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The zeroth principle of thermodynamics in the form ‘‘temperature is uniform at equilibrium’’ is

notoriously violated in relativistic gravity. Temperature uniformity is often derived from the maximization

of the total number of microstates of two interacting systems under energy exchanges. Here we discuss a

generalized version of this derivation, based on informational notions, which remains valid in the general

context. The result is based on the observation that the time taken by any system to move to a

distinguishable (nearly orthogonal) quantum state is a universal quantity that depends solely on the

temperature. At equilibrium the net information flow between two systems must vanish, and this happens

when two systems transit the same number of distinguishable states in the course of their interaction.
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I. NONUNIFORM EQUILIBRIUM TEMPERATURE

According to nonrelativistic thermodynamics, a ther-
mometer (say, a line of mercury in a glass tube), moved
up and down a column of gas at equilibrium in a constant
gravitational field, measures a uniform temperature. But
this prediction is wrong. Relativistic effects make the gas
warmer at the bottom and cooler at the top, by a correc-
tion proportional to c�2, where c is the speed of light.
This is the well-known Tolman-Ehrenfest effect, discov-
ered in the 1930s [1,2] and later derived in a variety of
different manners [3–11]. The temperatures T1 and T2

measured by the same thermometer at two altitudes h1
and h2 in a Newtonian potential �ðhÞ are related by the
Tolman law,

T1

�
1þ�ðh1Þ

c2

�
¼ T2

�
1þ�ðh2Þ

c2

�
: (1)

The general-covariant version of this law reads

Tj�j ¼ constant; (2)

where j�j is the norm of the timelike Killing field with
respect to which equilibrium is established.

A violation of the uniformity of temperature seems
counterintuitive at first, especially if one has in mind a
definition of ‘‘temperature’’ as a label of the equivalence
classes of all systems in equilibrium with one another. In a
relativistic context, a physical thermometer does not mea-
sure this label, and we must therefore distinguish two
notions: i) a quantity �o defined as this label [proportional
to the constant in Eq. (2)] and ii) the temperature T
measured by a standard thermometer.

In the microcanonical framework, the entropy SðEÞ is
the logarithm of the number of microstates NðEÞ that have
energy E, and T can be identified with the inverse of the
derivative of SðEÞ,

dSðEÞ
dE

¼ 1

kT
; (3)

where k is the Boltzmann constant. The fact that two
systems in equilibrium have the same T can be derived
by maximizing the total number of states N ¼ N1N2 under
an energy transfer dE between the two. This gives easily
T1 ¼ T2. In the presence of relativistic gravity, this deri-
vation fails because the conservation of energy becomes
tricky: intuitively speaking, the energy dE reaching the
upper system is smaller than the one leaving the lower
system because ‘‘energy weighs.’’
Is there a more general statistical argument that governs

equilibrium in a relativistic context? Can the Tolman law
be derived from a principle generalizing the maximization
of the number of microstates, without recourse to specific
models of energy transfer, as is commonly done in the
derivations of the Tolman-Ehrenfest effect?
In this paper we show that the answer to these questions

is positive, and we provide a generalization of the statisti-
cal derivation of the uniformity of temperature, which
remains valid in a relativistic context.
The core idea is to focus on histories rather than states.

This is in line with the general idea that states at a fixed
time are not a convenient handle on general relativistic
mechanics, in which the notion of process, or history, turns
out to be more useful [12]. Equilibrium in a stationary
spacetime, namely, the Tolman law, is our short-term ob-
jective, but our long-term aim is understanding equilibrium
in a fully generally covariant context, in which thermal
energy can flow also to gravity [13–15]; therefore, we look
for a general principle that retains its meaning also in the
absence of a background spacetime.
We show in this paper that one can assign an information

content to a history, and two systems are in equilibrium
when their interacting histories have the same information
content. In this case the net information flow vanishes, and
this is a necessary condition for equilibrium. This gener-
alized principle reduces to standard thermodynamics in the
nonrelativistic setting but yields the correct relativistic
generalization.
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This result is based on a key observation: at temperature
T, a system transits

� ¼ kT

ℏ
t (4)

states in a (proper) time t, in a sense that is made precise
below. The quantity � was introduced in Refs. [13,14] with
different motivations and is called thermal time. Here we
find the physical interpretation of this quantity: it is time
measured in number of elementary ‘‘time steps,’’ for which
a step is the characteristic time taken to move to a distin-
guishable quantum state. Remarkably, this time step is
universal at a given temperature. Our main result is that
two systems are in equilibrium if, during their interaction,
they cover the same number of time steps.

II. THE UNIVERSAL TIME STEP

Consider a conventional Hamiltonian system with
Hamiltonian operator H. Let c ð0Þ be the state at time
zero and c ðtÞ be its evolution. What is the time scale for
c ðtÞ to become significantly distinct fromc ð0Þ? The sepa-
ration of the state from its initial position is given by the
overlap between c ð0Þ and c ðtÞ, namely,

PðtÞ ¼ jhc ð0Þjc ðtÞij2: (5)

The typical behavior of PðtÞ, for instance, in the case of a
semiclassical wave packet, is as in Fig. 1. The state be-
comes rapidly distinguishable (nearly orthogonal) to the
initial state in a short time. Let us call to the characteristic
decay time for the system self-overlap. What is its value?
The time to can be estimated by Taylor expanding PðtÞ for
small times. The first time derivative of PðtÞ clearly van-
ishes at t ¼ 0, which is a maximum; therefore, we get the
time scale from the second derivative. A straightforward
calculation gives

d2PðtÞ
dt2

¼ � 1

ℏ2
ðhH2i � hHi2Þ ¼ � ð�EÞ2

ℏ2
; (6)

which implies a characteristic decay time

to ¼ ℏ
�E

; (7)

in accord with the time-energy Heisenberg principle and
with the fact that energy eigenstates ‘‘do not change.’’1

The same conclusion can be reached also in the classical
theory. Consider a classical Hamiltonian system with phase
space � and Hamiltonian H. For simplicity, say that the
system has a single degree of freedom, so that � is two-
dimensional. Let E1 and E2 be two (nearby) equal-energy
surfaces and � be a line joining the two surfaces. Consider
the motion of � under the time flow, see Fig. 2. How long
does it take for � to sweep a (small) phase-space volume
V? The answer is easy to find: the volume of the region R
swept by � is the integral of the symplectic two-form
! ¼ dp ^ dq, and its time derivative is

dVðtÞ
dt

¼ d

dt

Z
RðtÞ

! ¼
Z
�
!ðXÞ; (8)

where X is the Hamiltonian time flow. This is given by the
Hamilton equations, which can be written in the compact
form

!ðXÞ ¼ �dH: (9)

Inserting this in the previous equation gives

dVðtÞ
dt

¼ �
Z
�
dH ¼ E2 � E1 � �E: (10)

Now consider a small region of phase space, such as the
blue region in Fig. 2. Say that the volume of this region is ℏ.
How long does it take for this region to be carried along by
the dynamics to a new position where the overlap with its
initial location is negligible? It is clear that the answer is
again Eq. (7).
This is the same result as in the quantum theory: the time

step to is the time taken generically to move from a state to
a distinct (orthogonal) state. Indeed, a semiclassical state
can be viewed as related to a Planck-size cell of the
classical phase space, and the decay time of the quantum

FIG. 1. Typical overlap between c ð0Þ and c ðtÞ as a function
of time.

FIG. 2 (color online). A phase-space region moves from one
cell to next in the time �0 � h=�E.

1Notice that this observation provides also a direct meaning to
the time-energy uncertainty principle.
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overlap PðtÞ is essentially the time the system moves from
one Planck-size cell to the next. The argument can be
repeated with a bit more labor for a system with many
degrees of freedom.2

Let us now consider a system in thermal equilibrium
with a thermal bath at temperature T. Its mean energy is
going to be kT, and the variance of the energy is also going
to be kT. Thus, we have �E� kT. At a given temperature
T, consider the time step

to ¼ ℏ
kT

: (11)

According to the previous discussion, this is the average
time the system takes to move from a state to the next
(distinguishable) state. This average time step is therefore
universal: it depends only on the temperature and not on
the properties of the system.

III. THERMALTIME, TEMPERATURE,
AND THEIR PHYSICAL MEANING

The dimensionless quantity

� ¼ t

to
(12)

measures time in units of the time step to; that is, it
estimates the number of distinguishable states the system
has transited during a given interval. For a system in
thermal equilibrium, Eq. (11) gives

� ¼ kT

ℏ
t: (13)

This same quantity was introduced with different motiva-
tions in Refs. [13,14] under the name ‘‘thermal time.’’ It is
the parameter of the Tomita flow on the observable algebra,
generated by the thermal state. In the classical theory, it is
the parameter of the Hamiltonian flow of h ¼ � ln�,
where � is a Gibbs state, in ℏ ¼ k ¼ 1 units.

The argument in the previous section unveils the physi-
cal interpretation of thermal time: thermal time, which is
dimensionless, is simply the number of distinguishable
states a system has transited during an interval. In a sense,
it is ‘‘time counted in natural elementary steps,’’ which
exist because the Heisenberg principle implies an effective
granularity of the phase space.

Notice also that temperature is the ratio between thermal
time and (proper) time [16]

T ¼ ℏ�
kt

: (14)

Accordingly, in ℏ ¼ k ¼ 1 units temperature is measured
in ‘‘states per second’’ and is nothing other than the num-
ber of states transited by the system per unit of (proper)
time. This is the general informational meaning of tem-
perature. A warmer system is a system where individual
states move faster across unit cells of phase space.

IV. EQUILIBRIUM BETWEEN HISTORIES

Let us come to the notion of equilibrium. Consider two
systems, system 1 and system 2, that are in interaction
during a certain interval. This interaction can be quite
general but should allow the exchange of energy between
the two systems. During the interaction interval, the first
system transits N1 states—and the second transits N2—in
the sense illustrated above. Since an interaction channel
is open, each system has access to the information about
the states the other has transited through the physical
exchanges of the interaction.
The notion of information used here is purely physical,

with no relation to semantics; meaning; significance; con-
sciousness; records; storage; or mental, cognitive, ideal-
istic, or subjectivistic ideas. Information is simply a
measure of a number of states, as it is defined in the classic
text by Shannon [17].
System 2 has access to an amount of information I1 ¼

logN1 about system 1, and system 1 has access to an
amount of information I2 ¼ logN2 about system 2. Let
us define the net flow of information in the course of the
interaction as �I ¼ I2 � I1. Equilibrium is by definition
invariant under time reversal, and therefore any flow must
vanish. It is therefore interesting to postulate that also the
information flow �I vanishes at equilibrium. Let us do so
and study the consequences of this assumption. That is, we
consider the possibility of taking the vanishing of the
information flow

�I ¼ 0 (15)

as a general condition for equilibrium, generalizing the
maximization of the number of microstates of the non-
relativistic formalism.3

2If we can diagonalize locally the state and the dynamics in
energy-angle variables ðEn;�nÞ, the phase-space volume swept
by the boundary of a given region, in a time dt, is dV �P

n�EnðV=VnÞdt, where Vn is the phase-space volume of the
nth degree of freedom. A coherent state has volume ℏ in
each of its degrees of freedom, giving dV � ℏn�1

P
n�Endt�

ℏn�1�Edt. Since a phase-space cell has volume ℏn, the time
taken to move one cell is again �ℏ=�E.

3In the microcanonical framework, equilibrium is character-
ized by maximizing entropy, namely, the number of microstates
sharing given macroscopic values. This is meaningful, e.g.,
under the ergodic hypothesis, according to which time averages
can be replaced by phase-space averages. In other words, if the
ergodic hypothesis holds, a microcanonical ensemble is essen-
tially the family of states over which the single real individual
microstate wanders. What we are doing here is essentially un-
doing this step and moving back from phase-space ensembles to
actual histories. In the classical theory, there is a measure
associated to a spacetime volume and not to the length of a
history. But in this paper, we have shown that there is also a
natural measure associated with the history of a quantum state.
This allows us to backtrack from phase-space volume to the
number of steps along the history.
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Let us see what this implies. At equilibrium

N1 ¼ N2: (16)

Since the rate at which states are transited is given by � and
we assume a fixed interaction interval, the equilibrium
conditions also reads

�1 ¼ �2: (17)

Now, consider a nonrelativistic context where two systems
are in equilibrium states at temperatures T1 and T2, re-
spectively. In the nonrelativistic limit, time is a universal
quantity, which we call t. Therefore, the condition (17)
together with Eq. (13) implies that to ¼ ℏ=kT has the same
value for the two systems and T1 ¼ T2, which is the
standard nonrelativistic condition for equilibrium: tem-
perature is uniform at equilibrium. On a curved spacetime,
on the other hand, (proper) time is a local quantity ds that
varies from one spatial region to another. Therefore, ther-
mal time is given by

d� ¼ kT

ℏ
ds: (18)

In order for equilibrium to exist on a given spacetime,
spacetime itself must be stationary, namely, have a timelike
Killing field �, and an equilibrium configuration will be
� invariant [18,19]. Proper time along the orbits of � is
ds ¼ j�jdt where t is an affine parameter for �. Therefore,
thermal time is now

d� ¼ kT

ℏ
j�jdt: (19)

If two systems located in regions with different j�j are in
thermal contact for a finite interval �t, then they are in
equilibrium if j�jT has the same value. This is precisely the
Tolman law (2). Therefore, the generalized first principle
(15) gives equality of temperature in the nonrelativistic
case and the Tolman law in the general case.

In static coordinates, ds2 ¼ g00ð ~xÞdt2 � gijð ~xÞxixj,
and thermal time is proportional to coordinate time.
The Killing vector field is � ¼ @=@t and j�j ¼ ffiffiffiffiffiffiffi

g00
p

.

In the Newtonian limit, g00 ¼ 1þ 2�=c2, and we
recover Eq. (1).

Returning to the cylinder of gas in a constant gravita-
tional field, we see that during a coordinate-time interval
�t, the proper times lapsed in the upper and lower systems
are different: identical clocks at different altitudes run at
different rates. But the lower system is hotter; its degrees of
freedom move faster in clock time from one state to the
next. This faster motion compensates exactly the slowing
down of proper time, so that upper and lower systems
transit the same number of states during a common inter-
action interval �t. While a pendulum slows down in a
deeper gravitational potential, at equilibrium, all systems
transit from state to state at the same common rate, inde-
pendent from the gravitational potential. This result

provides a simple and intuitive interpretation of the
Tolman effect.

V. WIEN’S DISPLACEMENT LAW

The Tolman-Ehrenfest effect is a small relativistic cor-
rection, at the surface of the Earth rT=T ¼ 10�18 cm�1,
and is not yet experimentally established. The principle
proposed here also provides a mellifluous derivation of the
well-tested Wien displacement law.
Consider an isothermal cavity filled with electromag-

netic radiation. A slow, adiabatic expansion of the cavity
leaves the radiation in equilibrium throughout the expan-
sion process. During this expansion both the normal mode
frequencies and the temperature of the radiation are ad-
justed. For the mode of frequency �, the condition of
remaining in equilibrium is that the slow expansion take
place on a time scale much greater than the period of the
mode, i.e., texp � t� � 1=�. Hence, the relevant clock for

this mode is its period.
The condition that this mode be in equilibrium during

the entire expansion history is that

� ¼ kT

ℏ
t� ¼ const; (20)

or, expressed in terms of the mode’s frequency,

T

�
¼ const; (21)

which is precisely the general form ofWien’s displacement
law. This special relativistic application of the principal
proposed here plays an important role in the astrophysical
determination of star temperatures.

VI. CONCLUSIONS

We have suggested a generalized statistical principle for
equilibrium in statistical mechanics. We expect that this
will be of use going toward a genuine foundation for
general covariant statistical mechanics.
The principle is formulated in terms of histories rather

than states and expressed in terms of information. It
reads, ‘‘Two histories are in equilibrium if the net infor-
mation flow between them vanishes, namely, if they
transit the same number of states during the interaction
period.’’
This is equivalent to saying that the thermal time �

elapsed for the two systems is the same, since thermal
time is the number of states transited, or, equivalently, is
the (proper) time in to units, where to is the (proper) time
needed for a system to transit to an orthogonal state. The
elementary (proper) time step to is given by ℏ=kT and is a
universal quantity for all systems at temperature T.
In nonrelativistic physics, time is universal, and the

above principle implies that temperature is uniform at
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equilibrium. On a curved spacetime, proper time varies
locally, and what is constant is the product of temperature
and proper time.

Temperature admits the informational interpretation
as states transited per second, consistent with the fact
that in ℏ ¼ k ¼ 1 units it has dimension of second�1.
Temperature is the rate at which systems move from state
to state.
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[10] R. Ebert and R. Göbel, Gen. Relativ. Gravit. 4, 375
(1973).

[11] J. Stachel, Found. Phys. 14, 1163 (1984).
[12] C. Rovelli, Quantum Gravity (Cambridge University

Press, Cambridge, England, 2004).
[13] C. Rovelli, Classical Quantum Gravity 10, 1549 (1993).
[14] A. Connes and C. Rovelli, Classical Quantum Gravity 11,

2899 (1994).
[15] C. Rovelli, arXiv:1209.0065.
[16] C. Rovelli and M. Smerlak, Classical Quantum Gravity

28, 075007 (2011).
[17] C. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[18] W. Israel, J. Math. Phys. (N.Y.) 4, 1163 (1963).
[19] W. Israel and J.M. Stewart, Ann. Phys. (Amsterdam) 118,

341 (1979).

DEATH AND RESURRECTION OF THE ZEROTH . . . PHYSICAL REVIEW D 87, 084001 (2013)

084001-5

http://dx.doi.org/10.1103/PhysRev.35.904
http://dx.doi.org/10.1103/PhysRev.36.1791
http://dx.doi.org/10.1086/146553
http://dx.doi.org/10.1007/BF00759031
http://dx.doi.org/10.1103/PhysRev.122.1342
http://dx.doi.org/10.1103/PhysRev.122.1342
http://dx.doi.org/10.1016/0031-8914(65)90089-3
http://dx.doi.org/10.1016/0031-8914(65)90089-3
http://dx.doi.org/10.1007/BF00771008
http://dx.doi.org/10.1007/BF00771008
http://dx.doi.org/10.1007/BF01889317
http://dx.doi.org/10.1088/0264-9381/10/8/015
http://dx.doi.org/10.1088/0264-9381/11/12/007
http://dx.doi.org/10.1088/0264-9381/11/12/007
http://arXiv.org/abs/1209.0065
http://dx.doi.org/10.1088/0264-9381/28/7/075007
http://dx.doi.org/10.1088/0264-9381/28/7/075007
http://dx.doi.org/10.1063/1.1704047
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1016/0003-4916(79)90130-1

