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We construct a new class of perturbative extremal charged rotating black hole solutions in five

dimensions in the Einstein-Born-Infeld theory. We start with an extremal five-dimensional Myers-Perry

black hole seed in which the two possible angular momenta have equal magnitude, and add a Born-Infeld

electrical charge, keeping the extremality condition as a constraint. The perturbative parameter is assumed

to be the electric charge q and the perturbations are performed up to fourth order. We also study some

physical properties of these black holes. It is shown that the perturbative parameter q and the Born-Infeld

parameter � modify the values of the physical quantities of the black holes. The solution suggests that the

magnetic moment and gyromagnetic ratio of the black hole spacetime change sign when the

Born-Infeld character of the solution starts to depart strongly from the Maxwell limit. We venture an

interpretation for the effect.

DOI: 10.1103/PhysRevD.87.084002 PACS numbers: 04.50.�h

I. INTRODUCTION

The field of black hole solutions in higher dimensions
was started in 1963 by Tangherlini [1]. After some dis-
cussion of the old problem of the dimensionality of space
he proceeded to find static spherical symmetric solutions
of the d-dimensional Einstein-Maxwell equations, with
d � 4, thus generalizing the Schwarzschild and the
Reissner-Nordström solutions. Tangherlini also included
a cosmological term, finding the corresponding de Sitter
and anti–de Sitter d-dimensional black holes [1].

Since then—with the belief that at a more fundamental
level Einstein’s theory has to be modified and extra dimen-
sions might be crucial in the process—static higher-
dimensional black hole solutions have been devised in
gravitational theories, such as Kaluza-Klein, Gauss-
Bonnet theory and its Lovelock extension, scalar-tensor
gravity, supergravity, and low-energy string theory.
Likewise, there have been attempts to modify Maxwell’s
electromagnetism in order to deal in a more consistent
manner with the point particle problem and its field diver-
gences. An important modification is given by Born-Infeld
nonlinear electrodynamics. Although it became less promi-
nent with the appearance of quantum electrodynamics and
its renormalization scheme, the Born-Infeld theory has
now been appearing repeatedly with the development of
string theory, where the dynamics of D-branes is governed
by a Born-Infeld-type action. It is thus natural to study
higher-dimensional black holes in these extended gravity-
electromagnetic setups.

For the static case, several examples of higher-
dimensional black holes can be given. Black holes in
Lovelock gravity and Maxwell electromagnetism were
studied in Ref. [2]. Black hole solutions in Einstein-
Born-Infeld gravity are less singular in comparison with
the Tangherlini-Reissner-Nordström solution, and such so-
lutions with and without a cosmological constant have
been discussed in general relativity [3–8] and in Gauss-
Bonnet [9] and Lovelock [10] gravities. The extension to
the cases where the horizon has zero or negative curvature
has also been considered [11]. Scalar-tensor theories of
gravity coupled to Born-Infeld black hole solutions have
also been studied in Ref. [12]. Attempts to find solutions in
general relativity coupled to other fields—such as the
dilaton, rank-three antisymmetric tensor, and Born-Infeld
and others—have been made. In these theories the dilaton
field can be thought of as coming from a scalar field of the
low-energy limit of string theory. The appearance of the
dilaton field changes the asymptotic behavior of the solu-
tions to be neither asymptotically flat nor de Sitter or anti-
de Sitter.
Introducing rotation makes the search for solutions

much more difficult. Following the example of the exten-
sion of the Schwarzschild and Reissner-Nordström solu-
tions to higher dimensions in different theories, it was
natural to do the same for the Kerr and the Kerr-Newman
solutions. The generalization of the Kerr solution to higher-
dimensional Einstein gravity was performed by Myers and
Perry [17]. These Myers-Perry solutions include the non-
trivial cases of several modes of rotation due to the exis-
tence of other rotation planes in higher dimensions. The
inclusion of a cosmological constant in these higher-
dimensional solutions was performed in Ref. [18].
Rotating black hole solutions in other gravity theories
like Gauss-Bonnet or Lovelock are currently not known.
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Finally, the generalization of the Kerr-Newman black
holes to higher-dimensional Einstein-Maxwell theory has
not been found. Likewise, the generalization of Kerr with
some other gauge field (different from Maxwell) to higher
dimensions has not had success. In order to study this
problem one has to resort to approximations (as was done
in Ref. [19]) when studying charged rotating black hole
solutions in higher dimensions with a single rotation pa-
rameter in the limit of slow rotation (see alsoRefs. [20–22]).
Further studies—relying on perturbative or numerical
methods—to construct these solutions in asymptotically
flat backgroundswere performed in Ref. [23] and in asymp-
totically anti-de Sitter spacetimes in Ref. [24]. Employing
higher perturbation theory with the electric charge as the
perturbation parameter, some solutions and properties of
charged rotating Einstein-Maxwell asymptotically flat
black holes have been constructed in five dimensions [25].
Focusing on extremal black holes, this perturbative method
was also applied to obtain Einstein-Maxwell black holes
with angular momenta of equal magnitude in odd dimen-
sions [26]. A generalization to include a scalar field in an
Einstein-Maxwell-dilaton theory was performed in
Ref. [27] where black holes with angular momenta of equal
magnitude in general odd dimensions were obtained.

In this paper, we use this perturbative approach to find
extremal rotating Einstein-Born-Infeld black holes in a
five-dimensional spacetime. Starting from the Myers-
Perry black holes [17], we evaluate the perturbative series
up to fourth order in the Born-Infeld electric charge pa-
rameter q. We determine the physical properties of these
black holes for a generic Born-Infeld parameter �. In fact,
we study the effects of the perturbative parameter q and the
Born-Infeld parameter � on the mass, angular momentum,
magnetic moment, gyromagnetic ratio, and horizon radius
of these rotating black holes.

The outline of this paper is as follows. In Sec. II we
present the basic field equations of nonlinear Born-Infeld
theory in Einstein gravity and obtain a new class of per-
turbative charged rotating solutions in five dimensions. In
Sec. III we calculate the physical quantities of the solutions
and discuss their properties. In Sec. IV we study the mass
formula for these black holes. Section V is devoted to
conclusions.

II. METRIC AND GAUGE POTENTIAL

We start with the Einstein-Hilbert action coupled to the
Born-Infeld nonlinear gauge field in five dimensions,

S ¼
Z

dx5
ffiffiffiffiffiffiffi�g

p �
R

16�G5

þ LðFÞ
�
; (1)

where G5 is the five-dimensional Newtonian constant, R is
the curvature scalar, and LðFÞ is the Lagrangian of the
nonlinear Born-Infeld gauge field given by

LðFÞ ¼ 4�2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F��F��

2�2

s 1
A; (2)

where, in turn, F�� ¼ @�A� � @�A� is the electromag-

netic field tensor, A� is the electromagnetic vector poten-

tial, and � is the Born-Infeld parameter with units of mass.
In the limit � ! 1, LðFÞ reduces to the Lagrangian of the
standard Maxwell field, LðFÞ ¼ F��F��. The equations of

motion can be obtained by varying the action with respect
to the gravitational field g�� and the gauge field A�. This

procedure yields the gravitational field equations

G�� ¼ R�� � 1

2
g��R ¼ 1

2
g��LðFÞ þ

2F��F�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F��F��

2�2

q (3)

and the electromagnetic equation

@�

0
@ ffiffiffiffiffiffiffi�g

p
F��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F��F��

2�2

q
1
A ¼ 0: (4)

Our aim here is to find perturbative extremal charged
rotating black hole solutions of the above field equations
in five dimensions. Using coordinates ðt; r; �; ’1; ’2Þ, the
five-dimensional Myers-Perry solution [17], restricted to
the case where the two possible angular momenta have
equal magnitude and in the metric parametrization given in
Ref. [25], has the form

ds2¼gttdt
2þdr2

W
þr2ðd�2þsin2�d’2

1þcos2�d’2
2Þ

þNð"1sin2�d’1þ"2cos
2�d’2Þ2

�2Bð"1sin2�d’1þ"2cos
2�d’2Þdt; (5)

where "k denotes the sense of rotation in the kth orthogonal
plane of rotation, such that "k ¼ �1, k ¼ 1, 2. For the

above mentioned Myers-Perry solution [17] one has gtt ¼
�1þ 2M̂

r2
,W ¼ 1� 2M̂

r2
þ 2Ĵ2

M̂r4
, and N ¼ 2Ĵ2

M̂r2
, where M̂ and

Ĵ are two constants, namely, the mass and angular momen-
tum parameters, respectively, related to the mass M and
angular momentum J of the Myers-Perry solution through

the relations M̂ ¼ 16�G5

3A M and Ĵ ¼ 4�G5

A J, where A is the

area of the unit three-sphere. An adequate parametrization
for the gauge potential is given by

A�dx
� ¼ a0 þ a’ð"1sin 2�d’1 þ "2cos

2�d’2Þ: (6)

We further assume the metric functions gtt, W, N, B and
the two functions a0, a’ for the gauge field depend only on

the radial coordinate r.
We consider perturbations around the Myers-Perry so-

lution, with a Born-Infeld electric charge q as the pertur-

bative parameter, so that q is much less than M̂ or Ĵ2=3.
Taking into account the symmetry with respect to charge
reversal and the seed solution, the metric and gauge po-
tentials take the form
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gtt ¼ �1þ 2M̂

r2
þ q2gð2Þtt þ q4gð4Þtt þOðq6Þ; (7)

W ¼ 1� 2M̂

r2
þ 2Ĵ2

M̂r4
þ q2Wð2Þ þ q4Wð4Þ þOðq6Þ; (8)

N ¼ 2Ĵ2

M̂r2
þ q2Nð2Þ þ q4Nð4Þ þOðq6Þ; (9)

B ¼ 2Ĵ

r2
þ q2Bð2Þ þ q4Bð4Þ þOðq6Þ; (10)

a0 ¼ qað1Þ0 þ q3að3Þ0 þOðq5Þ; (11)

a’ ¼ qað1Þ’ þ q3að3Þ’ þOðq5Þ: (12)

Here gð2Þtt and gð4Þtt are second- and fourth-order perturbative
terms, respectively. The other perturbative terms are de-
fined similarly.
We now fix the angular momenta at any perturbative

order, and impose the extremal condition in all orders. We
also assume that the horizon is regular. With these assump-
tions we are able to fix all constants of integration. To
simplify the notation we introduce a parameter � through
the equations

M̂ ¼ 2�2; Ĵ ¼ 2�3; (13)

meaning that the extremal Myers-Perry solution holds
in five dimensions. Then, using the field equations (3) and
(4), the perturbative solutions up to fourth order can be
written as

gtt ¼ �1þ 4�2

r2
þ ðr2 � 4�2Þq2

3�2r4
þ

�
11

135

1

�2�2r8
� 16

45

�2

�2r12
þ 58

135

1

�2r10
� 8�2�2 þ 3

9�2�6r4
þ 1

540

79þ 240�2�2

�2�4r6

þ 1

720

79þ 220�2�2

�2�8r2
4ðr2 � 2�2Þ2
27�2�10r4

�
�2�2 þ 3

8

�
ln

�
1� 2

�2

r2

��
q4 þOðq6Þ; (14)

W¼1�4�2

r2
þ4�4

r4
�q2ðr2�2�2Þ

3�2r4
þ
�

1

2160

522þ480�2�2

�2�10
þ 1

2160

�2420�4�2�2607�2

�2�10r2
þ 1

2160

3840�4þ3620�2�6

�2�10r4

þ 1

2160

�1032�6�1280�8�2

�2�10r6
�1

5

1

r8�2�2
�23

45

1

�2r10
þ44

45

�2

�2r12
�56

45

�4

�2r14

þðr2�2�2Þ3
9�2�12r4

�
87

80
þ�2�2

�
ln

�
1�2

�2

r2

��
q4þOðq6Þ; (15)

N¼4�4

r2
�2q2ðr2þ2�2Þ

3r4
þ
�
� 1

360

ð87þ80�2�2Þr2
�2�10

þ 52

135

�2

�2r10
þ 4

135

1

�2r8
�16

45

�4

�2r12
þ 1

45

1þ20�2�2

r6�2�2
� 1

90

61þ40�2�2

�2�4r4

þ 1

360

87þ80�2�2

�8�2
þ 1

180

144þ35�2�2

�2�6r2
� ln

�
1�2

�2

r2

��
87

80
r6þr6�2�2�57

20
�4r2þ�6þ8

3
�8�2

�ðr2�2�2Þ
9�2�12r4

�
q4þOðq6Þ;

(16)

B¼4�3

r2
� 4�

3r4
q2þ

�
1

1440

480�2�2þ864

�2�7r2
þ 2

27

1

�2�r8
þ 52

135

�

�2r10
� 1

60

29þ40�2�2

�2�5r4
þ 1

90

9þ40�2�2

�2�3r6

�16

45

�3

�2r12
� 1

45

9þ5�2�2

�2�9
þ
�
� 1

270

27þ15�2�2

�2�11
þ 1

270

54�2þ30�4�2

�2�11r2
� 1

270

80�2�6þ30�4

�2�11r4

�
ðr2�2�2Þ

� ln

�
1�2

�2

r2

��
q4þOðq6Þ; (17)

a0 ¼ q

r2
þ

�
1

180

40�2�2 þ 15

�2�6r2
� 1

180

15�2 þ 40�4�2

�2�6r4
� 11

180

1

r6�2�2
� 26

45

1

�2r8
þ 2

3

�2

�2r10

þ 1

9

�
�2�2 þ 3

8

�
ðr2 � 2�2Þ ln

�
1� 2

�2

r2

�
��2��8r�2

�
q3 þOðq5Þ; (18)
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a’¼��q

r2
þ
�
� 1

720

80�2�2þ30

�7�2
� 1

720

40�4�2þ27�2

�7�2r2
� 1

720

�160�2�6�88�4

�7�2r4
þ 7

60

1

��2r6
þ26

45

�

�2r8
�2

3

�3

�2r10

� 1

144
ð3þ8�2�2Þ

�
r2

�2�9
� 4

r2�2�5

�
ln

�
1�2

�2

r2

��
q3þOðq5Þ: (19)

It is seen that there are the usual 1=rn polynomial expres-
sions as well as terms involving logarithmic functions. It is
also worth mentioning that the Born-Infeld parameter �
appears in terms which are of third and fourth order in the
electric charge parameter q. One may note that in
Maxwell’s limit, � ���! 1, these perturbative solutions
reduce to the five-dimensional perturbative charged rotat-
ing black holes in Einstein-Maxwell theory presented in
Ref. [25]. A consistent check of these solutions can be
provided by Smarr’s formula.

III. PHYSICAL QUANTITIES

The mass M, the angular momentum J, the electric
charge Q, and the magnetic moment �mag can be read

off the asymptotic behavior of the metric and the gauge
potential [23]. The asymptotic forms are

gtt ¼ �1þ ~M

r2
þ . . . ; B ¼ 2~J

r2
þ . . . ;

a0 ¼
~Q

r2
þ . . . ; a’ ¼ ~�mag

r2
þ . . . ;

(20)

where ~M, ~J, ~Q, and ~�mag are the mass, angular momentum,

electric charge, and magnetic moment parameters, respec-

tively, and we have defined ~Q � q for notational consis-
tency. These parameters are related to the real mass M,
angular momentum J, electric charge Q, and magnetic
moment �mag through the relations

~M ¼ 16�G5

3A
M; ~J ¼ 4�G5

A
J;

~Q ¼ 4�G5

2A
Q; ~�mag ¼ 4�G5

2A
�mag:

(21)

Note that when the perturbative parameter q is equal to
zero, the tilde quantities of Eq. (20) reduce to the hat

quantities of Eq. (13), i.e., ~M ¼ M̂, ~J ¼ Ĵ, ~Q ¼ Q̂ ¼ 0,
and ~�mag ¼ �̂mag ¼ 0.

Now, comparing the expansions in Eqs. (20) and (21)
with the asymptotic behavior of the solutions given in
Eqs. (14)–(19), we obtain

M ¼ 3��2

2
þ �q2

8�2
þ �q4ð20�2�2 � 3Þ

5760�2�8
þOðq6Þ; (22)

J ¼ ��3; (23)

Q ¼ �q; (24)

�mag ¼ ��q� �q3ð40�2�2 þ 3Þ
720�5�2

þOðq5Þ: (25)

The gyromagnetic ratio g is then given by

g¼2
�mag=Q

J=M
¼2M�mag

QJ

¼3þq2ð20�2�2�3Þ
240�6�2

�q4ð10�2�2þ3Þ
1440�10�2

þOðq6Þ: (26)

The horizon radius rH is given by

rH ¼ ffiffiffi
2

p
�þ q2

ffiffiffi
2

p
24�3

þ 11

1152

q4
ffiffiffi
2

p
�7

þOðq6Þ: (27)

All these quantities are worth commenting on.
The massM of the black holes as a function of the Born-

Infeld parameter � exhibits interesting behavior, as shown
in Fig. 1, [see also Eq. (22)]. The mass M increases with
increasing � and as � ! 1, i.e., in the Maxwell limit, the

mass takes the value M ¼ 3��2

2 þ �q2

8�2 þ �q4

288�6
þOðq6Þ, ex-

actly the result obtained for the five-dimensional perturba-
tive Einstein-Maxwell black hole [25]. For very small �
the mass turns negative. We do not attach any significance
to this result since the value of � for which the mass is zero
uses a perturbative q2 term that is much larger than the
zeroth-order term in the expressions for the magnetic mo-
ment and gyromagnetic ratio. In fact, the values of � for
which the results make thorough sense are values of �
larger than the ones which yield the zeros of the magnetic
moment and gyromagnetic ratio.
The angular momentum J in Eq. (23) and the charge q in

Eq. (24) are fixed and do not depend on �, following our
approach. The magnetic dipole moment �mag given in

–6

–4

–2

0

2

4

6

M

0.0002 0.0004 0.0006 0.0008 0.001
beta

FIG. 1. The black hole mass M versus the Born-Infeld pa-
rameter � for � ¼ 1:16 and q ¼ 0:09.
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Eq. (25) appears due to the rotation of the electrically
charged black hole. The first-order term �q� ¼ Q� is
equivalent to the magnetic moment of a point particle
rotating around an axis, with charge qparticle ¼ 3�Q, and

with the same angular momentum jparticle and massmparticle

of the black hole, i.e., jparticle ¼ J and mparticle ¼ M, since

for such a system �mag ¼ 1
2qparticle

jparticle
mparticle

¼ Q�. The

higher-order terms presumably come from the spacetime
curvature. From Fig. 2 we find that the magnetic dipole
moment �mag increases with increasing �. In the limit

� ! 1, the magnetic moment �mag ¼ ��q� �q3

18�3 þ
Oðq5Þ, which is exactly the result obtained for the five-
dimensional perturbative Einstein-Maxwell black hole
[25]. For small � the magnetic moment is negative. We
analyze this result below, when we comment on the gyro-
magnetic ratio.

The dimensional gyromagnetic ratio for a given sys-
tem defined in Eq. (26) is twice the ratio of the magnetic
moment divided by the charge to the angular momentum
divided by the mass. It has the value 1 for a classical
body with uniform mass and uniform charge distribution
rotating about an axis of symmetry. For an electron it
has the value of 2.00 plus small quantum corrections,
and for the proton and neutron it has the values 5.59 and
�3:826, respectively. From Eq. (26) we see that the
perturbative parameter q and the parameters � and �
modify the gyromagnetic ratio of asymptotically flat
five-dimensional charged rotating black holes as com-
pared to the uncharged extremal Myers-Perry black
holes. We want to study in more detail this modification
of the gyromagnetic ratio when one varies the Born-
Infeld parameter �; see Fig. 3. From this figure we
find that the gyromagnetic ratio g increases with increas-
ing �, and in the limit � ! 1 the gyromagnetic ratio

reduces to g ¼ 3þ q2

12�4
� q4

144�8 þOðq6Þ, which is exactly

the result obtained for the five-dimensional perturbative
Einstein-Maxwell black hole [25]. Now, from Fig. 3 one
finds that for some low value of � the gyromagnetic
ratio is zero, and then turns negative. This change of
sign comes from a perturbative q2 term, and thus the

result might not hold for the full exact solution. On the
other hand the result is sufficiently intriguing that it
deserves some attention. One can speculate that it is at
least qualitatively correct, and perhaps expected: let us
see why. It is known that the Born-Infeld theory is
different from Maxwell’s theory when the electromag-
netic fields are very strong. The Born-Infeld theory gives
a finite total energy E for the field around a point

particle with charge qparticle; indeed, E ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3particle�

q
. It

also gives an effective radius r0 for the charge distribu-

tion, r0 ¼
ffiffiffiffiffiffiffiffiffiffi
qparticle

�

q
. Curiously, the reversal of the gyro-

magnetic ratio g in Fig. 3 (concomitant to the reversal of
the magnetic dipole moment �mag in Fig. 2) happens

when r0 ¼
ffiffiffi
Q
�

q
is of the order or larger than the horizon

radius rH. Indeed, for the values of � and q used in the
figures, one finds r0 ¼ 8:79 and rH ¼ 1:65. This reversal
could then be interpreted as follows. For large � much
of the electrical charge is distributed in a point-like
manner, as in Maxwell’s theory. For small � the charge
distribution is extended, and for sufficiently small � it
even extends outside the horizon. It is known that an
object with magnetic moment ~�mag placed in a magnetic

field ~B suffers a torque given by ~�mag � ~B. A black hole

with a magnetic moment is also subjected to this kind of
torque. So, for large �, i.e., the point-like case, when a
magnetic field is applied to the black hole spacetime the
resultant torque on the black hole tends to rotate it in the
expected sense, and thus the magnetic dipole moment
�mag and g are positive. On the other hand, when � is

small—i.e., the case with the charge distribution outside
the black hole—it is the region external to the black hole
horizon that is effectively charged, and it is this very
region that upon application of a magnetic field tends to
rotate in the expected sense. So here the black hole
rotates in the opposite sense, giving a negative magnetic
dipole moment �mag and thus a negative gyromagnetic

ratio g.
The horizon radius rH in Eq. (27) has the unexpected

feature that it does not depend on � at least up to fourth

–1

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

0.6

0.8

1

m
u

0.02 0.04 0.06 0.08 0.1
beta

FIG. 2. The black hole magnetic moment �mag versus the
Born-Infeld parameter � for � ¼ 1:16 and q ¼ 0:09.
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–4

–2

0

2

4

g

0.01 0.02 0.03 0.04 0.05 0.06
beta

FIG. 3. The black hole gyromagnetic ratio g versus the Born-
Infeld parameter � for � ¼ 1:16 and q ¼ 0:09.
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order in the charge. Up to this order rH is equal to the
Einstein-Maxwell case [25].

IV. THE MASS FORMULA

Let us define � as the timelike Killing vector and �k,
k ¼ 1, 2 as the two azimuthal Killing vectors. The horizon
has two independent angular velocities, which by assump-
tion are equal. This single, constant, angular velocity �
can then be defined by imposing that the Killing vector
field,

� ¼ �þ�
X2
k¼1

	k�k; (28)

is null on the horizon and orthogonal to it as well. This
yields

� ¼ 1

2�
� q2

24�5
� q4ð5�2�2 � 1Þ

1440�2�11
þOðq6Þ: (29)

The three-area of the horizon AH and the electrostatic
potential at the horizon �H are given by

AH ¼ 8�2�3 þOðq6Þ; (30)

�H ¼ q

4�2
þ q3ð20�2�2Þ

1440�2�8
þOðq5Þ: (31)

The surface gravity 
 is defined by 
2 ¼ � 1
2 ðr���Þ�

ðr���Þ. Taking into account the conserved quantities ob-
tained in the last section, one can check that these quanti-
ties satisfy the Smarr mass formula up to fourth order [8].
Indeed, in general the formula is

M ¼ 3
AH

16�GD

þ 3�J þ�HQ� �

2

@M

@�
: (32)

For an extremal solution with 
 ¼ 0, the Smarr mass
formula reduces to

M ¼ 3�J þ�HQ� �

2

@M

@�
: (33)

Taking into account the fact that the mass M of the black
holes is given by Eq. (22), one can determine the last term
in Eq. (33) to find

M ¼ 3�J þ�HQþ��Q
4; (34)

where

�� ¼ � �

2Q4

@M

@�
¼ � 1

1920

1

�3�8�2
: (35)

V. CONCLUSIONS

In conclusion, we have presented a new class of pertur-
bative charged rotating black hole solutions in five dimen-
sions in the presence of a nonlinear Born-Infeld gauge
field. This class of solutions is restricted to extremal black
holes with equal angular momenta. At infinity, the metric is
asymptotically locally flat. Our strategy for obtaining these
solutions used a perturbative method up to the fourth order
for the perturbative parameter q. We started from rotating
Myers-Perry black hole solutions [17] in five dimensions,
and then studied the effects of adding a charge parameter to
the solutions. We have calculated the conserved quantities
of the solutions, such as mass, angular momentum, electric
charge, magnetic moment, gyromagnetic ratio, and horizon
radius. We found that the Born-Infeld parameter � modi-
fies the values of all the physical quantities except the
horizon radius, relative to the corresponding Einstein-
Maxwell five-dimensional rotating solutions. For large �
the solutions reduce to the perturbative rotating Einstein-
Maxwell solutions [25], as we expected. We also specu-
lated on what might happen for these solutions in the
strong electromagnetic regime, i.e., when � is small. The
generalization of the present work to all higher dimensions
is quite an interesting subject, which will be addressed
elsewhere.
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