The typical time
evolution is also shown, from light grey (earlier times) to black
(later times).
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A. Harmonic regime

We initially assume that the amplitude of oscillations
is small enough that the potential can be approximated by
a harmonic potential,

Uð�; tÞ ’ U0ðtÞ þ 1

2
!2ð�� �aÞ2; (3.10)

where ! was defined in (2.14) and as we can see from
Eqs. (2.11) and (2.17),

U0ðtÞ � Uð�aðtÞÞ ¼ 3�Rc

�
� Rc

~TðtÞ
�
2n
: (3.11)

This is equivalent to considering the first-order approxi-
mation in �1 [defined in Eq. (3.7a)]. Equation (2.12)
then reads

€�1 þ!2�1 ’ � €�a: (3.12)

Using the expansion (3.7b) and neglecting €�a and €� yields

_!

!
’ �2

_�

�
) �ðtÞ ’ �0

ffiffiffiffiffiffiffiffiffi
!0

!ðtÞ
r

: (3.13)

As long as the approximations hold, this can be considered
a rather general result, and the specific FðRÞ model will
determine the behavior of the oscillations. The value �0

in Eq. (3.13) is strictly related to the initial conditions, that
is to the initial displacement from the GR behavior. We
will fix the initial values of R and _R and from those derive

the initial values of � and _�. Thus, �0 can be calculated
differentiating Eq. (3.7b), yielding

_�0ðR0; _R0Þ ’ _�a;0 þ �0!0 ) �0 ’
_�0 � _�a;0

!0

: (3.14)

This corresponds to the explicit solution

�ðtÞ ’ ð _�0 � _�a;0Þ½!0!ðtÞ��1=2: (3.15)

Please note that, apparently, we have not made use of the
assumption Uð�singÞ<1 considered before. Although not

necessary to perform calculations, this condition is needed
to ensure that the expansion (3.7) be reliable. In fact,
oscillations are harmonic only if the potential is nearly
quadratic; this assumption is usually quite reasonable,
especially near the bottom of the potential, but loses
validity, for instance, near points at which U diverges.
Therefore, models in whichUð�Þ is singular in � ¼ �sing ¼
�ðjRj ! 1Þ cannot be discussed within the framework
of this paper.

Also, it is clear from Eq. (3.15) that if _�0 ¼ _��;0 the

amplitude of oscillations would vanish at all times. This
can be immediately proved to be wrong, for instance
numerically. This is an unfortunate consequence of the
approximations used to derive (3.15), particularly neglect-

ing €�a in (3.12); evidently, the source term €�a � 0 will
produce oscillations regardless of the initial conditions.

When � is initially very small, €�a and in general terms

proportional to 1=t2contr should be kept and the approxima-
tions used are no longer valid. Therefore, Eq. (3.15) is

reliable when ( _�0 � _��;0) is ‘‘large’’ enough, say of the

order of _��;0.

In order to have simple and more or less reliable esti-
mates, we will use the initial conditions(

R0 ¼ � ~T0

_R0 ¼ �� _~T0 ¼ ��T0=tcontr;
(3.16)

where � is a free parameter quantifying the initial displace-
ment from the GR behavior Rþ ~T ¼ 0; in particular,
� ¼ 1 corresponds to the situation in which R initially
behaves exactly as if there were no FðRÞ at all (but still a
cosmological constant). For simplicity, only change the
initial ‘‘velocity’’ _R0. Because of the considerations
made above and noting that with these initial conditions

_�0 ¼ � _�a;0; (3.17)

our results will be particularly reliable for values of � not
too close to unity.
Using these initial conditions, the amplitude of the

scalaron oscillations for models (1.2) evolves as [see also
Eq. (2.14)]

�ðtÞ ’ ½6n�ð2nþ 1Þ�32j1� �jjRcj3nþ3
2
_~T0

~T
5ðnþ1Þ

2

0
~TðtÞðnþ1Þ=2

; (3.18a)

¼ ½6n�ð2nþ 1Þ�32j1� �jjRcj3nþ3
2T2

0

~T
5ðnþ1Þ

2

0
~TðtÞnþ1

2 t2contr

: (3.18b)

Accordingly, R oscillates around its GR value R ¼ � ~T.
We thus define

RðtÞ ¼ � ~T þ �R0rosc; (3.19)

where rosc has maximum absolute value equal to 1 and
contains all the information about the oscillations of
curvature, whereas the dimensionless function � contains
the information about the amplitude of such oscillations.
Using (2.11) and (3.18), and expanding at linear order in �,
we find

j�j ’ ~T2nþ2j�j
6n�ð2nþ 1Þ ~T0jRcj2nþ1

: (3.20)

In Fig. 2 we show a comparison between the numerical
solutions of (2.12) and our estimates, using the approxi-
mate model (2.5). With the chosen values of parameters,
we have

!0tcontr
2�

’ 30; (3.21)

so the fast-roll condition (3.2) is satisfied. The agreement
between our analytical estimates and numerical results is
expected to improve as !0tcontr increases. In Fig. 3 we
show a comparison of the various terms in (2.2).
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B. Approaching the singularity:
Anharmonic oscillations

As � decreases and jRj increases, � grows so that
eventually there appear anharmonic features in the

oscillations of the scalaron. This is due to the fact that,
when � becomes of the order of �a, the higher-order terms
in the potential, which had been neglected in (3.10), be-
come important. The different shape of the potential (2.17)
on the left and on the right of the bottom (see also Fig. 1)
determines an asymmetry of oscillations around the
expected average value �a. In particular, it is easy to infer
that, redefining

�min � �a � ��; �max � �a þ �þ; (3.22)

we should have �� <�þ, because the potential is steeper
for � < �a than it is for � > �a. Note that in the harmonic
regime we assumed [see Eq. (3.9)]

�max � �a ¼ �a � �min ¼ �: (3.23)

The variation of � is caused by the change in the shape of
the potential with time and the increasing ‘‘energy’’ of the
field, in the sense of Eq. (2.15). In the harmonic region,
using (3.1) and (3.10) yields

Uð�max Þ ’ Uð�min Þ ’ U0 þ 1

2
!2�2 � U0 þ�U: (3.24)

Note that all quantities involved are functions of time. The
term �U, if we neglect the integral term in (2.15), corre-

sponds to the maximum value of _�2=2, that is the value this
term has when the field is at the bottom of the potential.
Since we are basically considering a classical harmonic
oscillator, this is an expected result. Substituting the
explicit values, we find

�U ’ 18½n�ð2nþ 1Þð1� �Þ�2jRcj4nþ2 ~Tnþ1 _~T
2
0

~T5nþ5
0

: (3.25)

As mentioned before, this result depends essentially on the
variation of the shape of the potential and on the increase of
the energy of �, not on the assumption of harmonicity.
Therefore, we will assume that �U continues to follow

0.1 0.2 0.3 0.4
t tcontr
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0.1 0.2 0.3 0.4
t tcontr

0.01

0.00

0.01

0.02
R T R0

FIG. 2. Comparison of the evolution of � for the Hu-Sawicki
model with the predicted result, see Eqs. (3.7) and (3.15). The
values of parameters used are n ¼ 3, � ¼ R29 ¼ 1, %29 ¼ 2	
102 and t10 ¼ 1	 10�6, � ¼ 0:5. The value n ¼ 3 gives satis-
factory results for these models in reproducing the known cosmo-
logical evolution. Panel 1 (top): numerical solution for � (black),
compared to the ‘‘average’’ value �a (gray), defined in (3.4),
normalized in units of �0. Panel 2: plot of �1 (3.7), compared to
the expected evolution of the amplitude � (3.18), normalized to
�0. Panel 3: evolution ofR=R0 with time (black), compared to the
external energy/mass density (gray). Note that (1.3) is assumed.
Panel 4 (bottom): oscillations of R around its GR value R ¼ � ~T;
the amplitude grows with time following (3.20) quite accurately.

0.0 0.1 0.2 0.3 0.4
t tcontr

0.01

0.1

1

10

FIG. 3. Comparison of the different terms in (2.2); the lines
are, respectively, jRþ Tj (black), j2Fj (dashed) and 1012jF0Rj
(gray), and parameters are those of Fig. 2. Notice that, as
expected, F0R is absolutely negligible, whereas F is of the order
of Rþ T. Still, since it only produces an almost constant offset
in the GR solution, there is no appreciable effect on solutions as
indicated by Fig. 2. For details, see the discussion above and
below Eq. (2.7).
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(3.25) even away from the harmonic region. In particular,
we are interested in the region very close to the singularity,
namely �a ’ �. We will see numerically that this assump-
tion is in good agreement with exact results.

Near the singularity, the term in the potential (2.17)
linear in � goes to zero more rapidly than the other term,
so it can be neglected; therefore, the request that

Uð�a � ��Þ ¼ U0 þ �U; (3.26)

using Eq. (3.1), leads to the solution

��ðtÞ ’ �aðtÞ � 6n�

�
U0ðtÞ þ �UðtÞ
3�Rcð2nþ 1Þ

�2nþ1
2n
: (3.27)

The explicit forms ofU0 and�U for the models considered
are given, respectively, by Eqs. (3.11) and (3.25).
In Fig. 4, we show � approaching the singularity, with

�min � �a. As expected, the old estimate (3.18) no longer
reproduces the behavior of numerical solutions, whereas
the new result (3.27) works very well.

C. Generation of the singularity

We are now ready to make the final calculations in order
to derive the critical energy/mass density Tsing correspond-

ing to the curvature singularity. We can either use (3.27) or
equivalently the condition

U0 þ�U ¼ Uð�singÞ ¼ 0

to obtain

~Tsing

~T0

¼
� ~T2nþ4

0

6�n2ð2nþ 1Þ2ð1� �Þ2jRcj2nþ1 _~T
2
0

� 1
3nþ1

’
�
0:28

%2nþ2
29 t210ð1þ 2�R29=%29Þ2nþ4

�n2ð2nþ 1Þ2ð1� �Þ2R2nþ1
29

� 1
3nþ1

: (3.28a)

The corresponding time scale for the formation of the
singularity, using Eqs. (1.3) and (2.9), is simply

tsing

tcontr
¼ Tsing

T0

� 1 ¼
~Tsing � 4�

~T0 � 4�
� 1: (3.28b)

In Table I, we show a comparison of a few analytical
estimates with exact numerical results. The agreement in-
creaseswith increasing tcontr (and increasingTsing), which in

fact corresponds to the situation in which the assumptions
of adiabaticity are particularly reliable, see for instance
Eq. (3.2). Even for the smallest values of tcontr considered
in Table I, the discrepancy between the numerical and
analytical values is at most a few percent. Notice that this

1.04 1.06 1.08 1.10
t tcontr

0.005

0.010

0.015

0

1.04 1.06 1.08 1.10
t tcontr

0.005

0.000

0.005

0.010

a 0

FIG. 4. Numerical solution for: n ¼ 3, � ¼ R29 ¼ 1, %29 ¼
2	 102, t10 ¼ 5	 10�7. Top Panel: as � approaches the singu-
larity, its oscillations around �a start showing anharmonic fea-
tures. Bottom Panel: the lower values of �� �a are clearly
different from the naively predicted value (3.18), the dashed
line in the picture, whereas the refined result of Eq. (3.27) (thin,
solid line) is in very good agreement with the numerical solution.

TABLE I. Critical energy/mass density Tsing obtained using (3.28a), compared to the exact
numerical result. Parameters are n ¼ 3, � ¼ R29 ¼ 1, � ¼ 0:5, %29 ¼ 102, so results depend on
the value of tcontr.

~Tsing= ~T0
~Tsing= ~T0

t10 Equation (3.28) Exact t10 Equation (3.28) Exact

1	 10�6 1.40877 1.56622 1:0	 10�5 2.23276 2.23157

2	 10�6 1.61826 1.66162 1:2	 10�5 2.31567 2.3125

3	 10�6 1.75495 1.77693 1:4	 10�5 2.38818 2.38475

4	 10�6 1.85889 1.87618 1:6	 10�5 2.45282 2.44829

5	 10�6 1.94373 1.95447 1:8	 10�5 2.51128 2.5066

6	 10�6 2.01591 2.02037 2:0	 10�5 2.56476 2.55936

7	 10�6 2.07903 2.08139 2:5	 10�5 2.68182 2.67566

8	 10�6 2.1353 2.13753 3:0	 10�5 2.78141 2.77482

9	 10�6 2.1862 2.18478 5:0	 10�5 3.0806 3.07293
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is a considerable and perhaps surprising result, since for the
first value in Table I (t10 ¼ 1	 10�6), we have

!0tcontr
2�

’ 2;

so that the condition (3.2) is actually barely fulfilled, and yet
the analytical estimates work more than sufficiently well.

In general, the accuracy of our analytical estimate
should increase with increasing !0tcontr, as the adiabatic
approximation is more and more accurate. Instead, the
relative errors seem to tend asymptotically (mind the loga-
rithmic scale) to a fixed, though quite small, value 0.2%,
for which we have not found an explanation; possibly, this
feature could be due to numerical computation issues.
Anyway, the accuracy of our analytical estimates is good
enough for all practical purposes.

One could argue that we should have displayed results
for longer tcontr and perhaps larger %0, which are physically
more realistic. Unfortunately, exploring that range of para-
meters is almost prohibitive from a computational stand-
point, due to the huge number of oscillations occurring
until t reaches tsing. Using Eqs. (2.14) and (3.28) and

assuming for simplicity tsing=tcontr > 1, we obtain in fact

Nosc ’
Z tsing

t0

!dt / ð%nþ1
29 t10Þ5nþ5

3nþ1; (3.29)

so even a small increase in %29 and/or t10, especially for
large n, can lead to an enormous increase in the time
required for computations.

Nevertheless, we have no reason to believe that the
satisfactory agreement of our estimates and numerical
results would not hold in the case of more realistic values
of parameters.

IV. SLOW-ROLL REGION

Let us relax the assumptions of adiabaticity of Sec. III,
and focus instead on the opposite regime, that is

!tcontr
2�

� 1; (4.1)

corresponding to Eq. (3.3) with inverted inequality sign.
This is a slow-roll regime, in which the initial ‘‘velocity’’
of the field dominates over the acceleration due to the

potential. In first approximation, assuming that _�0 � 0,
which is equivalent to � � 0 in (3.16), we have

�ðtÞ ’ �0 þ _�0t: (4.2)

Notice that _�0 < 0. This behavior, i.e., the fact that � is
roughly linear in t, can also be understood as follows.
Considering Eq. (2.12), we see that neglecting Rþ ~T we
are left with

€� ¼ 0; (4.3)

which has exactly the solution (4.2). This does not mean that
we are precisely sitting on the solution Rþ ~T ¼ 0, because
€�ðRþ ~T ¼ 0Þ � €�a � 0; otherwise, wewould not have any
singularity since R would simply follow the smooth evolu-
tion of ~T. Rather, it means that (4.3) coincides with (2.12) up
to corrections of order Rþ ~T. Since we can estimate

€�� �

t2contr
; (4.4)

and

Rþ ~T ¼ @U

@�
�!2�; (4.5)

we find that
€�

Rþ ~T
� 1

!2t2contr
� 1: (4.6)

This means that (2.12) and (4.3), in this regime, are equal
provided that we neglect terms of order ð!tcontrÞ2; this is a
legitimate approximation when (4.1) holds.
The reader may compare this to the assumptions

of Sec. III, where instead we had neglected terms / t�2
contr.

In that regime, the dominant contribution to €� was oscil-
latory, with

€� adiab �!2�;

because we had !tcontr � 1.

A. Generation of the singularity

With the simple solution (4.2), it is straightforward to
see that � reaches the singularity �sing ¼ 0 at

tsing ’ ��0

_�0

; ~Tsing ’ T0

�
1� �0

_�0tcontr

�
þ 4�: (4.7)

Using the explicit expressions for the models under con-
sideration, we obtain the very simple expression

tsing

tcontr
’ 1þ 4�=T0

ð2nþ 1Þ� ; (4.8a)

or equivalently

~Tsing

~T0

’ 1þ 1

ð2nþ 1Þ� : (4.8b)

1 2 5 10 20 50
106tcontr

0.001

0.002

0.005

0.010

0.020

0.050

0.100

Tsing Tsing

FIG. 5. Relative errors of Table I. The discrepancy between
analytical estimates and exact values decreases as tcontr increases
but tends to a constant value of about 0.2%. The ‘‘cusp’’ at small
errors at t10 ’ 10�5 corresponds to a change in sign of
�Tsing=Tsing. See the text for further details.

LORENZO REVERBERI PHYSICAL REVIEW D 87, 084005 (2013)

084005-8



In Fig. 6, we show the typical behavior of � and R in this
regime, until the singularity.

Basically, we are assuming that the motion of � is com-
pletely dominated by the initial conditions, and that the
acceleration due to the potential is negligible. Of course,
for � ! 0 the approximation loses its validity because the
initial velocity is practically zero, but this is not worrisome
because the most physically sensible choices are those
with � ’ 1. The theoretical estimates of Table II are in

remarkable agreement with the exact numerical values,
and as expected the two results differ significantly only
when � � 1. The relative errors are depicted in Fig. 7.
As expected, errors decrease for increasing values of �,

except for the region � ’ 0:6, which is most likely a
numerical feature and should have no physical meaning.
Nonetheless, the agreement between analytical and nu-
merical values is excellent, especially considering that
the slow-roll condition (4.1) is barely fulfilled, in fact
!0tcontr=2� ’ 0:2. The particular choice of parameters
was motivated by the requirement of a somewhat realistic
value of tcontr, in particular not too small. Taking larger
values of %29 and tuning t10 to have, say,!0tcontr=2�< 1%
yields estimates in outstanding agreement with numerical
calculations, because the approximations (2.4) and (4.1)
are all the more accurate. As an example, consider8>>>>>>>><

>>>>>>>>:

n ¼ 3

� ¼ R29 ¼ 1

%29 ¼ 102 ) !0tcontr
2�

’ 0:2%;

t10 ¼ 10�9

� ¼ 1

(4.9)

which gives the terrific value

�tsing
tsing

’ 3	 10�7: (4.10)

The price to pay, however, is to have unnaturally small
contraction times, for instance tcontr ¼ 10 years in this
case, therefore further similar results were not explicitly
shown. Still, it is good to notice that the mathematical
accuracy of our estimates improves as expected.

V. REMARKS ON THE VALIDITY OF THE
APPROXIMATIONS USED

A. Low gravity: g�� ’ ���

At the beginning of Sec. II, we made the substitution

D2 ! h ! @2t ; (5.1)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t tcontr

1.5

2.0

2.5

3.0
R R0

0.05 0.10 0.15 0.20 0.25 0.30
t tcontr

0.2

0.4

0.6

0.8

1.0
0

FIG. 6. Numerical results for parameters: n ¼ 3, � ¼ R29 ¼ 1,
%29 ¼ 30, t10 ¼ 1	 10�5, � ¼ 0:5. Initially, !0tcontr=2� ’ 0:2,
so the condition (4.1) is narrowly fulfilled. Top Panel: only a
portion of R=R0 (which diverges) is shown, in order to have a
comparison with ~T= ~T0 (thin, solid line); the singularity is
reached at tsing=tcontr ’ 0:3 (dashed vertical line; see Table II).

Initially, the slope of R=R0 is different from that of ~T= ~T0 because
� � 1. Bottom Panel: � does not follow �a (gray line) at all, but
rather decreases roughly linearly with time, in qualitative agree-
ment with (4.2).

TABLE II. The parameters used are n ¼ 3, � ¼ R29 ¼ 1,
%29 ¼ 30, t10 ¼ 1	 10�5.

tsing=tcontr tsing=tcontr
� Equation (4.8) Exact � Equation (4.8) Exact

0.1 1.52381 0.73706 1.1 0.138528 0.13899

0.2 0.761905 0.592958 1.2 0.126984 0.127378

0.3 0.507937 0.466093 1.3 0.117216 0.117551

0.4 0.380952 0.370184 1.4 0.108844 0.109129

0.5 0.304762 0.302237 1.5 0.101587 0.101831

0.6 0.253968 0.253789 1.6 0.0952381 0.0954476

0.7 0.217687 0.218171 1.7 0.0896359 0.0898169

0.8 0.190476 0.191103 1.8 0.0846561 0.0848133

0.9 0.169312 0.169917 1.9 0.0802005 0.0803378

1.0 0.152381 0.152918 2.0 0.0761905 0.076311

1.000.500.20 2.000.300.15 1.500.70

0.001

0.005

0.010

0.050

0.100

0.500

1.000

tsing tsing

FIG. 7. Relative errors of Table II. Noticeably, only for very
small values of �, say less than a few percent, there is an
appreciable difference between our estimate and the exact result.
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assuming the homogeneity of the cloud and low gravity.
The latter approximation is usually quite reasonable for
astronomical densities, except for compact stars. However,
one may be argue that if R ! 1, even with relatively low
%, we are no longer in low-gravity regime, and thus the
approximation fails. In order to show that g�� ’ 
�� and

R ! 1 are compatible, let us assume the simple homoge-
neous, isotropic line element

ds2 ¼ dt2 � ½1þ c ðtÞ�dx2; jc j � 1; (5.2)

with c ðtÞ parametrizing the deviation from Minkowski. In
this case, the scalar curvature is

R ¼ � 3 €c

1þ c
’ �3 €c ; (5.3)

so we have

c ðtsingÞ ’�1

3

Z tsing

t0

dt
Z t

t0

dt0Rðt0Þ ’ 1

3

Z tsing

t0

dt
Z t

t0

dt0 ~Tðt0Þ

’
~T0t

2
sing

6
þ T0t

3
sing

18tcontr
’ 0:28%29t

2
10x

2

�
1þ x

3

�
; (5.4)

where we have expanded R as in Eq. (3.19), neglected �
and defined

x ¼ tsing
tcontr

: (5.5)

Low gravity corresponds, roughly, to having (5.4) smaller
than unity. First, we focus on the case x & 1 and assume
that we are in the fast-roll (adiabatic) regime. Since in this
case we can use Eq. (3.28), the condition x & 1 becomes

0:28%29t
2
10

�n2ð2nþ 1Þ2ð1� �Þ2
�
%29

R29

�
2nþ1

& 23nþ1; (5.6)

so that %29t
2
10 & 1 as well, since %29 � R29. Therefore,

c � %29t
2
10x < 1: (5.7)

If on the other hand x * 1, the condition c & 1 yields
roughly

%29t
2
10x

3 & 10; (5.8)

that is

%9nþ7
29 & 4	 103nþ1 ½�n2ð2nþ 1Þ2ð1� �Þ2R2nþ1

29 �3
t6nþ8
10

:

It is easy to check that for all explicit numerical results
presented in the text, this condition is very well satisfied.
One should also keep in mind that when tsing=tcontr � 1 the

behavior %� t and thus the results of this paper are in any
case expected to be less reliable.

The discussion of the slow-roll regime is even more
straightforward, since x < 1 [see Eqs. (4.1) and (4.8a)] and

%29t
2
10 �!0tcontr

�
R29

%29

�
2nþ1 � 1; (5.9)

so c is safely smaller than unity.

B. Negligible pressure: p � %

Let us now consider the assumption of pressureless dust.
We can combine the trace equation (2.8) with the time-time
component of the modified Einstein equations (2.1) assum-
ing the equation of state p ¼ w%, obtaining8>>><

>>>:
€�þ Rþ 2F ¼ 8�

m2
Pl

ð%� 3pÞ ¼ 8�ð1�3wÞ%
m2

Pl

;�
1� �

3

�
Rtt � f

2 ¼ 8�%
m2

Pl

:
(5.10)

Then, as in GR, the space-space equation is automatically
fulfilled,5 hence,�

1� �

3

�
Rii þ f

2
þ

€�

3
¼ 8�p

m2
Pl

¼ 8�w%

m2
Pl

: (5.11)

This is true for any equation of state w, including of
course the nonrelativistic case w ¼ 0, which corresponds
to assuming

p

%
� 1 ) T

�
� ’ 8�

m2
Pl

%: (5.12)

The mathematical consistency of the Einstein equations is
therefore guaranteed regardless of the assumed equation of
state. Physically, we know from statistical mechanics that
for nonrelativistic particles

p

%
� v2

3c2
; (5.13)

where v is the typical velocity of the dust particles and c is
the speed of light. Given the total mass of the cloudM and
its radius

r ’
�
3M

4�%

�
1=3

; (5.14)

the velocity of the particles at time t should approxi-
mately be

v� j _rj ’ r0

3tcontrð1þ t=tcontrÞ1=3
: (5.15)

Ultimately, this yields

p

%
� 10�9 M2=3

11

t210%
2=3
29 ð1þ t=tcontrÞ8=3

; (5.16)

where

M11 � M

1011M

’ M

2	 1044M11 g
: (5.17)

In basically any conceivable astronomical situation, except
for very massive, rarefied clouds with short, perhaps
unnatural contraction times, this quantity is much smaller
than one, so that p is indeed negligible.

5For simplicity we have also assumed isotropy, that is Rxx ¼
Ryy ¼ Rzz and px ¼ py ¼ pz, but the result can be easily
generalized.
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We should be completely honest and point out that for
the smaller values of tcontr shown in Table I, takingM11 � 1
gives a ratio p=% > 1, which seems to invalidate the initial
assumptions. However, because of the considerations at the
end of Sec. III C, we can disregard these problems provided
that we carefully choose physically realistic parameters.
In other words, some of the values in Table I are unlikely
to describe existing physical systems but are nonetheless
a useful indication of the accuracy of our analytical
estimates.

VI. DISCUSSION AND CONCLUSIONS

The possibility of curvature singularities in DE fðRÞ
gravity models has been confirmed and studied in a rather
simple fashion. The trace of the modified Einstein equa-
tions has been rewritten, under the simplifying assump-
tions of homogeneity, isotropy and low-gravity, as an
oscillator equation for the scalaron field �, which moves
in a potential U depending on the external energy/mass
density and thus on time. In the two models considered
[10,11], the potential is finite in the point corresponding
to the curvature singularity jRj ! 1, that is �sing ¼ 0; the

energy conservation equation associated with � indicates
that the development of the singularity can be triggered by
an increase in the external energy/mass density.

The ratio between the typical contraction time and the
inverse frequency of the scalaron determines two distinct
regimes. In the adiabatic regime the oscillations of � are
very fast compared to relevant variations of U, and such
oscillations are almost harmonic. Performing a linear
analysis, we have estimated the scalaron amplitude and
frequency analytically. The singularity is expected to be
reached when the amplitude of the oscillations of �
exceeds the separation between the ‘‘average’’ value �a,
which corresponds at each instant to the position of the
bottom of the potential, and the singular point �sing. In the

slow-roll regime, the typical oscillation time of the field �
is much longer than the typical contraction time, which
also determines the time scale for significant changes in the
potential. Thus, � is mainly driven by its initial conditions,
and the slope of the potential is not enough to stop the
field from reaching the singular point. This may occur on
relatively short time scales.

In both regimes, our analytical estimates and numerical
results are in remarkable agreement (see Tables I and II,
and Figs. 5 and 7).
In principle, the results of this work could provide

simple methods to constrain and possibly rule out models
[10,11], and most likely the same technique could be
applied to other models already proposed as well as to
more sophisticated evolution laws different from (1.3).
The development of a curvature singularity could reveal
unexpected consequences in a more detailed analysis of
the models, and the mechanisms described herein may
play a highly nontrivial rôle, for instance, for the study of
Jeans-like instabilities and hydrodynamical stellar (non-)
equilibrium [14]. This goes beyond the scope of this paper,
and could be subject of further research.
Two effects could on one hand hinder the development

of singularities, and on the other hand provide additional
methods to constrain models: ultraviolet gravity modif-
ications and gravitational particle production. Ultraviolet
corrections to the gravitational action should start domi-
nating at large R, and set a limit to its growth; in turn, R
would never reach the singularity (for details see e.g.,
Refs. [16,19]). Recently, a few works have investigated
even more general ultraviolet aspects of (modified) gravity;
a fully nonperturbative approach seems to point towards
the altogether absence of singularities in gravity [23].
Gravitational particle production, as is well known, is

universal whenever curvature oscillates and could in prin-
ciple be a detectable source of high-energy cosmic rays
[21]. The backreaction on curvature is a damping of its
oscillations, so this damping may prevent R from reaching
infinity as well. This is particularly important in the adia-
batic regime, where there can be very many oscillations
before � reaches �sing and therefore a large amount of

energy could be released into SM particles. The produced
cosmic rays would carry model-dependent signatures that
could provide us with valuable information to improve the
constraints on the known models and maybe even suggest
new gravitational theories.

ACKNOWLEDGMENTS

The author is grateful to Professor A.D. Dolgov and to
an anonymous referee for useful discussions and criticism.

[1] A. G. Riess et al., Astron. J., 116, 1009 (1998); S.

Perlmutter et al., Nature (London) 391, 51 (1998); B. P.

Schmidt et al., Astrophys. J. 507, 46 (1998); S. Perlmutter

et al., Astrophys. J. 517, 565 (1999); A.G. Riess et al.,

Astrophys. J. 607, 665 (2004).
[2] Y. Fujii, Phys. Rev. D 26, 2580 (1982); B. Ratra and P. J. E.

Peebles, Phys. Rev. D 37, 3406 (1988); R. R. Caldwell,

R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582
(1998); C. Wetterich, Nucl. Phys. B302, 668 (1988).

[3] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[4] B. Whitt, Phys. Lett. 145B, 176 (1984); K. Maeda, Phys.

Rev. D 39, 3159 (1989).
[5] S. Capozziello, S. Carloni, and A. Troisi, Recent Res.

Dev. Astron. Astrophys. 1, 625 (2003); S. Capozziello,

CURVATURE SINGULARITIES FROM GRAVITATIONAL . . . PHYSICAL REVIEW D 87, 084005 (2013)

084005-11

http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1038/34124
http://dx.doi.org/10.1086/306308
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/383612
http://dx.doi.org/10.1103/PhysRevD.26.2580
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1016/0550-3213(88)90193-9
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(84)90332-0
http://dx.doi.org/10.1103/PhysRevD.39.3159
http://dx.doi.org/10.1103/PhysRevD.39.3159


V. F. Cardone, S. Carloni, and A. Troisi, Int. J. Mod. Phys.
D 12, 1969 (2003); S.M. Carroll, V. Duvvuri, M. Trodden,
and M. S. Turner, Phys. Rev. D 70, 043528 (2004).

[6] T. Chiba, Phys. Lett. B 575, 1 (2003).
[7] A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1

(2003).
[8] V. Faraoni, Phys. Rev. D 74, 104017 (2006).
[9] L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa,

Phys. Rev. D 75, 083504 (2007); I. Sawicki and W. Hu,
Phys. Rev. D 75, 127502 (2007).

[10] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[11] A. A. Starobinsky, JETP Lett. 86, 157 (2007).
[12] S. A. Appleby and R.A. Battye, Phys. Lett. B 654, 7

(2007).
[13] A. V. Frolov, Phys. Rev. Lett. 101, 061103 (2008);

T. Kobayashi and K. Maeda, Phys. Rev. D 78, 064019
(2008); I. Thongkool, M. Sami, R. G. Gannouji, and S.
Jhingan, Phys. Rev. D 80, 043523 (2009); I. Thongkool,
M. Sami, and S. Choudhury, Phys. Rev. D 80, 127501
(2009).

[14] E.BabichevandD.Langlois, Phys.Rev.D80, 121501 (2009);
81, 124051 (2010); S. Capozziello, M. De Laurentis,

S. D. Odintsov and A. Stabile, Phys. Rev. D 83, 064004
(2011); S. Capozziello, M. De Laurentis, I. De Martino,
M. Formisano, and S. D. Odintsov, Phys. Rev. D 85,
044022 (2012).

[15] M.D. Seifert, Phys. Rev. D 76, 064002 (2007).
[16] E. V. Arbuzova and A.D. Dolgov, Phys. Lett. B 700, 289

(2011).
[17] K. Bamba, S. Nojiri, and S.D. Odintsov, Phys. Lett. B 698,

451 (2011).
[18] S. A. Appleby and R.A. Battye, J. Cosmol. Astropart.

Phys. 05 (2008) 019.
[19] S. A. Appleby, R. A. Battye, and A.A. Starobinsky,

J. Cosmol. Astropart. Phys. 06 (2010) 005.
[20] E. V. Arbuzova, A.D. Dolgov, and L. Reverberi,

J. Cosmol. Astropart. Phys. 02 (2012) 049.
[21] E. V. Arbuzova, A.D. Dolgov, and L. Reverberi, Eur. Phys.

J. C 72, 2247 (2012); (unpublished).
[22] J. A. R. Cembranos, A. de la Cruz-Dombriz, and B.

Montes Nunez, J. Cosmol. Astropart. Phys. 04 (2012) 021.
[23] T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar,

Phys. Rev. Lett. 108, 031101 (2012); L. Modesto, Phys.
Rev. D 86, 044005 (2012).

LORENZO REVERBERI PHYSICAL REVIEW D 87, 084005 (2013)

084005-12

http://dx.doi.org/10.1142/S0218271803004407
http://dx.doi.org/10.1142/S0218271803004407
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1016/j.physletb.2003.09.033
http://dx.doi.org/10.1016/j.physletb.2003.08.039
http://dx.doi.org/10.1016/j.physletb.2003.08.039
http://dx.doi.org/10.1103/PhysRevD.74.104017
http://dx.doi.org/10.1103/PhysRevD.75.083504
http://dx.doi.org/10.1103/PhysRevD.75.127502
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1134/S0021364007150027
http://dx.doi.org/10.1016/j.physletb.2007.08.037
http://dx.doi.org/10.1016/j.physletb.2007.08.037
http://dx.doi.org/10.1103/PhysRevLett.101.061103
http://dx.doi.org/10.1103/PhysRevD.78.064019
http://dx.doi.org/10.1103/PhysRevD.78.064019
http://dx.doi.org/10.1103/PhysRevD.80.043523
http://dx.doi.org/10.1103/PhysRevD.80.127501
http://dx.doi.org/10.1103/PhysRevD.80.127501
http://dx.doi.org/10.1103/PhysRevD.80.121501
http://dx.doi.org/10.1103/PhysRevD.81.124051
http://dx.doi.org/10.1103/PhysRevD.83.064004
http://dx.doi.org/10.1103/PhysRevD.83.064004
http://dx.doi.org/10.1103/PhysRevD.85.044022
http://dx.doi.org/10.1103/PhysRevD.85.044022
http://dx.doi.org/10.1103/PhysRevD.76.064002
http://dx.doi.org/10.1016/j.physletb.2011.05.030
http://dx.doi.org/10.1016/j.physletb.2011.05.030
http://dx.doi.org/10.1016/j.physletb.2011.03.038
http://dx.doi.org/10.1016/j.physletb.2011.03.038
http://dx.doi.org/10.1088/1475-7516/2008/05/019
http://dx.doi.org/10.1088/1475-7516/2008/05/019
http://dx.doi.org/10.1088/1475-7516/2010/06/005
http://dx.doi.org/10.1088/1475-7516/2012/02/049
http://dx.doi.org/10.1140/epjc/s10052-012-2247-z
http://dx.doi.org/10.1140/epjc/s10052-012-2247-z
http://dx.doi.org/10.1088/1475-7516/2012/04/021
http://dx.doi.org/10.1103/PhysRevLett.108.031101
http://dx.doi.org/10.1103/PhysRevD.86.044005
http://dx.doi.org/10.1103/PhysRevD.86.044005

