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Optimal extraction of information from gravitational-wave observations of binary black-hole coales-

cences requires detailed knowledge of the waveforms. Current approaches for representing waveform

information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes

carrying a few percent of the total power output near merger can supply information critical to

determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multimode

template of merger waveforms is the apparently complicated behavior of some of these modes; instead of

settling down to a simple quasinormal frequency with decaying amplitude, some jmj � ‘ modes show

periodic bumps characteristic of mode mixing. We analyze the strongest of these modes—the anomalous

(3, 2) harmonic mode—measured in a set of binary black-hole merger waveform simulations, and show

that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction

in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of

Kerr black holes. Other causes of mode mixing arising from gauge ambiguities and physical properties

of the quasinormal ringdown modes are also considered and found to be small for the waveforms

studied here.
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I. INTRODUCTION

Since the first successful simulation of black-hole
binaries (BHBs) through late inspiral, merger, and ring-
down in 2005 [1–3], theoretical interest has centered on the
resulting gravitational waveforms. A crucial tool in wave-
form studies has been the analysis of the radiation wave
pattern in spherical harmonic components. This decompo-
sition is useful both in the physical interpretation of the
radiation and in structuring the waveform information
content for the development of approximate analytic or
empirical encodings.

The self-consistency of results for the dominant quad-
rupole waveforms across numerical codes was quickly
established [4,5], enabling rapid study of the basic charac-
teristics of mergers [6–13] Researchers soon began to build
analytic template models compatible with these numerical
results, as well as with the post-Newtonian (PN) at earlier
times, to provide relatively quick waveforms for specified
BHB source masses and spins [14–16]. While expected to
be sufficient for detection of BHB mergers, quadrupole-
only templates will not lock down most of the intrinsic
(masses, spin magnitudes, and spin directions) and extrin-
sic (sky position, phase) BHB system parameters. To gain
an understanding of these parameters requires a richer
template bank, one that includes all of the relevant angular
modes of the signal [17–20].

Working with a spherical harmonic basis of spin-weight
s ¼ �2 [21,22], several studies [23–27] have found that
after the dominant quadrupole ð‘ ¼ 2; m ¼ �2Þ modes,
the next most important modes tend to be the higher

m ¼ �‘ modes: ð3;�3Þ, ð4;�4Þ, etc., though odd-m
modes are sometimes suppressed by symmetry. We have
also seen, however, that certain m< j‘j modes can be
important. Prominent amongst these are the ð2;�1Þ and
ð3;�2Þ modes. Figure 1 shows the radiative power for the
most important modes in the case of the merger of a 4:1
nonspinning BHB. Here we see that the (2, 1) mode
has actually overtaken the (5, 5) mode in importance by
merger time.
A key feature of BHB mergers exposed through the

spherical harmonic decomposition waveform studies is
the rather clean separation of the sometimes complicated
mix of signal frequencies, achieved by angular-mode de-
composition. Even when typical observers would measure
complicated wave shapes combining several frequency
harmonics, these harmonics largely reduce to slowly evolv-
ing sinusoids in each spherical harmonic component
mode. To a very good approximation, this structure holds
consistently through the inspiral, merger, and ringdown
[23,28–30]. This pattern of ‘‘frequency separation’’ is ex-
tremely convenient in allowing relatively simple encodings
of the waveform information in analytic models.
Partly because of these properties, angular-mode de-

composition has become a standard approach to comparing
waveform simulations with each other, with analytic post-
Newtonian calculations and with developing empirical
waveform template models. These uses of the decomposi-
tion technique have elevated its significance from its be-
ginning as an interpretive convenience to its current status
as an essential component of how we quantitatively under-
stand gravitational-wave signals. Thus we must be aware
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of the possibility that artifacts of arbitrary choices in the
details of the decomposition procedure may interfere
with our quantitative understanding of the waveforms
themselves.

Such concerns are particularly notable when we see
unusual features in the decomposed waveforms seeming
to violate the a posteriori expectation of clean separation of
frequencies. Several authors [7,25–27,31] have noted that
the (3, 2) mode, in particular, typically seems to break from
this simple pattern, showing unusual postmerger features
that require investigation and resolution before a useful
model can be developed. In some of the earliest merger
simulations, Buonanno et al. [7] already noted the presence
in the postmerger ‘‘ringdown’’ (3, 2) mode of both (3, 2)
and (2, 2) quasinormal-mode (QNM) frequencies.

Existing multiple-mode template banks for low-
eccentricity coalescences generally assume a monotonic
increase in frequency and a simple single-peaked corre-
sponding amplitude for each mode. Although the (3, 2)
mode is generically much weaker than the first few ‘ ¼ m
modes, if such template models are applied to it naı̈vely,
they may suffer significant biases in their fitting parame-
ters. How serious the effect might be on parameter-
estimation studies using these template banks is unknown
at the time of this writing.

In this paper, we investigate these (3, 2)-mode anoma-
lies, with a survey of 3D numerical simulations of the
merger of various comparable-mass BHBs with nonpre-
cessing spins, exploring a range of possible ‘‘causes.’’ We
find that the dominant part of the measured mode mixing
that underlies the anomalous effect can be attributed to our
use of spherical harmonics rather than the spheroidal har-
monics expected by Teukolsky perturbation theory.

The remainder of this paper is laid out as follows. In
Sec. II, we review the numerical evidence for mode mixing
in existing (3, 2) evolutions and show how well it is
captured by a simple two-mode phenomenological model

for the ringdown waveform segment. In Sec. III, we discuss
general models for why mode mixing should be expected,
including effects of coordinate distortions in the radiation
extraction spheres, and of ill-adapted harmonic basis func-
tions in the radiation decomposition. In Sec. IV, we intro-
duce our set of expanded numerical evolutions, arranged
into ‘‘equivalence classes’’ of common end-state Kerr
spins, which we analyze in Sec. V, fitting the measured
contributions of two-mode models to our models. We
conclude in Sec. VI with discussion on the application of
these results to more general late-merger-ringdown mod-
els, such as the ‘‘implicit rotating source’’ model of
Refs. [25,26]. We present a detailed description of our
selection of equivalence classes of binaries in Appendix B.

II. BUMPS IN NUMERICAL (3, 2) MODES

The first gravitational waveforms extracted from nu-
merical simulations were the dominant ð2;�2Þ modes,
whose early-inspiral behavior was expected to match the
quadrupole radiation predicted by quasi-Newtonian and
post-Newtonian theory. Once these had been shown to be
robust and universal across codes [4,5], some groups
turned their attention to the subdominant modes.
Analyzing the subdominant modes of equal-mass binaries,
Buonanno et al. [7] reported that an accurate fit of the (3, 2)
mode for the ringdown stage of effective-one-body wave-
forms requires the addition of the fundamental (2, 2)
quasinormal frequency. When Baker et al. [25] looked at
a set of mergers of nonspinning black-hole binaries with
mass ratios in the range 1:1 to 6:1, they noted that one of
the leading subdominant modes, (3, 2), showed an unusual
bumpiness just after merger over a range of parameter
space. This bumpiness manifested in both the frequency
and amplitude, and appeared to persist with both increased
resolution and extraction radius, thus constituting a robust
pattern of excursions from the frequency separation domi-
nating the ‘ ¼ m modes. More recent work by Kelly et al.
[26] shows the same anomaly in equal-mass binaries with
nonprecessing spins (i.e., the spins are aligned/antialigned
with the orbital angular momentum).
Examples of these more complicated waveform features

are shown in Fig. 2, where we plot waveform frequency
(top panel) and amplitude (bottom panel) of the measured
(3, 2) mode for the merger of a nonspinning 4:1 binary, as
well as for the mergers of several other BH configurations
with the same final dimensionless spin (�f � 0:475). We
also mark the expected real QNM (2, 2) and (3, 2) frequen-
cies, !22 and !32 for a Kerr black hole of this spin. From
the time of peak amplitude (t ¼ 0 here) until the wave-
forms start to degrade around 60M later, the frequency
seems to oscillate around one or the other of these two
QNM frequencies, rather than locking onto the higher!32,
as for other modes. These oscillations appear in the strain h
and its time derivatives; we choose to study strain-rate,
_hðtÞ, waveforms, which we decompose into modes
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FIG. 1 (color online). Gravitational-wave luminosity from the
merger and ringdown of a nonspinning black-hole binary of mass
ratio 4:1, decomposed by harmonic mode.
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_hð‘;mÞðtÞ ¼ j _hð‘;mÞj exp ði’ð‘;mÞÞ, with instantaneous

frequencies _’ð‘;mÞ.
We can model the more complicated ringdown wave-

form features by expressing the (2, 2) mode as a pure QNM
ringdown and the measured (3, 2) mode as a linear combi-
nation of QNM ringdowns:

_h model
ð2;2Þ ¼ A22e

ið�22tþ�22Þ; (1)

_hmodel
ð3;2Þ ¼ A32e

ið�32tþ�32Þ þ �32A22e
ið�22tþ�22Þ: (2)

Here �‘m � !‘m þ i=�‘m is the full complex QNM fre-
quency, and �32 � �0 exp ði�Þ is a constant complex-
valued parameter indicating the mixing of the (2, 2)
QNM mode into the measured (3, 2) mode. The modeled
(3, 2) mode frequency and amplitude are then

_’ model
ð3;2Þ ðtÞ ¼ !32 þ "ðtÞ2�R

FðtÞ
� "ðtÞ½�R cos ð�Rtþ �Þ þ �I sin ð�Rtþ �Þ�

FðtÞ ;

(3)

j _hmodel
ð3;2Þ ðtÞj ¼ A32e

�t=�32
ffiffiffiffiffiffiffiffiffi
FðtÞ

p
; (4)

where FðtÞ � 1þ 2"ðtÞ cos ð�Rtþ �Þ þ "ðtÞ2, �R �
!32 �!22, �I ¼ 1=�32 � 1=�22, "ðtÞ � �0A22=A32�
exp ð�ItÞ � "0 exp ð�ItÞ, and � � �32 � �22 � � .
For a given mass and spin, the QNM frequencies, !22

and !32, and the damping times, �22 and �32, are values
known from black-hole perturbation theory. Typically,
�22 � �32, so that �I is somewhat smaller than �R, allow-
ing a beatlike effect to persist over several cycles. Fixing
these leaves just two free parameters for the frequency:
"0 � �0A22=A32, the initial ratio of contributing ampli-
tudes, and �, the initial phase difference, as well as one
more amplitude parameter, A32.
Evidently, the characteristic shape of the modeled (3, 2)

mode frequency plots will depend on the relative magni-
tude of the modal contributions: for "0 � 1, the frequency
will oscillate (approximately) sinusoidally about !32; for
"0 � 1, the oscillation will be about !22; for intermediate
values, the oscillatory shape will be more complex. In the
left panel of Fig. 3, we demonstrate these shapes for a Kerr
hole of spin �f ¼ 0:475, the same 4:1 end-state spin as in
Fig. 2. Similarly, the right panel shows the corresponding
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FIG. 2 (color online). Postmerger frequency (top panel) and
amplitude (bottom panel) of the numerically measured (3, 2)
mode for a set of ‘‘4:1-equivalent’’ evolutions, resulting in a final
black hole with dimensionless spin �f � 0:475, matching that of
a 4:1 nonspinning binary merger. The data sets have been shifted
in time so that t ¼ 0 corresponds to the peak amplitude of the
dominant (2, 2) mode. The two dashed (black) horizontal lines in
the top panel mark the fundamental QNM frequencies !22

(lower) and !32 (higher) for a Kerr hole of the same final spin.
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FIG. 3 (color online). Possible shapes from Eqs. (3) and (4) for
the modeled (3, 2) mode frequency (top panel) and amplitude
(bottom panel) resulting from a merger with an �f ¼ 0:475
endpoint. All curves assume zero phase difference �, and overall
amplitude is arbitrarily scaled to unity at t ¼ 0. As with Fig. 2,
the two dashed (black) horizontal lines in the top panel mark the
fundamental QNM frequencies !22 (lower) and !32 (higher) for
a Kerr hole of the same final spin.
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modal amplitude shape for the same end-state hole. Again,
the most extreme bumps in amplitude occur when the (2, 2)
and (3, 2) modes have comparable amplitude contributions
("0 	 1). These theoretical curves should be compared
with the numerically measured mixing in Fig. 2.

III. POSSIBLE CAUSES OF MODE MIXING

The bumpy features seen in the measured (3, 2) mode
are a clear exception to the general rule that each angular
mode encodes sinusoidal waves with just one slowly evolv-
ing frequency component, the phenomenon we refer to
as frequency separation. In Fig. 3, we showed that a
combination of the fundamental (3, 2) and (2, 2)
quasinormal-mode frequencies produces similar features.
More generally, there are indications that such mixing
occurs among other modes, especially other higher-order
m ¼ 2 modes, which likewise seem prone to coupling to
the dominant mode. Here we ask the basic question, is this
mode mixing a fundamental property of the radiation, or
some kind of an artifact, and if so, what kind?

We consider various hypotheses to explain this mode
mixing effect violating our empirical frequency separation
rule. The first, which we label ‘‘physical mixing,’’ is sim-
ply that the frequency separation rule does not physically
hold to sufficiently high precision; that is we are perhaps
seeing a nonlinear effect in the radiation-generation pro-
cess underlying the (3, 2) mode. Under this assumption, no
choice of fixed or slowly evolving angular basis could be
expected to yield the kind of frequency separation we see
in other cases. Near the merger where nonlinear physics is
dominant, it is difficult to make any strong argument for
expecting frequency separation. Indeed, we would be
surprised to not find violations of this assumption as we
probe beyond the first few orders of magnitude in wave-
form precision.

In the linear ringdown dynamics where this investigation
is focused, some degree of physical frequency separation
can be expected, based on the separability of the Teukolsky
equation, which describes small distortions of a stationary
black-hole spacetime. The scale of physical linear mode
mixing can be quantified by careful consideration of qua-
sinormal modes.

The alternative hypothesis is that the mixing is an arti-
fact of our analysis, arising from choices that we make in
setting up the angular mode decomposition. Perhaps our
basis is not quite optimal, but we can find some other basis
in which we more precisely recover frequency separation.
Indeed, given the freedom available in selecting such a
representation, we have little grounds for supposing that
our first guess would be optimal. Here we consider two
classes of choices in how to represent the space of gravi-
tational radiation waveforms, which, in the full sense, has
angular and retarded-time dimensions.

The first choice we make is in how we define the spheres
on which angular harmonic decomposition will be

conducted. Within the structure of asymptotically flat
spacetimes, gauge freedom in the choice of constant-
retarded-time spheres can yield a frequency-dependent
mode mixing effect in the decomposed waveforms. This
ambiguity arises from the freedom to reparametrize the
proper-time coordinate, the so-called ‘‘supertranslations’’
subgroup of the Bondi-Metzner-Sachs gauge group
for outgoing radiation. We describe this possibility of
‘‘supertranslation gauge mixing’’ in more detail below.
We may generally expect that mode mixing of this sort
will be most evident in the late merger, where wavelengths
are shortest.
The next choice we make is in choosing the family of

angular-basis functions on the extraction spheres. In this
case, the mixing arises if our chosen family of modal basis
functions used for radiation extraction differs from the
optimal one in which frequency separation is best approxi-
mated. It is common to apply a spin-weighted spherical-
harmonic basis, but a different choice may be motivated for
the ringdown signals. Indeed, the separation of the
Teukolsky equation is not achieved in a spin-weighted
spherical harmonic basis, but in a spin-weighted
spheroidal-harmonic basis. It has been suggested [7,23]
that this difference explains the sort of waveform phe-
nomena we consider, though this has not been demon-
strated. We label this effect ‘‘angular-basis mixing.’’
In the next subsections, we consider these possible

mixing effects in detail, preparing for a quantitative study
of the evidence for these effects in numerical data in Sec. V.

A. Gauge effects

To understand the effect we are calling supertranslation
gauge mixing, we must make a brief detour to describe the
gauge freedom in the representation of an outgoing radia-
tion field approaching future null infinity in an asymptoti-
cally flat spacetime. Consider such a spacetime in standard
retarded-time coordinates fu; r; �;�g. Scaled by r, the out-
going radiation field propagates outward on null rays
labeled by u, �, and �. Each polarization component can
thus be described by a function of these variables. The
Bondi-Metzner-Sachs (BMS) [32,33] group describes
gauge transformations among these variables of the form

�0 ¼ �0ð�;�Þ; �0 ¼ �0ð�;�Þ;
u0 ¼ Kð�;�Þðu� �ð�;�ÞÞ;

where ð�;�Þ ! ð�0; �0Þ is a conformal transformation on a
constant-u sphere with conformal factor K.
For concreteness in the context of numerical relativity

simulations, we note that it is common to make these gauge
choices by specifying an ‘‘extraction sphere’’ located suf-
ficiently far from the source where radiation field calcu-
lations are realized. The effect of one class of BMS
transformations, amounting to rotations of the extraction
sphere, has been identified as an important concern when
the choice of axis is not fixed by symmetry [34–39].
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However, the simulations in this study involve nonprecess-
ing mergers, with no ambiguity in defining the orientation
of the extraction sphere.

But what happens if we make a small radial perturbation
of the extraction sphere? It is clear that sufficiently small
distortions of larger extraction spheres would have negli-
gible impact on the intrinsic geometry of the sphere. The
gauge effects of such distortions are described by a subset
of the BMS transformations, known as supertranslations,
with �0 ¼ �, �0 ¼ �, and K ¼ 1.

Now consider the effect of a supertranslation on a gravi-
tational waveform c ðu; �;�Þ. Here we will make the addi-
tional assumption that �ð�;�Þ is sufficiently small that we
can approximate the effect of the supertranslation by

c ðu0; �; �Þ � c ðu; �;�Þ þ �ð�;�Þ @

@u
c ðu; �;�Þ; (5)

and we can expand the supertranslation in terms of (scalar)
spherical harmonics:

�ð�;�Þ ¼ X
LM

bLM0Y
M
L ð�;�Þ: (6)

Then from (5), the measured radiation modes will be
perturbed as follows:

c ‘mðu0Þ � c ‘mðuÞ þ
X
‘0m0

C‘m‘0m0
@

@u
c ‘0m0 ðuÞ; (7)

where

C‘m‘0m0 ¼ X
LM

bLM
I

0Y
M
L �2Y

m0
‘0 �2Y

m

‘ d�

¼ X
LM

bLM

�ð2Lþ 1Þð2‘0 þ 1Þ
4	ð2‘þ 1Þ

�
1=2

� hL; 0; ‘0; 2j‘; 2ihL;M; ‘0; m0j‘;mi: (8)

In this paper we focus on mixing from the dominant
mode, (‘0 ¼ 2, m0 ¼ 2), with another m ¼ 2 mode, fixing
these values. For these cases the Clebsch-Gordan selection
rules require that M ¼ 0 and ‘� 2 � L � ‘þ 2. Then
our mixing coefficient takes the form

C‘222 ¼
X
L

bL0

�
5ð2Lþ 1Þ
4	ð2‘þ 1Þ

�
1=2hL; 0; 2; 2j‘; 2i2: (9)

For example, complete expansions for ‘ ¼ 3 and ‘ ¼ 4
would yield

C3222 ¼
ffiffiffiffiffiffiffi
5

7	

s
1

132
ð22 ffiffiffi

3
p

b10 þ 33
ffiffiffi
5

p
b20 þ 22

ffiffiffi
7

p
b30

þ 22b40 þ
ffiffiffiffiffiffi
11

p
b50Þ;

C4222 ¼
ffiffiffiffi
5

	

s
1

4004
ð143 ffiffiffi

5
p

b20 þ 286
ffiffiffi
7

p
b30 þ 702b40

þ 91
ffiffiffiffiffiffi
11

p
b50 þ 14

ffiffiffiffiffiffi
13

p
b60Þ:

The shape of the distorted extraction sphere is deter-
mined by the coefficients bL0: for real �, we need the bL0
also to be real. The reality of the Clebsch-Gordan coeffi-
cients then implies that C‘222 is also real.
The other ingredient in the waveform-mode perturbation

(7) is the derivative with respect to u on the right-hand side:

@uc ‘0m0 ðuÞ ¼ @uðAðuÞei’ðuÞÞ ¼
� _A

A
þ i _’

�
c ‘0m0 ðuÞ:

After merger, the effective coefficient ð _A=Aþ i _’Þ will
asymptote to a constant complex number:� _A

A
þ i _’

�
! � 1

�‘0m0
þ i!‘0m0 ¼ i�‘0m0 :

This implies a simple, QNM-driven leakage from the (2, 2)
mode into higher-‘ modes. Collecting terms, and working

with the strain-rate _h, during ringdown we have

_h
gauge
ð‘;2Þ � _hð‘;2Þ þ iC‘222�22

_hð2;2Þ ¼ _hð‘;2Þ þ �gauge;‘2
_hð2;2Þ:

(10)

In Fig. 4, we show the real and complex parts of the
leakage parameters �gauge;32 and �gauge;42 for the sweep of

end-state spins �f , assuming an unchanging scaling
b20 ¼ 1 (and all other bL0 ¼ 0). The value of b20 is not
physical, but gauge, and may differ between any two
waveform determinations. The most important property
we note is that the BMS leakage coefficients are nearly
pure imaginary at any fixed b20 and any spin �f .

B. Angular-basis effects

Another possible path to mixing arises from considering
what quasinormal-mode frequencies actually represent.
QNMs were originally discovered in numerical black-
hole scattering studies [40,41] and eventually understood
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FIG. 4 (color online). Real and imaginary parts of �gauge;32 and
�gauge;42 (for b20 ¼ 1) for postmerger Kerr BHs of dimensionless

spin �f [and corresponding fundamental (2, 2) QNM frequency
Mf�22].
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as a key feature of the perturbation theory of Kerr black
holes [42]. In developing this theory, Teukolsky worked
with a background Kerr black hole in a very specific
coordinate system due to Boyer and Lindquist [43].1

A perturbed Kerr black hole will ring down to quiescence
through the emission of gravitational waves. These waves
will have characteristic frequencies !‘m and damping times
�‘m given by the hole’s QNM spectrum.2 While the primary
aim of QNM analysis is to determine the set of allowed
complex frequencies �‘m � !‘m þ i=�‘m, these frequen-
cies are tied to the radial and angular eigenfunctions arising
from the separation of the perturbation equations. These
angular eigenfunctions are the spin-weighted spheroidal
harmonics, �2Y

m
‘ ðM��; �;�Þ � �2S

m
‘ ðM��; cos�Þeim�.3

Numerical waveform extraction from binary mergers, on
the other hand, typically decomposes the waveforms onto
the more generally motivated basis of spin-weighted
spherical harmonics �2Y

m
‘ ð�;�Þ, which correspond to a

spheroidal harmonic basis with M�� ¼ 0: �2Y
m
‘ ð�;�Þ �

�2Y
m
‘ ð0; �;�Þ [42]. Buonanno et al. [7] demonstrated that

using a spherical harmonic basis will necessarily result in
mixing of ð‘;mÞ and ð‘0; mÞ quasinormal modes. Without an
obvious nontrivial choice forM�� that applies at all times,
for all modes, over the course of the evolving simulation,
decomposing with M�� ! 0 seems a natural choice. Here
we consider an alternative choice, M�� ! Mf�f�22, hop-
ing to limit much of the mode mixing. Using this basis
requires knowing the final Kerr state ðMf ; �fÞ of the merger
before the decomposition can be applied, and the additional
task of numerically computing the basis functions (see
Appendix A). Still this basis is not optimal for the subdo-
minant modes. This unavoidable suboptimality is discussed
further in the next subsection. The distinction between the
spheroidal and spherical harmonics may be expected to yield
the appearance of mode mixing in the numerical waveform
results even if we have eliminated the gauge freedom noted
in the last section by optimal correspondence with a suitably
perturbed Boyer-Lindquist coordinate system.

To estimate the apparent mode mixing from this basis
mismatch, we can calculate the overlaps between the
spheroidal harmonics (for a particular M��) and the
spherical harmonics. That is, we want to know the coef-
ficients s‘0‘m in

�2Y
m
‘ ðM��; �;�Þ ¼ X1

‘0¼2

s‘0‘m�2Y
m
‘0 ð�;�Þ: (11)

We describe our calculation of the �2Y
m
‘ in Appendix A.

To determine the overlaps s‘0‘m, we decompose the

properly normalized spheroidal harmonic against the
spherical harmonics in the usual way:

s‘0‘m ¼
I

d��2Y
m
‘ ðMf�f�22; �;�Þ�2Y

m
‘0 ð�;�Þ


¼
Z 1

�1
dx�2S

m
‘ ðMf�f�22; xÞ�2S

m
‘0 ð0; xÞ
:

Now consider the idealized case where a physical ring-
down signal is the simple combination of the fundamental
(2, 2), (3, 2), and (4, 2) quasinormal modes (we omitM��
arguments for brevity):

_hðt; r; �; �Þ ¼ X4
‘

H ‘2ðt; rÞ�2Y
2
‘ð�;�Þ

� X4
‘0

_h‘02ðt; rÞ�2Y
2
‘0 ð�;�Þ: (12)

If we make the reasonable assumption that mixing ‘ � ‘0
products can be ignored for subdominant modes, then
the measured spherical harmonic ringdown modes are
approximately

_hbasisð20;2Þðt; rÞ � s2022H 22ðt; rÞ;
_hbasisð‘0;2Þðt; rÞ � s‘0‘2H ‘2ðt; rÞ þ �basis;‘2

_h202ðt; rÞ:
(13)

Here, the mixing coefficients are

�basis;‘2 � s‘022
s2022

: (14)

In Fig. 5, we plot the coefficients �basis;32 and �basis;42,

evaluated at M�� ¼ Mf�f�22, where �22 is the funda-
mental QNM frequency of the (2, 2) mode for a Kerr hole
of mass Mf and dimensionless spin �f . Note that (a) there
is no ambiguity in overall scale for these coefficients
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FIG. 5 (color online). Real and imaginary parts of the mixing
coefficients �basis;32 and �basis;42 for postmerger Kerr BHs of

dimensionless spin �f [and corresponding fundamental (2, 2)
QNM frequency Mf�22]. At the zero-spin limit �f ! 0, the
leakage vanishes.

1Teukolsky theory can be reformulated on other backgrounds;
see, e.g., [44].

2We omit the principal quantum number n, assuming that we
are dealing with the slowest-damped fundamental (n ¼ 0) QNM.

3Here we use the symbol � to denote a generic complex
frequency. �‘m is a specific eigenvalue of the Kerr background.
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(unlike the BMS-derived coefficients of the last section),
and (b) they are strongly real-dominated.

We note here another manifestation of angular-basis
mode mixing demonstrated by Nuñez et al. [45]. Those
authors recast the Kerr perturbative problem using horizon-
penetrating coordinates and with a novel (non-Kinnersley)
null tetrad. On this background, they were able to show that
the angular eigenfunctions are the (spin-weighted) spheri-
cal harmonics. However, the time evolution of the radial
mode functions for ð‘;mÞ now involves the mode functions
for terms ð‘� 1; mÞ and ð‘� 2; mÞ.

C. Physical mixing

The discussion above exposes artifacts that arise from
waveform decomposition using ordinary spin-weighted
spherical harmonic functions. Here we ask whether, even
with extraction spheres in the Boyer-Lindquist gauge,
another decomposition using spin-weighted spheroidal
harmonic functions can avoid mode mixing.

The question is nontrivial. Although each leading-order
quasinormal ringdown mode exhibits angular dependence
described by some kind of spin-weighted spherical har-
monic angular function, they are not mutually given by the
same kind of spin-weighted spherical harmonic angular
functions, since each has its own distinct quasinormal
frequency �‘m, and consequently a distinct preferred basis
as labeled by M�� ¼ Mf�f�‘m. We must choose some
particular orthonormal basis for the decomposition, and
that basis cannot be simultaneously optimal for each mode.

That the spheroidal harmonics associated with different
QNM frequencies are not perfectly orthogonal has been
demonstrated for high-spin Kerr holes by Berti et al. [46].
To quantify this for a general end-state spin �f , we define
new overlaps t‘0‘ between spheroidal harmonics associated
with different m ¼ 2 QNM frequencies:

t‘0‘ ¼
I

d��2Y
2
‘ðMf�f�‘2Þ�2Y

2
‘ðMf�f�‘02Þ
: (15)

The upper panel of Fig. 6 shows the magnitude of these
overlaps for ‘ ¼ 2 and several values of ‘0, while the lower
panel shows the same for ‘ ¼ 3. From these plots, we see
that the spheroidal harmonics for different M�� are not
orthogonal but show mixing by as much as � 4% for high
spins (though the maximum overlaps occur at submaximal
spins, as noted by [46]). The overlaps are also greatest for
‘‘nearest neighbor’’ modes: ‘ ¼ ‘0 � 1. For example, if we
decomposed a waveform, including a nontrivial (2, 2)
QNM, in the spheroidal basis corresponding to the (3, 2)
mode ringdown frequency, then the corresponding curve in
Fig. 6 would represent a mixing coefficient analogous to
those in the previous subsections. There is no choice of
orthonormal basis that will avoid all such mode mixing. In
this sense, the angular nonorthogonality of the quasinormal
mode implies a form of physical mode mixing, meaning
that we can not perfectly isolate the QNM frequencies by
any choice of angular basis.

Fortunately it seems that the most evident mixing in-
volves the dominant (2, 2) mode frequency bleeding into
higher-‘ modes. With that assumption we may still elimi-
nate most physical mixing by choosing the basis compatible
with this dominant quasinormal mode. If we decompose
with the basis labeled by M�� ¼ Mf�f�22 then the
orthogonality of this particular basis will completely prevent
the (2, 2) quasinormal mode from mixing into any other
decomposed modal waveform component. In this way we
can eliminate any ‘‘physical mixing’’ of the particular form
described in Sec. II. Mixing among subdominant modes, or
mixing of subdominant modes into the decomposed (2, 2)
waveform component, will still occur at some level, but this
is a smaller effect, which we do not focus on in this paper.

IV. SIMULATIONS

To investigate the mixing in a systematic way, we have
surveyed several existing simulations of aligned-spin
binaries, as well as carrying out new short simulations
with the Goddard HAHNDOL evolution code. We choose
our new black-hole binary configurations in several
groups of ‘‘merger-equivalent’’ classes, as described
in Appendix B. The initial parameters for all these
simulations, old and new, are presented in Table I. In
Fig. 7, we show the distribution of these configurations
as plots in the two-dimensional configuration-spaces
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f�1; �2g and f�1; qg, where q � M1=M2 > 1 is the mass
ratio, and �A � SA=M

2
A is the dimensionless spin parame-

ter of hole A, with physical values restricted to �A 2
½�1; 1�. Many of the longer and higher-resolution

evolutions have appeared in previous publications
[25,26]. Since our primary interest here is strictly in the
late-merger regime, newer evolutions begin only a few
orbits before merger.

TABLE I. Physical and numerical parameters of the initial data for all the runs presented.m1;p andm2;p are the bare puncture masses of
the two premerger holes. r0 is the initial coordinate separation, while P0t and P0r are the initial transverse and radial components of the
Bowen-York linear momentum. MADM is the total energy of the initial data, while the total infinite-separation mass of the system is
estimated by the sum of the initial Arnowitt-Deser-Misner (ADM) masses of the individual holes [47]. We have found that for all cases
here, this differs from the sum of apparent-horizon masses (calculated at times between t ¼ 100 and 200), by less than a tenth of a percent.

Run name m1;p m2;p S1z S2z r0 P0t ð�102Þ P0r ð�104Þ MADM

P
iMADM;i

X1_UU 0.301805 0.301805 0.2 0.2 8.20 10.32 0.00 0.988459 1.000804

X1_uu 0.454575 0.454575 0.1 0.1 10.21 9.25 9.17 0.99223 1.002768

X1_00 0.487231 0.487231 0.0 0.0 11.00 9.01 7.09 0.990514 1.000050

X1_UD 0.301805 0.301805 0.2 �0:2 11.00 9.01 7.09 0.990024 0.999222

X1.5_00 0.581359 0.380645 0.0 0.0 7.12 11.75 29.17 0.987252 1.000000

X1.75_00 0.619237 0.345598 0.0 0.0 7.42 11.01 24.10 0.988129 1.000000

X2_00 0.649344 0.314904 0.0 0.0 7.00 11.00 0.00 0.987939 1.000000

X2_DU 0.648662 0.265507 �0:066666667 0.066666667 10.00 8.52 7.63 0.990951 1.000009

X2.5_00 0.699349 0.269501 0.0 0.0 7.40 9.79 20.53 0.989664 1.000000

X3_00 0.738687 0.237505 0.0 0.0 8.88 7.88 8.96 0.991673 1.000000

X4_00 0.790000 0.189000 0.0 0.0 8.47 6.96 0.00 0.992912 1.000310

X5_U0 0.822007 0.157080 0.065083333 0.0 8.68 5.91 4.88 0.993733 1.000000

X3_d0 0.731667 0.237705 �0:087566063 0.0 9.06 7.84 8.76 0.99187 1.000000

X2_D0 0.587677 0.317821 �0:210380889 0.0 8.44 9.93 16.53 0.989967 1.000000

X1_DD 0.390411 0.390411 �0:159125 �0:159125 11.98 8.84 1.20 0.990453 0.998786

X5_00 0.824897 0.157031 0.0 0.0 8.67 5.97 5.85 0.993827 1.000000

X6_00 0.848615 0.133064 0.0 0.0 7.55 5.84 6.94219 0.994008 1.000000

X5_D0 0.822405 0.156318 �0:052232639 0.0 8.09 6.32 7.00085 0.993556 1.000000

X4_D0 0.778549 0.188766 �0:1213184 0.0 8.57 7.04 7.78076 0.992926 1.000000

X3_D0 0.692530 0.237756 �0:21614625 0.0 9.17 7.93 8.80172 0.99219 1.000000

X2_DD 0.531347 0.260245 �0:277766667 �0:069441667 10.72 8.56 7.81844 0.992008 1.000000
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FIG. 7 (color online). Simulated configurations from Table I, represented as points in two-dimensional f�1; �2g space (left) and
f�1; qg space (right). Note that some points are associated with multiple simulations.
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A. Numerics

The initial momenta of the newer evolutions were
chosen by integrating the post-Newtonian equations of
motion, as outlined in [35,48], with spin contributions to
the Hamiltonian adapted from [49–54], and the flux from
[55]. Note that we did not attempt to reduce the eccentric-
ity through tuning the initial momenta.

The new evolutions use the HAHNDOL code paired with
the ‘‘Curie’’ release of the Einstein Toolkit [56], incorpo-
rating the Cactus Computational Toolkit [57] and the
CARPET mesh-refinement driver [58].

In all cases, the initial data are of the standard
Brandt-Brügmann puncture type [59], using the Bowen-
York [60] prescription for extrinsic curvature that exactly
satisfies the momentum constraint. We solve the remaining
Hamiltonian constraint using the TWOPUNCTURES spectral
code [61].

To evolve these initial data, we employ the BSSNOK
3þ 1 decomposition of Einstein’s vacuum equations
[62–64], with the alternative conformal variable W �
e�2� suggested in [65–67], constraint-damping terms sug-
gested in [68], and the dissipation terms suggested in
[69,70]. Our gauge conditions are the specific 1þ log
lapse and Gamma-driver shift described in [71], which
constitute a variant of the now-standard ‘‘moving punctu-
res’’ approach [2,3]. Our spatial derivatives use sixth-
order-accurate differencing stencils, with the exception of
advection derivatives, where we use fifth-order-accurate
mesh-adapted differencing [72]. Our time integration is
performed with a fourth-order Runge-Kutta algorithm.

B. Waveform extraction

We extract the gravitational waveforms from the simula-
tions through the radiative Weyl scalar c 4 [28]. This is
evaluated throughout the grid and interpolated onto a set of
coordinate spheres at extraction radii r 2 ½40M; 90M�. Over
each sphere, the interpolant is integrated against the set of
spin-weighted spherical harmonics �2Y

m
‘ ð�;�Þ, up to ‘ ¼ 5.

In the extraction region, the grid spacing is betweenM=2
and 2M, depending on the central resolution of the simu-
lation. This is generally too coarse to resolve higher-
frequency (and higher-m) modes with accuracy. Even for
the dominant, relatively low-frequency ð2;�2Þ modes,
dissipation effects are visible that spoil the 1=r extrapola-
tion near and after merger. For this reason, we have used an
r-extrapolation scheme that includes an explicit dissipative
term in the amplitude of each mode:

A‘mðrÞ ¼ a�1rþ a0 þ a2r
�2; ’‘mðrÞ ¼ b0 þ b2r

�2:

We have found this extrapolation procedure to be robust
only for the higher-resolution simulations in this paper.

As a result, a waveform-derived quantity f will have
errors due to finite extraction radius and finite resolution.
For this paper, we make a very conservative error estimate
by adding uncertainties linearly:

�f ¼ �rfþ�hf:

For the finite-r error, we assume an uncertainty equal to the
difference between the coefficient from the r-extrapolated
highest-resolution data and that measured from the largest
finite-r data at the same resolution. For finite-resolution error,
we use the difference between the same-extraction-radius
data at the coarse and fine resolutions as our estimate of the
error in the fine-resolution result. For many configurations,
we only have a single resolution available and the r extrapo-
lation is not reliable at this resolution. For these, we adopt a
conservative overall error estimate by taking the average
error from comparable two-resolution configurations4 and
multiply it by 1.5. For amplitudes, this was a relative error,
while for phase measurements, it was the absolute error.

V. ANALYSIS OF WAVEFORMS

Using the ringdown data from all the simulations in
Sec. IV, we performed least-squares fits to the real part of
the strain-rate (2, 2) and (3, 2) waveforms, using the forms of
Eqs. (1) and (2). Our fit is over the window t 2 ½20; 55�,
where t ¼ 0 is the time of the peak (2, 2) mode amplitude. By
starting 20M after peak amplitude, we ensure that we are in
the linear ringdown regime; by stopping at 55M, we avoid the
low-amplitude degradation seen in late-ringdown waveforms.
As the tabulated version of the results would be excessively
long, we present our raw results purely graphically.
We begin by showing the nature of the complex numeri-

cal ‘‘leakage parameter’’ derived from the ratio of fitted
parameters from the measured (2, 2) and (3, 2) modes
during ringdown, using (1) and (2):

�num;32 � �32A22e
ið�22tþ�22Þ

A22e
ið�22tþ�22Þ : (16)

Figure 8 shows the real and imaginary parts of this leakage
for all configurations presented in this paper, as a function
of the dimensionless spin �f of the postmerger hole.

A. Comparing hypotheses

In Sec. III we discussed two possible causes for mode
mixing effects of the form

_h model
ð‘;2Þ ¼ A‘2e

ið�‘2tþ�‘2Þ þ �‘2A22e
ið�22tþ�22Þ; (17)

described in Sec. II. If the mixing is caused by BMS
supertranslation gauge ambiguity, then we would expect
nearly pure imaginary �‘2. On the other hand, if the
mixing derives from the distinction between spheroidal
and spherical harmonic angular functions, then we expect
predominantly real �‘2 of a quantified size. In Fig. 8 we see
that the argument of �num;32 is close to zero, within error

4By ‘‘comparable,’’ we mean configurations that used the
same numerical executable and grid structure and whose
lower-resolution version matched that of the single-resolution
configurations.
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bars for most cases, making �num;32 predominantly real,

consistent with the spheroidal harmonic hypothesis. The
largest deviations from zero are also those with the largest
uncertainties arising from the QNM fit process.

The analysis of Sec. III A suggests that a change of
supertranslation gauge would give rise to mode mixing
coefficients with a numerically significant imaginary part
in the measured waveform. Since the imaginary part of
�num;32 is so small, any supertranslation gauge effects are

negligible at the level of interest here. We can estimate the
degree of gauge constraint implied by a null measurement
of this effect. From the bottom panel of Fig. 8, one sees that
the imaginary component of the mixing coefficient �num;32

is constrained to values within�0:02 in almost all cases. If
we generously assumed that all of this imaginary mixing
was caused by gauge distortion of the extraction sphere, by
comparison with Fig. 4, we would conclude that the am-
plitude of the distortion (b20 specifically) would have to be
smaller than about 0:2M, suggesting a remarkable level of
supertranslation gauge optimality in these simulations.

B. Testing the spheroidal leakage model

We have seen that the numerical results for the
complex argument of �32 are consistent with the
spherical-spheroidal mixing hypothesis, but this hypothe-
sis also makes quantitative predictions for the magnitude

j�32j. In the top panel of Fig. 9, we plot the magnitude of
�num;32 as a function of �f . We overlay these points with

the magnitude of the leakage coefficients �basis;32 (14)

plotted in Fig. 5 (blue solid curve). From the close fit, it
appears that the leakage is in fact dominated by this
spheroidal/spherical harmonic mismatch. That is, even
though the postmerger background coordinate system
should not be expected to closely resemble the Kerr-
Boyer-Lindquist slicing assumed by Teukolsky’s perturba-
tive work, nevertheless, this expected warping is not as
important as our choice of harmonic basis functions.
The bottom panel of Fig. 9 shows the complex amplitude

of the equivalent parameter �num;42 governing the leakage

of the (2, 2) mode into the measured (4, 2) mode. Although
this is also consistent with expectations from angular-basis
mixing (blue solid curve), the relative errors swamp the
numerical data, and higher-resolution numerics will be
needed to establish the relation unambiguously.

C. Finding the residual (3, 2) mode amplitude

If we regard the measured (3, 2) mode as the combination
of a ‘‘true’’ (3, 2) mode A32 exp ið�32tþ �‘2Þ and a piece of
the (2, 2) mode, we may ask whether we can model the
residual (3, 2) contribution. When looking at the entire suite
of simulations, it is difficult to see a distinct pattern in these
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true (3, 2) amplitudes. However, it is instructive to carry out
a particular slice in configuration space.

In Fig. 10, we show a subset of the (3, 2) amplitudes
formed by the mergers of nonspinning binaries, with mass
ratio q � M1=M2 2 f1:0; 6:0g. Error bars in this plot have
been estimated in the same way as for Fig. 9. Clearly the
high-q behavior seems to decay to some constant ampli-
tude, while there is some local minimum around 
 ¼ 0:21
(between q ¼ 2 and q ¼ 2:25), indicating that perhaps at
this mass ratio, the (3, 2) QNM is hardly excited at all.

We also present an empirical fit to this data of the func-
tional form

A32ð
Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� be��=
Þ2 þ c2

q
; (18)

where the parameters take the values a ¼ 0:0147�
0:0002, b ¼ 1:5� 0:1, c ¼ 0:0026� 0:0002, and � ¼
0:98� 0:02. Fits of this form are expected to be useful
for generating merger template waveforms for the subdo-
minant modes.

VI. DISCUSSION

In this paper, we have investigated ‘‘bumps’’ measured
in the merger-ringdown portion of certain gravitational-
radiation angular waveform modes from the numerical
simulation of the coalescence of black-hole binaries.
These bumpy modes appear to contain significant contri-
butions from the dominant (2, 2) mode, indicating some
kind of mode mixing at work.

We have considered three classes of effects that may
contribute to mode mixing in numerically extracted and
decomposed merger-ringdown waveforms. These are
gauge effects, arising from supertranslation gauge freedom
for outgoing radiation in general asymptotically flat space-
times (see Sec. III A); angular-basis effects, relating to a
choice between spin-weighted spherical or quasinormal-
mode-adapted spheroidal harmonic bases (Sec. III B); and

physical quasinormal-mode mixing effects that are inde-
pendent of any representation changes (Sec. III C).
We have identified and analyzed the measured mode

mixing bumps in the most prominent of the bumpy gravi-
tational waveform modes—‘ ¼ 3, m ¼ 2—measured
from a set of numerical evolutions of aligned-spin BHB
mergers. Our analysis has allowed us to distinguish
between the contributions of our three mode mixing
effects. We find that the angular-basis effects dominate.
Although other kinds of effects may be present—like the
frequency-dependent gauge supertranslations discussed in
Sec. III A—they cannot be seen clearly here with the level
of accuracy available from our current simulations.
In this way our analysis further codifies the results from

the ringdown stage of the aligned-spin mergers. This was
originally prompted by our work on a multimode wave-
form model based on the implicit rotating source picture of
black-hole merger [25,26]. In this model, the dominant and
leading subdominant waveform modes from binary merg-
ers were seen to share a common ‘‘rotational phase,’’ with a
corresponding rotational frequency that increased mono-
tonically through inspiral and merger, reaching a plateau
during ringdown. The corresponding mode amplitudes
could be modeled by a simple, few-parameter functional
form that depends on the frequency function, with a single
well-defined peak. Attempting to extend this to the (3, 2)
mode proved problematic, as the measured mode was
no longer monotonic in frequency, or single-peaked in
amplitude.
More broadly, we expect our results to provide guidance

in the ongoing effort of combining results of analytic and
numerical relativity studies toward the goal of a fully
developed family of efficient and accurate black-hole
merger waveforms. Because the comparison of waveform
models is typically conducted mode by mode in decom-
posed form, the issues we have studied may lead to
unnecessarily spurious features in particular waveform
representations.
We estimate, for instance, that supertranslation gauge

changes that would effectively distort the shape of arbi-
trarily large waveform-extraction spheres on scales of
order Mf or smaller would be sufficient to qualitatively
influence the mode mixing features focused on in this
study. The absence of such effects is itself intriguing,
suggesting that we have achieved a nearly optimal choice
of supertranslation gauge. Our near-optimal spheroidal
harmonic basis is consistent with quasinormal-mode dis-
tortions of Kerr space-time in the Boyer-Lindquist coor-
dinate system. That we see negligible supertranslation
mode mixing suggests that the outer regions of our nu-
merical space-times asymptotically approach distorted
Kerr in Boyer-Lindquist coordinates faster (in powers of
1=r) than the asymptotic approach to perturbed Minkowski
spacetime. This seems plausible, based on our choice of
numerical gauge, which approximates maximal time
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FIG. 10 (color online). Corrected amplitude A32 of the (3, 2)
strain-rate mode for nonspinning binaries with mass ratio
q 2 f1:0; 6:0g. The solid (green) curve is a fit to these points
of the functional form (18).
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slicing and ~�i ¼ 0 spatial coordinates. The latter condition
will yield spatially isotropic coordinates where possible.

Nonetheless, it seems that we have been lucky to
stumble onto a near-optimal representation as other incom-
patible gauge choices may also be reasonable in the
numerical simulation context. In continued pursuit of
higher-precision waveform comparisons and higher-
fidelity analytic models (see, e.g., the NR-AR project
[73]), we expect such considerations to grow in signifi-
cance. (They may also be crucial in studies of how the
premerger BHB configuration is encoded in the relative
amplitude of different quasinormal modes during ring-
down; see, e.g., [74].) Similarly we find that physical
mode mixing among the quasinormal modes will prevent
any orthonormal representation from fully separating fre-
quencies at sufficiently high precision.

For simulations similar to ours, where gauge and physi-
cal mixing effects remain small, and the primary source of
mixing involves the (2, 2) mode, our results suggest that
decomposition with a spheroidal harmonic basis
f�2Y

m
‘ ðMf�f�22; �;�Þg may be close to an optimal basis

for achieving modal frequency separation, and thus nearly
beat-free waveforms.

It may be asked whether the conclusions drawn here can
be applied to the premerger waveform signal. We know
that the PN mode amplitudes (see, for instance, Eqs. (4.17)
of [75]) are dominated by the ð2;�2Þ (quadrupole)
spherical harmonic modes, with ð‘ > 2;�2Þ modes enter-
ing at higher PN order. It might be possible, in principle,
to find a ‘‘best possible’’ effective background spin
parameter�eff whose associated spheroidal harmonic basis
would absorb most of these higher-‘ modes; in practice,
however, this would be numerically impractical at any
fixed frequency, and of course, the frequency would
change continuously during inspiral, as (presumably)
would the spin, since the binary is constantly losing angu-
lar momentum.
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APPENDIX A: CALCULATING
SPHEROIDAL HARMONICS

As there are no closed-form solutions for the �2Y
m
‘ , we

must proceed numerically. While setting up the popular
continued-fraction method for computing the QNM
frequencies of a Kerr black hole, Leaver [76] presents
the following power-series expansion for the polar-angle

function �2S
m
‘ ðM��; cos�Þ, due originally to Baber and

Hassé [77] (we specialize here to s ¼ �2):

�2S
m
‘ ðM��; xÞ ¼ eM��xð1þ xÞjmþ2j=2ð1� xÞjm�2j=2

� X1
n¼0

anð1þ xÞn; (A1)

where the expansion coefficients an are determined up to
an overall scaling—the value of a0—by the same recur-
rence relations that yield the QNM frequencies. For our
desired Kerr spin �f , we first determine the (complex)
fundamental QNM frequency of the (2, 2) mode, Mf�22.
Next, assuming a0 ¼ 1, we use the recurrence relations
from [76] to determine the an (in practice, we truncate the
series at n ¼ 14). Requiring that

Z 1

�1
dxj�2S

m
‘ ðMf�f�22; xÞj2 ¼ 1

then fixes a0, supplying the correct normalization of the an.

APPENDIX B: KERR-EQUIVALENT
BLACK-HOLE BINARIES

The endpoint of any merger of BHBs in vacuum is
expected to be a single Kerr black hole, parametrized by
two numbers, the mass Mf and spin angular momentum
~Sf ¼ �fM

2
f . These should satisfy the global conservation

rules

Mf ¼ MADM � Erad; (B1)

~S f ¼ ~JADM � ~Jrad; (B2)

where MADM and ~JADM are the ADM energy and total

angular momentum of the initial data, and Erad and ~Jrad
are the energy and angular momentum emitted in gravita-
tional radiation during the course of the evolution.
Fixing the initial separation of the binary, and taking its

total mass to be M ¼ M1 þM2 (>MADM for any finite
initial separation), and assuming zero eccentricity, the
black-hole binary will have seven free parameters:

fq; ~S1; ~S2g, where q � M1=M2 > 1 is the mass ratio, and
~SA are the spin angular momentum vectors of the two
holes. However, the end state has just two parameters,

fMf ; ~Sfg, so there must be a large degeneracy in the initial
parameters.
Viewing the BHB coalescence as a kind of simple

particle interaction, Boyle et al. [78] used symmetry argu-
ments to restrict the possible end states of the BHB merger.
This is the basis of end-state formulas by Tichy and
Marronetti [79]. Other models have been developed by
Buonanno et al. [80], Lousto et al. [81], Barausse and
Rezzolla [82,83] and others.
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In the case of initially orbit-aligned spins, the initial parameter space is three dimensional: fq; S1; S2g. We use the
simplest applicable formulas for the achieved end state for an aligned-spin system. The end-state mass formula we take
from Eq. (5) of [81]

Mf ¼ 1� 
EISCO � E2

2 � E3


3 � 
2

ð1þ qÞ2 ½ESð�2 þ q2�1Þ þ E�ð1� qÞð�2 � q�1Þ

þ EAð�2 þ q�1Þ2 þ EDð�2 � q�1Þ2�; (B3)

where 
 � M1M2=ðM1 þM2Þ2 ¼ q=ð1þ qÞ2 is the symmetric mass ratio of the binary, and the fitting parameters are

EISCO ¼ 1�
ffiffiffi
8

p
3

þ 0:103803
þ ðqð1þ 2qÞ�1 þ ð2þ qÞ�2Þ
36

ffiffiffi
3

p ð1þ qÞ2 þ 5ðq�1 � �2Þ2
162

ffiffiffi
2

p ð1þ qÞ2 ;

E2 ¼ 0:341; E3 ¼ 0:522; ES ¼ 0:673;

E� ¼ �0:36; EA ¼ �0:014; ED ¼ 0:26:

For the final spin, one model with just enough complexity for our data sets here was given by [82,83]5

�f ¼ ~�þ s4
~�2 þ s5

2 ~�þ t0
~�þ 2

ffiffiffi
3

p

þ t2


2 þ t3

3; (B4)

where ~� � ðq2�1 þ �2Þ=ðq2 þ 1Þ and the coefficients fs4; s5; t0; t2; t3g are

TABLE II. Final mass and spin of the postmerger Kerr BH, as measured by radiation balance (Mf , �f) and as predicted by
phenomenological equations (B3) and (B4) (Mf;RIT,�f;AEI). The final two columns give the percentage relative error between the

measured and predicted values, which never exceeds 1.6% for the mass and 2.1% for the spin.

Run name Mf �f Mf;RIT �f;AEI �Mf (%) ��f (%)

X1_UU 0.9156 0.9053 0.9287 0.9112 1.43 0.65

X1_uu 0.9393 0.8119 0.9391 0.8038 0.03 0.99

X1_00 0.9520 0.6886 0.9497 0.6865 0.24 0.31

X1_UD 0.9505 0.6839 0.9359 0.6865 1.54 0.38

X1.5_00 0.9558 0.6664 0.9534 0.6644 0.25 0.30

X1.75_00 0.9588 0.6475 0.9565 0.6452 0.24 0.35

X2_00 0.9614 0.6254 0.9596 0.6244 0.19 0.17

X2_DU 0.9610 0.6120 0.9559 0.6244 0.54 2.02

X2.5_00 0.9671 0.5833 0.9654 0.5824 0.18 0.16

X3_00 0.9716 0.5432 0.9702 0.5429 0.15 0.07

X4_00 0.9782 0.4780 0.9812 0.4748 0.31 0.68

X5_U0 0.9816 0.4741 0.9773 0.4748 0.44 0.15

X3_d0 0.9737 0.4735 0.9720 0.4760 0.18 0.52

X2_D0 0.9683 0.4704 0.9649 0.4765 0.35 1.31

X1_DD 0.9646 0.4825 0.9674 0.4786 0.30 0.81

X5_00 0.9826 0.4186 0.9821 0.4202 0.06 0.37

X6_00 0.9857 0.3718 0.9854 0.3762 0.02 1.18

X5_D0 0.9834 0.3736 0.9791 0.3762 0.44 0.68

X4_D0 0.9803 0.3728 0.9791 0.3762 0.13 0.91

X3_D0 0.9762 0.3697 0.9739 0.3762 0.23 1.75

X2_DD 0.9718 0.3788 0.9729 0.3762 0.11 0.71

5Note that we have adapted Eq. (4) of [82] to match our convention for q.
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s4 ¼ �0:1229� 0:0075; s5 ¼ 0:4537� 0:1463;

t0 ¼ �2:8904� 0:0359; t2 ¼ �3:5171� 0:1210; t3 ¼ 2:5763� 0:4833:

Using these formulae, we have constructed a set of configurations, which we present in Table I, grouped by final Kerr
spin. Table II measures the discrepancy between the end-state parameters predicted using Eqs. (B3) and (B4) and those
measured by radiation balance using Eqs. (B1) and (B2).
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