
Cosmological phase transition, baryon asymmetry, and dark matter Q-balls

E. Krylov,1 A. Levin,1,2 and V. Rubakov1,2

1Department of Particle Physics and Cosmology, Physics Faculty, Lomonosov Moscow State University,
GSP-1, Leninskie Gory, 119991 Moscow, Russia

2Institute for Nuclear Research of the Russian Academy of Sciences,
60th October Anniversary Prospect, 7a, 117312 Moscow, Russia

(Received 11 March 2013; published 30 April 2013)

We consider a mechanism of dark matter production in the course of the first-order phase transition. We

assume that there is an asymmetry between X and �X particles of the dark sector. In particular, it may be

related to the baryon asymmetry. We also assume that the phase transition is so strongly first order that X

particles do not permeate into the new phase. In this case, as the bubbles of the old phase collapse, X

particles are packed into Q-balls with a huge mass defect. These Q-balls compose the present dark matter.

We find that the required present dark matter density is obtained for the energy scale of the theory in the

ballpark of 1–10 TeV. As an example, we consider a theory with an effective potential of one-loop

motivated form.
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I. INTRODUCTION

The idea that the baryon asymmetry and dark matter in
the Universe may have common origin, is of considerable
interest [1–21]. In particular, dark matter particles ðX; �XÞ
may have their own conserved charge and be created,
together with baryons, in asymmetric decays of heavier
particles [4–9,16,18,21]. In this scenario, the initial asym-
metry in the dark matter particles is roughly of the order of
the baryon asymmetry,

nX � n �X � nB: (1)

Assuming that the X- �X annihilation cross section is not
particularly small, one obtains the estimate for the present
dark matter mass density:

�X �mXnB: (2)

Thus, the correct value of �X appears to require the mass of
X particles in the range of a few GeV.

New physics, manifestation of which would be the ex-
istence of X particles, may well be characterized by a much
higher energy scale, and the X-particle mass may grossly
exceed a few GeV. One may wonder whether the copro-
duction of the baryon asymmetry and dark matter can still
work in this case. The estimate (2) shows that heavy X
particles are overproduced, so one needs a mechanism that
makes the actual mass density of dark matter much lower
than that given by Eq. (2).

In this paper, we consider a possible scenario of this sort.
The idea is that X particles may be packed into Q-balls. A
Q-ball made of X particles of total number Q typically has
a mass mQ, which is much smaller than Q �mX [22–26].

Hence, the mass density of the dark matter Q-balls is
naturally well below the estimate (2). A mechanism that
packs free particles into Q-balls applies to the Friedberg-
Lee-Sirlin Q-balls [22–25] (as opposed to the Coleman

Q-balls [26] explored in supersymmetric theories [27,28])
and is as follows [29].
Let us assume that X particles obtain their mass due to

the interaction with an additional scalar field �, so that
mX ¼ h�, where h is the coupling constant. Let us also
assume that there is the first-order cosmological phase
transition at some temperature Tc from the phase � ¼ 0
to the phase � ¼ �c � 0 and, furthermore, that the
X-particle mass is large in the new phase, h�c � Tc.
Then X particles get trapped in the remnants of the old
phase, and these remnants eventually shrink to very small
size and become Q-balls (see Fig. 1).
We find that this mechanism indeed works in a certain

range of couplings characterizing the model. Interestingly,
the correct value of the present Q-ball mass density is
obtained for X-particle mass in the ballpark of 1–10 TeV.
This makes the scenario potentially testable in collider
experiments. The Q-ball mass and charge are in the range
mQ � 10�6–10�3 g and Q� 1019–1022, respectively. In
this respect, our Q-ball dark matter is not very different
from that discussed in the context of supersymmetric theo-
ries [27,28]. Phenomenology of our dark matter Q-balls is
also similar to that of supersymmetric Q-balls [27,28],
except that the latter may be stabilized by baryon number
and hence eat up baryons.
The paper is organized as follows. We begin with a

brief description of Q-balls (Sec. II). In Sec. III, we
discuss the creation of Q-balls in the course of the phase
transition and relate the dark matter Q-ball parameters
and their present mass density to the properties of the
phase transition. We also consider the conditions of
validity of our scenario. In Sec. IV, we give a concrete
example based on one-loop motivated form of the finite
temperature effective potential and present the ranges of
parameters for which our mechanism is viable. We con-
clude in Sec. V.
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II. Q-BALLS

A. Q-ball configuration

Q-balls are compact objects that exist in some models
possessing a global symmetry and associated conserved
charge. One of the simplest models admitting Q-balls is of
the Friedberg-Lee-Sirlin type [22–25]. Its Lagrangian is1

L ¼ 1

2
ð@��Þ2 �Uð�Þ þ ð@��Þ�ð@��Þ

� h2�2���; (3a)

Uð�Þ ¼ �ð�2 � v2Þ2; (3b)

where � is a real scalar field and � is a complex scalar
field.2 The field � is meant to describe X particles whose
mass in vacuo equals

mX ¼ hv:

These particles carry global charge, associated with the
Uð1Þ-symmetry � ! ei��. The lowest energy state of
large enough charge is a spherical Q-ball with � ¼ 0
inside and� ¼ v outside. At largeQ, its size R and energy
E are determined by the balance of the energy of Q mass-
less � quanta confined in the potential well of radius R and
the potential energy of the field� in the interior, i.e., R and
E are found by minimizing

EðRÞ ¼ �Q

R
þ 4�

3
R3U0; (4)

where U0 ¼ Uð0Þ �UðvÞ ¼ �v4. Hence, the Q-ball
parameters are

RQ ¼
�
Q

4U0

�
1=4

; mQ ¼ 4
ffiffiffi
2

p
�

3
Q3=4U1=4

0 : (5)

Note that the surface energy is proportional to R2
Q / Q1=2

and therefore negligible at large Q. The Q-ball is stable,

provided its energy is smaller than the rest energy of Q
massive � quanta in the vacuum � ¼ v,

mQ <mXQ: (6)

AQ-ball is a classical object, since its radius is much larger
than its Compton wavelength.

B. Radius of cosmological Q-balls

Assuming that Q-balls made of X particles compose
dark matter and that the X asymmetry is related to the
baryon asymmetry via Eq. (2), we can obtain an estimate
for the present radius of a typical Q-ball already at this
point. Indeed, we find from Eq. (5) that

RQ ¼ 4�
Q

3mQ

:

Now, since X particles are packed into Q-balls, we have

ðnX � n �XÞ
s

¼ nQQ

s
;

where nQ is the number density of Q-balls and s is the

entropy density. Therefore,

nQQ

s
¼ nq � n �q

s
¼ 3�B; (7)

where �B ¼ nB=s ¼ 0:9� 10�10, and we assume for
definiteness that the X-particle asymmetry is equal to
the quark asymmetry. Making use of the relation �DM ¼
mQnQ, we obtain

Q

mQ

��������t0

¼ 3�Bs0
�DM

; (8)

where the subscript 0 refers to the present epoch. Hence,
we obtain from Eq. (5) that the present radius is

RQ ¼ 4�
�Bs0
�DM

’ 6� 10�14 cm: (9)

Thus, even though the Q-ball mass and charge de-
pend on the parameters of the model, its typical radius
does not.

III. Q-BALL PRODUCTION AT THE
COSMOLOGICAL PHASE TRANSITION

In this section, we give a general description of the
Q-ball formation without specifying the form of the finite

FIG. 1 (color online). Q-ball formation during the first-order phase transition from the phase � ¼ 0 (white) to the phase � � 0
(blue).

1As it stands, this model has the discrete symmetry � ! ��,
and, hence, is not viable because of the domain wall problem. To
get around this problem, one can either assume that the discrete
symmetry is explicitly broken or consider the field � carrying
some gauge or global charge. This qualification is irrelevant for
what follows.

2Note that our notations are opposite to notations in Ref. [22]:
we denote the complex field by �, while it is denoted by � in
Ref. [22]; the real field is denoted by � here and by � in
Ref. [22].
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temperature effective potential. We assume only that it has
a minimum � ¼ 0 at high temperature and that the phase
transition from � ¼ 0 to � � 0 is of the first order.

A. Bubble nucleation rate

Let Tc be the critical temperature at which the effective
potential has two degenerate minima at � ¼ 0 and
� ¼ �c. Below this temperature, the new phase � ¼ �c

has lower free energy density,

Veffð�cÞ � Veffð0Þ ¼ �� < 0: (10)

Thermal fluctuations lead to the creation of the bubbles of
the new phase. In the thin wall approximation, the free
energy of a bubble of radius R is

FðRÞ ¼ � 4

3
�R3�þ 4�R2�; (11)

where � is surface free energy density. The extremum of
Eq. (11) gives the free energy of the critical bubble,

Fc ¼ 16�

3

�3

�2
: (12)

It, in turn, determines the bubble nucleation rate,

� ¼ 	T4
ce

�FcðTÞ
Tc ;

where 	 is a factor roughly of order 1. Let us introduce


 ¼ Tc � T

Tc

(13)

and assume that this parameter is small. To the leading
order in 
, we have

� ¼ �1
; (14)

� ¼ �0; (15)

where �1 and �0 are constants independent of 
. Thus,

� ¼ 	T4
ce

� A


2 ; (16)

where

A ¼ 16�

3

�3
0

�2
1

: (17)

As the temperature decreases, the bubble nucleation rate
rapidly grows.

B. Temperature of the phase transition

To estimate the number density and charge of Q-balls
produced during the phase transition, we need an estimate
of the transition temperature. Since the duration of the
phase transition is often much shorter than the Hubble
time (this corresponds to 
 � 1), we neglect the cosmo-
logical expansion and write for the fraction of volume
occupied by the old phase at time t [30]

xðtÞ ¼ exp ½��ðtÞ�;
where

�ðtÞ ¼
Z t

tc

Vðt; t0Þ�ðt0Þdt0;

Vðt; t0Þ ¼ 4�
3 ½uðt� t0Þ�3 is the volume, at time t, of a

bubble of the new phase born at time t0, and u is the
velocity of the bubble wall. We make use of the standard
relation between the Hubble parameter and temperature,

H ¼ T2=M�
Pl, where M�

Pl ¼ MPl

1:66
ffiffiffiffi
g�

p and g� hereafter de-

notes the effective number of the degrees of freedom at
the phase transition temperature. We obtain for 
 � 1

� ¼ 	u3
�
M�

Pl

Tc

�
4 Z 


0
ð
� 
0Þ3e� A


02d
0: (18)

This integral is saturated near the upper limit of integra-
tion, and we get

�� 	u3
�
M�

Pl

Tc

�
4 
12

A4
e
� A


2 :

The phase transition occurs when � is roughly of order 1,
which happens in a narrow interval of temperatures
around


� ¼ A1=2L�1=2; (19)

where

L ¼ ln

�
	u3A2

�
M�

Pl

Tc

�
4
�
; (20)

with logarithmic accuracy. Our estimate is valid provided
that 
� � 1, i.e.,

A � L: (21)

In what follows, we assume that this is indeed the case; see
also Sec. IVB.
Note that at the time of the phase transition, the bubble

nucleation rate (16) is still small,

�� T4
cA

4

u3
12�

�
Tc

M�
Pl

�
4
: (22)

This is, of course, a consequence of the slow cosmological
expansion.

C. Q-balls in the end of the phase transition

We are now ready to estimate the volume from which X
particles are collected into a single Q-ball. This volume
will determine the number density of Q-balls immediately
after the phase transition and the typical Q-ball charge.
One way to obtain the estimate is to notice that within a
factor of order 1, this volume is the same as the volume of a
remnant of the old phase in the midst of the phase tran-
sition; see Fig. 1. We estimate the size R� of a remnant by
requiring that it shrinks to small size before a bubble of the
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new phase is created inside it. The lifetime of a remnant of
size R is R=u, so the latter requirement gives

R3��ðTÞR�
u

� 1:

Making use of Eq. (22), we obtain

R� � u
3�M�
Pl

T2
cA

: (23)

Another way to estimate the volume that will shrink to one
Q-ball is to consider bubbles of the new phase instead and
estimate the typical size of a bubble in the midst of the
transition. At time t, the average bubble volume is

4�

3
R3ðtÞ ¼ N�1ðtÞ

Z t

tc

Vðt; t0Þ�ðt0Þxðt0Þdt0;

where NðtÞ ¼ R
t
tc
�ðt0Þxðt0Þdt0 estimates the number den-

sity of the bubbles. These integrals are evaluated in the
same way as Eq. (18), and we get

4�

3
R3�ðtÞ ¼ 2�

�
u
3�M�

Pl

T2
cA

�
3
:

This gives the same estimate as Eq. (23), which demon-
strates the consistency of the approach.

From now on, we use the following expression for the
volume from which X particles are collected into a single
Q-ball:

V� ¼ 4�

3
R3� ¼ �

�
uA1=2M�

Pl

T2
cL

3=2

�
3
;

where we inserted 
� given by Eq. (19), and � is a parame-
ter of order 1 that parmetrizes the uncertainty of our
estimate.

The number density of Q-balls immediately after the
phase transition equals nQðTcÞ ¼ V�1� , and its ratio to the

entropy density is

nQðTcÞ
sðTcÞ

¼ 45

2�2g�

1

T3
cV�

: (24)

Note that for given values of couplings, this ratio is sup-
pressed by ðTc=MPlÞ3. Since one Q-ball contains all excess
of X particles in volume V�, its charge is [again assuming X
asymmetry equal to quark asymmetry, cf. Eq. (7)]

Q ¼ ðnX � n �XÞV� ¼ 3�BsðTcÞV�: (25)

This charge is large, since it is proportional to ðMPl=TcÞ3.
The X particles are packed into Q-balls rather efficiently.

D. Q-balls at present

Once the phase transition completes and Q-balls get
formed, the ratio of their number density to entropy density
stays constant and is given by Eq. (24). With the Q-ball
charge (25), its mass is found from Eq. (5),

mQ ¼ 4�
ffiffiffi
2

p
3

U1=4
0 ½3�BsðTcÞ�3=4V3=4

�

¼ 7:3 � �3=4 ��3=4
B g3=4� M�9=4

Pl

u9=4U1=4
0 A9=8

T9=4
c L27=8

: (26)

Hence, Q-balls are dark matter candidates, provided that

mQnQ
s

¼ f�3=4
B

T3=4
c U1=4

0

M�3=4
Pl

¼ �DM

s0
; (27)

where �DM ’ 1� 10�6 GeV � cm�3 and s0 ’ 3000 cm�3

are the present mass density of dark matter and entropy
density, respectively, and

f ¼ 19:0
��1=4L9=8

A3=8g1=4� u3=4
(28)

is a combination of dimensionless parameters. As we see,
the dependence on parameter � is weak, so we set � ¼ 1
from now on. At this point, we can make a rough estimate
for the relevant energy scale. Assuming U0 � T4

c , A� 1,
u� 0:1, g� � 100, and L� 100, we get from Eq. (27) that
Tc should be in a ballpark of

Tc � 1	 10 TeV: (29)

As we pointed out in the introduction, this relatively
low energy scale makes the scenario interesting from the
viewpoint of collider experiments.

E. Validity of calculation

A particle physics model in which our mechanism
can work must satisfy several requirements. One is the
condition (21) or

A � 4 ln

�
M�

Pl

Tc

�
: (30)

Another is that X particles do not penetrate into the new
phase in the course of the phase transition. This is the case
if their mass in the new phase is sufficiently larger than the
temperature. Quantitatively, we require that the mass den-
sity of remaining free X particles is negligible compared to
the mass density of dark matter Q-balls,

ðnX þ n �XÞmXjðT¼0Þ
s

� �DM

s0
: (31)

Let us see what this condition means in terms of
parameters.
The dynamics of penetration of X particles into the new

phase depends on the bubble wall velocity and the strength
of X-particle interaction with cosmic plasma. There are
two extreme cases: very slow motion of the bubble wall
and very fast motion. Let us consider them in turn.
Slow wall Let the wall velocity be so small that there is

complete thermal equilibrium for X particles across the
wall. Then the chemical potentials in the old and new
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phases are equal, and since X particles in the old phase are
massless, the chemical potential is negligibly small:
indeed, in the old phase, �T2 � ðnX � n �XÞ ��BT

3;
hence, �=T � �B. The number density of X particles in
the new phase is given by the equilibrium formula for
nonrelativistic species, and we have

nX þ n �X

s
¼ s�1 � 2

�
mXT

2�

�
3=2

e�mX=T

� 1

g�

�
mX

2�T

�
3=2

e�mX=T; (32)

where all quantities, including mX, are evaluated at Tc.
Fast wall In the opposite case of the fast wall, all X

particles that penetrate the new phase stay there. Flux of X
particles and �X particles, for which the momentum normal
to the wall exceeds mX, is

jX �X ¼ 2

ð2�Þ3
Z

d2pL

Z 1

mX

dpTe
�

ffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tþp2

L

p
=T:

This integral is saturated at pT near mX and pL � pT .
Hence, we write

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ p2

L

q
¼ pT þ p2

L

2pT

¼ pT þ p2
L

2mX

and obtain

jX �X ¼ 1

2�2
mXT

2e�mX=T:

As the wall moves, its radius increases by dR ¼ udt, and
the number of penetrated particles is

jX �XSdt ¼ jX �Xu
�14�R2dR:

So, the number density in the new phase is, in the end,

nX þ n �X ¼ u�1jX �X: (33)

This gives the estimate similar to that in the slow wall case,

except that instead of particle velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=mX

p
, it involves

the wall velocity.
If X �X annihilation is switched off in the new phase,

then the ratio ðnX þ n �XÞ=s stays constant after the phase
transition. For any of the above cases, and, hence, for all
intermediate ones, up to logarithmic corrections, we get
from Eq. (31)

mXjTc

Tc

> ln

�
�DM

s0Tc

�
(34)

or

h�c

Tc

> ln

�
3� 10�10 GeV

Tc

�
: (35)

This condition does not apply if X �X annihilation is
efficient in the new phase. If Eq. (35) does not hold, the
behavior of X particles in the new phase is similar to that of
weakly interacting massive particles [note that Eqs. (32)

and (33) show that the X-particle abundance in the new
phase just after the phase transition either coincides with or
exceeds the equilibrium abundance]. In that case, the
condition (31) implies that the X �X-annihilation cross
section exceeds the standard weakly-interacting-massive-
particle-annihilation cross section. Since the energy scale
inherent in the model is high [see Eq. (29)], the latter
scenario is not particularly plausible. In what follows, we
assume that the inequality (35) holds.

IV. EXAMPLE: ONE-LOOP MOTIVATED
EFFECTIVE POTENTIAL

A. Critical temperature and Q-ball parameters

As an example, let us consider effective potential of a
particular one-loop motivated form:

Uð�; TÞ ¼ �ðT2 � T2
c2Þ�2 � �T�3 þ ��4; (36)

where Tc2, �, and � are parameters depending on particle
physics at temperature T, and we neglect temperature
corrections to the quartic self-coupling. We treat Tc2, �,
�, and � as parameters of the model but keep in mind the
relation �T2

c2 ¼ 2�v2, which follows from Eq. (3b).
We assume in what follows that 9�2 < 32��. Then at

high temperatures, the effective potential has only one
local minimum at � ¼ 0. As the Universe cools down,
the minimum at � � 0 develops. It becomes deeper than
the minimum at � ¼ 0 at T < Tc, where

T2
c ¼ 4��

4��� �2
T2
c2: (37)

In what follows, we need the expression for the height
of the scalar potential and mass of the � particle, both at
zero temperature, in terms of the parameters entering
Eqs. (36) and (37):

U0 ¼ ð4����2Þ2
64�3

T4
c ; m� ¼

�
4����2

�

�
1=2

Tc: (38)

In this way, we trade the parameter v in the original
Lagrangian (3a) for the parameters relevant for the phase
transition.
Let us now rewrite the results of Sec. III in terms of the

parameters used in Eq. (36). At small 
 
 Tc�T
Tc

, one has

� ¼ ��2ð4��� �2Þ
8�3

T4
c
; (39)

� ¼
Z �c

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Uð�; TcÞ

q
d� ¼ �3

24
ffiffiffi
2

p
�

5
2

T3
c : (40)

Thus,

A ¼ �

81
ffiffiffi
2

p �5

�3=2ð4��� �2Þ2 (41)

and
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V� ¼
�
uA1=2M�

Pl

T2
cL

3=2

�
3

¼
� ffiffiffiffi

�
p

u

9 � 21=4
M�

Pl

T2
c

�5=2

�3=4ð4��� �2Þ � L�3=2

�
3
; (42)

where L is defined in Eq. (20). We find from Eq. (27) the
present Q-ball dark matter mass density

�DM ¼ K��
3=4
B s0M

��3=4
Pl g�1=4

� u�3=4

� ��15=8��3=16ð4��� �2Þ5=4T7=4
c L9=8; (43)

where

K� ¼ 215=1637=451=4�1=8 � 22:5:

Equating �DM to the actual dark matter density, we obtain
the critical temperature in terms of other parameters:

Tc ¼ KT�
4=7
DM�

�3=7
B s�4=7

0 M�3=7
Pl g1=7� u3=7�15=14

� �3=28ð4��� �2Þ�5=7 � L�9=14; (44)

where

KT ¼ 2�15=283�15�1=7��1=14 � 0:17:

In further computations, we use Tc ¼ 10 TeV in the
argument of logarithm (20), see Eq. (29). Finally,
Eqs. (25) and (26) give for the Q-ball parameters

Q ¼ KQ�
�12=7
DM �16=7

B s12=70 M�12=7
Pl g4=7�

� �30=7u12=7�29=7�9=7ð4��� �2Þ�5L�18=7; (45)

mQ ¼ KmQ
��5=7
DM �9=7

B s5=70 M�12=7
Pl g4=7� u12=7

� �30=7��18=7ð4��� �2Þ�6=7L�18=7; (46)

where

KQ ¼ 269=7�26=73�45�4=7 � 0:063;

KmQ
¼ 213=73�55�4=7�26=7 � 0:42:

The present number density of Q-balls is, of course, equal
to �DM=mQ.

B. Parameter space

In Sec. III E, we pointed out two conditions that the
model should obey. In terms of the parameters of the
effective potential, the condition (30) takes the following
form [see Eq. (41)]:

�

81
ffiffiffi
2

p �5

�3=2ð4��� �2Þ2 � 4 ln

�
M�

Pl

Tc

�
’ 120: (47)

The concrete form of the condition (35) is obtained by
noticing that

�c 
 h�ijT¼Tc
¼ �

2�
Tc: (48)

We find

h
�

2�
> 25: (49)

We also assume that the quartic self-coupling of the field�
is not particularly small and impose a mild constraint
motivated by naturalness argument,

� >
�2

64�2
: (50)

The conditions (47), (49), and (50) are actually quite
restrictive. In particular, they require that the�-� coupling
is rather strong. For h� 5, the available region in the
parameter space is fairly large, as shown in Fig. 2. This
region becomes considerably smaller already for h� 3;
see Fig. 3.
We scanned the available regions and found the follow-

ing range of masses m� and critical temperatures, at which

our mechanism does work:

m� 2 3� 102 	 1� 104 GeV;

Tc 2 1� 103 	 3� 104 GeV:

For the Q-ball parameters we obtained the range

FIG. 2 (color online). The region in the parameter space
consistent with the constraints (47), (49), and (50) for h ¼ 5.
Dots are the points for which the mass, critical temperature, and
Q-ball parameters are listed in Tables I and II.

FIG. 3 (color online). Same as in Fig. 2 but for h ¼ 3.
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mQ 2 3� 10�7 	 3� 10�3 gram;

Q 2 1019 	 1022;

nQ 2 1� 10�27 	 3� 10�24 cm�3:

Three particular examples, corresponding to the points in
Fig. 2, are listed in Tables I and II for two values of the
bubble wall velocity.

V. CONCLUSION

We considered a mechanism for producing Q-balls in the
course of the first-order phase transition and described it
quantitatively. As we have seen, this mechanism efficiently
packs massive stable particles, which otherwise would be
overproduced, and, thus, drastically reduces themass density.

Using a well-studied model of Friedberg-Lee-Sirlin
Q-balls, we obtained formulas for the dark matter proper-
ties, such as charge, mass, and concentration of dark matter
Q-balls, as well as masses of scalar fields, depending on the
parameters of the transition. As an example, we considered
this mechanism in a theory with the effective potential of
one-loop motivated form.

We have seen that the main parameter is the temperature
of the phase transition, whose adjustment yields the right
value of the present dark matter density. A remarkable

property of the mechanism is that for a wide range of

parameters, independently of particle physics and an ef-

fective potential model, the estimate for the energy scale is

Tc � 1–10 TeV.
The main requirement for effective packing of particles

into Q-balls is that the phase transition is strongly first

order. For one-loop motivated effective potential, this

implies strong �-� coupling and gives the main constraint

on available parameter space. However, for other models,

this is not necessarily the case, since there are other ways

to make the first-order phase transition strong enough

(see, e.g., Refs. [31,32] and references therein).
Our study was motivated by the possibility that X-

particle asymmetry is related to the baryon asymmetry.

However, this is optional. The mechanism described works

in the same way, with 3�B replaced by �X, if nX is

considered as yet another free parameter.

ACKNOWLEDGMENTS

This work has been supported in part by the grant of the
President of the Russian Federation, Grant No. NS-
5590.2012.2, by the grant of the Ministry of Science and
Education, Grant No. 8412, and by Grant No. RFBR 12-
02-00653.

[1] H. Davoudiasl and R.N. Mohapatra, New J. Phys. 14,
095011 (2012).

[2] J. McDonald, Phys. Rev. D 83, 083509 (2011).
[3] J. McDonald, Phys. Rev. D 84, 103514 (2011).
[4] L. Covi, E. Roulet, and F. Vissani, Phys. Lett. B 384, 169

(1996).
[5] L. Covi and E. Roulet, Phys. Lett. B 399, 113

(1997).
[6] M. Plumacher, arXiv:hep-ph/9807557.

[7] S. D. Thomas, Phys. Lett. B 356, 256 (1995).
[8] W. Buchmuller, K. Schmitz, and G. Vertongen, Nucl.

Phys. B851, 481 (2011).
[9] N. J. Poplawski, Phys. Rev. D 83, 084033 (2011).
[10] S.M. Barr, Phys. Rev. D 85, 013001 (2012).
[11] H. An, S.-L. Chen, R.N. Mohapatra, and Y. Zhang, J. High

Energy Phys. 03 (2010) 124.
[12] N. Haba and S. Matsumoto, Prog. Theor. Phys. 125, 1311

(2011).

TABLE II. Same but for u ¼ 0:3.

m�, GeV Tc, GeV Q mQ, g nQ, cm
�3

� ¼ 5 � ¼ 0:4 � ¼ 0:04 4:9� 104 1:2� 104 3:9� 1021 1:9� 10�3 1:0� 10�27

� ¼ 0:5 � ¼ 0:02 � ¼ 0:002 2:1� 104 1:6� 104 3:2� 1021 1:0� 10�3 1:9� 10�27

� ¼ 0:5 � ¼ 0:004 � ¼ 0:0004 9:4� 103 6:7� 103 8:2� 1020 2:5� 10�4 7:8� 10�27

TABLE I. Q-ball parameters for particular values of couplings (three left columns) and bubble wall velocity u ¼ 0:03.

m�, GeV Tc, GeV Q mQ, g nQ, cm
�3

� ¼ 5 � ¼ 0:4 � ¼ 0:04 1:9� 104 4:8� 103 8:7� 1019 4:2� 10�5 4:5� 10�26

� ¼ 0:5 � ¼ 0:02 � ¼ 0:002 8:1� 103 6:1� 103 7:2� 1019 2:3� 10�5 8:1� 10�26

� ¼ 0:5 � ¼ 0:004 � ¼ 0:0004 3:7� 103 2:6� 103 1:9� 1019 5:6� 10�6 3:4� 10�25

COSMOLOGICAL PHASE TRANSITION, BARYON . . . PHYSICAL REVIEW D 87, 083528 (2013)

083528-7

http://dx.doi.org/10.1088/1367-2630/14/9/095011
http://dx.doi.org/10.1088/1367-2630/14/9/095011
http://dx.doi.org/10.1103/PhysRevD.83.083509
http://dx.doi.org/10.1103/PhysRevD.84.103514
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://dx.doi.org/10.1016/S0370-2693(97)00287-6
http://dx.doi.org/10.1016/S0370-2693(97)00287-6
http://arXiv.org/abs/hep-ph/9807557
http://dx.doi.org/10.1016/0370-2693(95)00772-D
http://dx.doi.org/10.1016/j.nuclphysb.2011.06.004
http://dx.doi.org/10.1016/j.nuclphysb.2011.06.004
http://dx.doi.org/10.1103/PhysRevD.83.084033
http://dx.doi.org/10.1103/PhysRevD.85.013001
http://dx.doi.org/10.1007/JHEP03(2010)124
http://dx.doi.org/10.1007/JHEP03(2010)124
http://dx.doi.org/10.1143/PTP.125.1311
http://dx.doi.org/10.1143/PTP.125.1311


[13] L. J. Hall, J. March-Russell, and S.M. West,
arXiv:1010.0245.

[14] K. Petraki, M. Trodden, and R. R. Volkas, J. Cosmol.
Astropart. Phys. 02 (2012) 044.

[15] D. S. Gorbunov and A.G. Panin, Phys. Lett. B 700, 157
(2011).

[16] R. Kitano and I. Low, Phys. Rev. D 71, 023510 (2005).
[17] G. R. Farrar and G. Zaharijas, Phys. Rev. Lett. 96, 041302

(2006).
[18] D. Suematsu, J. Cosmol. Astropart. Phys. 01 (2006)

026.
[19] V. A. Kuzmin, Fiz. Elem. Chastits At. Yadra 29, 637

(1998) [Phys. Part. Nucl. 29, 257 (1998)]; Phys. At.
Nucl. 61, 1107 (1998).

[20] K. Agashe, D. Kim, M. Toharia, and D.G. E. Walker,
Phys. Rev. D 82, 015007 (2010).

[21] D. G. E. Walker, arXiv:1202.2348.
[22] R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13,

2739 (1976).

[23] R. Friedberg, T. D. Lee, and A. Sirlin, Nucl. Phys. B115, 1
(1976).

[24] R. Friedberg, T. D. Lee, and A. Sirlin, Nucl. Phys. B115,
32 (1976).

[25] T.D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).
[26] S. R. Coleman, Nucl. Phys. B262, 263 (1985); B269, 744

(E) (1986).
[27] A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418,

46 (1998).
[28] A. Kusenko, arXiv:hep-ph/0001173.
[29] D. S. Gorbunov and V.A. Rubakov, Introduction to the

Theory of the Early Universe: Hot Big Bang Theory
(World Scientific, Singapore, 2011).

[30] A. H. Guth and E. J. Weinberg, Phys. Rev. D 23, 876
(1981).

[31] J. R. Espinosa, T. Konstandin, and F. Riva, Nucl. Phys.
B854, 592 (2012).

[32] S. V. Demidov and D. S. Gorbunov, J. High Energy Phys.
02 (2007) 055.

E. KRYLOV, A. LEVIN, AND V. RUBAKOV PHYSICAL REVIEW D 87, 083528 (2013)

083528-8

http://arXiv.org/abs/1010.0245
http://dx.doi.org/10.1088/1475-7516/2012/02/044
http://dx.doi.org/10.1088/1475-7516/2012/02/044
http://dx.doi.org/10.1016/j.physletb.2011.04.067
http://dx.doi.org/10.1016/j.physletb.2011.04.067
http://dx.doi.org/10.1103/PhysRevD.71.023510
http://dx.doi.org/10.1103/PhysRevLett.96.041302
http://dx.doi.org/10.1103/PhysRevLett.96.041302
http://dx.doi.org/10.1088/1475-7516/2006/01/026
http://dx.doi.org/10.1088/1475-7516/2006/01/026
http://dx.doi.org/10.1134/1.953070
http://dx.doi.org/10.1103/PhysRevD.82.015007
http://arXiv.org/abs/1202.2348
http://dx.doi.org/10.1103/PhysRevD.13.2739
http://dx.doi.org/10.1103/PhysRevD.13.2739
http://dx.doi.org/10.1016/0550-3213(76)90274-1
http://dx.doi.org/10.1016/0550-3213(76)90274-1
http://dx.doi.org/10.1016/0550-3213(76)90275-3
http://dx.doi.org/10.1016/0550-3213(76)90275-3
http://dx.doi.org/10.1016/0370-1573(92)90064-7
http://dx.doi.org/10.1016/0550-3213(85)90286-X
http://dx.doi.org/10.1016/0550-3213(86)90520-1
http://dx.doi.org/10.1016/0550-3213(86)90520-1
http://dx.doi.org/10.1016/S0370-2693(97)01375-0
http://dx.doi.org/10.1016/S0370-2693(97)01375-0
http://arXiv.org/abs/hep-ph/0001173
http://dx.doi.org/10.1103/PhysRevD.23.876
http://dx.doi.org/10.1103/PhysRevD.23.876
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.010
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.010
http://dx.doi.org/10.1088/1126-6708/2007/02/055
http://dx.doi.org/10.1088/1126-6708/2007/02/055

