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Amongst the multitude of inflationary models currently available, models that lead to features in the

primordial scalar spectrum are drawing increasing attention, since certain features have been found to

provide a better fit to the cosmic microwave background data than the conventional, nearly scale invariant,

primordial spectrum. In this work, we carry out a complete numerical analysis of two models that lead to

oscillations over all scales in the scalar power spectrum. We consider the model described by a quadratic

potential which is superposed by a sinusoidal modulation and the recently popular axion monodromy

model. Since the oscillations continue even on to arc minute scales, in addition to the WMAP data, we

also compare the models with the small scale data from ACT. Though, both the models, broadly, result in

oscillations in the spectrum; interestingly, we find that, while the monodromy model leads to a

considerably better fit to the data in comparison to the standard power law spectrum, the quadratic

potential superposed with a sinusoidal modulation does not improve the fit to a similar extent. We also

carry out forecasting of the parameters using simulated Planck data for both the models. We show that the

Planck mock data performs better in constraining the model parameters as compared to the presently

available cosmic microwave background datasets.
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I. LOCALVERSUS NONLOCAL FEATURES IN
THE PRIMORDIAL SPECTRUM

Inflation has proven to be the most efficient mechanism
to overcome difficulties such as the horizon and the flatness
problems that plague the standard, hot, big bang cosmo-
logical model. Importantly, in addition to resolving such
issues, inflation successfully generates primordial fluctua-
tions which seed the formation of structures. Over the years,
numerous models have been proposed that lead to a suffi-
cient duration of inflation and also produce perturbations of
suitable amplitude and shape that are consistent with the
observations of the anisotropies in the cosmic microwave
background (CMB) [1–3] as well as other observational
bounds. Currently, many of the models that lead to slow roll
inflation and, therefore, to a nearly scale invariant primor-
dial spectrum, seem to perform equally well against the
available data [4]. The hope remains that further CMB data
from the present and forthcoming missions such as Planck
[5] and the Cosmic Origins Explorer [6] may help us
discriminate better between the various models.

Although, a nearly scale invariant power spectrum pre-
dicted by slow roll inflation, along with the background
�CDM model, matches the angular spectrum from the
CMB observations quite well, there exist a few outliers
(notably, near the multipole moments of ‘ ¼ 2, 22 and 40)
in the Wilkinson Microwave Anisotropy Probe (WMAP)
data [1,2]. Interestingly, model independent reconstruction
of the primordial spectrum from the observed pattern of the
CMB anisotropies seem to suggest the possible presence of
specific features in the spectrum (see Refs. [7]; for a differ-
ent view, see Refs. [8]). Moreover, it has been found that
certain localized features actually lead to a better fit to the
data than the conventional power law spectrum (in this
context, see, for instance, Refs. [9–13]). And, it should be
noted here that generating such features require either
one or more periods of deviation from slow roll inflation
[14–16] or modifications to the initial conditions on the
perturbations [17].
Apart from localized features, it is interesting to examine

whether the CMB data also point to nonlocal features—i.e.,
certain characteristic and repeated behavior that extend
over a wide range of scales—in the primordial spectrum.
A quick glance at the unbinned CMB data seem to suggest
that, after all, such an eventuality need not altogether be
surprising. In fact, earlier investigations on possible Planck
scale modifications to the primordial spectrum have indi-
cated that continuing oscillations in the power spectrum can
lead to a substantial improvement in the fit at the cost of two
or three additional parameters (see Refs. [18,19]; in this
context, also see Ref. [20]). In this work, we shall inves-
tigate two inflationary models involving the canonical
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scalar field that lead to similar oscillations over all scales in
the curvature perturbation spectrum. We shall consider a
model described by the conventional quadratic potential,
but superposed by a sinusoidal modulation (see Ref. [21];
also see Ref. [22]), and the presently popular axion monod-
romy model (see, for example, Refs. [23]). It should be
mentioned here that these models have been compared with
the WMAP data recently [21,23,24]. However, all the ear-
lier analyses had resorted to evaluating the scalar power
spectrum under certain approximations. In contrast, we
shall compute the scalar power spectrum exactly using a
highly accurate numerical code. And, we shall evaluate the
tensor spectrum too accurately and include it in our analy-
sis. Moreover, as the oscillations in the inflationary scalar
power spectrum continue even over smaller scales, in addi-
tion to theWMAP seven year data [2], we shall compare the
models with the small scale data from the Atacama
Cosmology Telescope (ACT) [3]. We shall also arrive at
the constraints on the model parameters using simulated
Planck data.While both the models that we consider lead to
oscillations in the spectrum, we find that the monodromy
model results in a superior fit to the data. Further, as we
shall see, the Planckmock data leads to better constraints on
the model parameters than the currently available CMB
datasets.

This paper is organized as follows. In the following
section, we shall briefly describe the models that we shall
consider and the methodology that we shall adopt to com-
pare the models with the data. In the subsequent two
sections, we shall present the results of our analysis and
examine whether Planck will be able to constrain the
models better, respectively. We shall conclude with a brief
summary and discussion in the final section.

Note that we shall work in units such that ℏ ¼ c ¼
ð8�GÞ ¼ 1. Moreover, we shall assume the background
cosmological model to be the standard, spatially flat,
�CDM model.

II. MODELS AND METHODOLOGY

In this section, we shall briefly describe the models that
we shall work with and the methodology we shall adopt to
compare the models with the data.

A. The models

As we mentioned, we shall consider two models, the first
of which is the chaotic inflationary that is modulated by
sinusoidal oscillations [21,22]. The model is described by
the potential

Vð�Þ ¼ 1

2
m2�2

�
1þ � sin

�
�

�
þ �

��
; (1)

where, evidently, � denotes the canonical scalar field, m is
the parameter that characterizes the original quadratic po-
tential, while the parameters � and � describe the ampli-
tude and the frequency of the superimposed oscillations.

We have also included the parameter �, which shifts the
oscillations within one period, in our analysis. The second
model that we shall consider is the axion monodromy
model which is motivated by string theory [23–26]. The
inflaton potential in such a case is given by

Vð�Þ ¼ �

�
�þ � cos

�
�

�
þ �

��
: (2)

Note that, while the amplitude of the oscillation is fixed
in the axion monodromy model, in the chaotic model
described by the potential (1), the amplitude depends quad-
ratically on the field. The inflaton oscillates as it rolls down
these potentials, and these oscillations continue all the way
until the end of inflation. This behavior leads to small
oscillations in the slow roll parameters, which in turn
results in continuing oscillations in the primordial scalar
power spectrum. Our goal is to examine the extent to which
such oscillations are admitted by the CMB data.
We shall compare the performance of the above two

inflationary models with the conventional, power law, pri-
mordial spectrum. Recall that, the power law, scalar and
tensor spectra are usually written as (see, for example,
Refs. [27,28])

P SðkÞ ¼ AS

�
k

k0

�
nS�1

and P TðkÞ ¼ AT

�
k

k0

�
nT
; (3)

where the quantities AS and AT denote the amplitude of the
scalar and tensor spectra, while nS and nT denote the
corresponding spectral indices. The quantity k0 is the pivot
scale at which the amplitudes of the power spectra are
quoted. Given the scalar and tensor spectra, the tensor-
to-scalar ratio r is defined as the ratio of the latter to the
former and, when comparing the power law case with the
observations, it is the quantity r that is usually considered
in lieu of the tensor amplitude AT. Also, when considering
the power law spectra, as is often done, we shall assume the
slow roll consistency condition (viz. that r ¼ �8 nT), so
that the power law case is essentially described by the three
parameters AS, nS and r.

B. Evaluation of the background and the perturbations

We shall now outline the methods that we adopt to
evolve the equations governing the background and the
perturbations, and eventually evaluate the inflationary
scalar and the tensor perturbation spectra.
Recall that, in a Friedmann universe, a canonical scalar

field that is described by the potential Vð�Þ satisfies the
following equation of motion:

€�þ 3H _�þ V� ¼ 0; (4)

where V� ¼ dV=d�, H is the Hubble parameter, while, as

usual, the overdots denote differentiation with respect to
the cosmic time coordinate. We solve the above differential
equation exactly using the standard fourth order Runge-
Kutta method, with e-folds as the independent variable.
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In the case of the chaotic inflationary model with sinusoi-
dal modulations, we choose the initial value of the field to
be �i ’ 16, while in the monodromy model, we set �i ’
12. We then make use of the governing equations, consid-
ered under the slow roll approximation, to determine the
initial velocities of the field. These initial conditions allow
sufficient number of e-foldings (say, about 60–70) before
inflation ends near the bottom of the potentials. Further,
following the convention, we shall choose the initial value
of the scale factor to be such that the pivot scale k0 ¼
0:05 Mpc�1 leaves the Hubble radius at 50 e-folds before
the end of inflation [12].

In the spatially flat Friedmann universe of our interest,
the Fourier modes of the curvature perturbation R and
the tensor perturbation h are described by the following
equations [27,28]:

R00
k þ 2

z0

z
R0
k þ k2Rk ¼ 0 and

h00
k þ 2

a0

a
h0
k þ k2hk ¼ 0;

(5)

where the overprimes denote differentiation with respect to

the conformal time coordinate and z ¼ a _�=H, with a
being the scale factor. We impose the standard Bunch-
Davies initial conditions on the perturbations when the
modes are well inside the Hubble radius, and evolve them
using a Bulirsch-Stoer algorithm with an adaptive step size
control routine [29]. In simpler and smoother inflationary
potentials, the initial conditions on the modes are usually
imposed when, say, k=ðaHÞ ’ 100. In contrast, oscillatory
potentials of our interest here can exhibit certain resonant
behavior and, in order to capture this behavior, depending
on the values of the potential parameters, it can become
necessary to integrate from deeper inside the Hubble radius
(in this context, see, for instance, Refs. [23]). (It is interest-
ing to note here that the resonance also leads to rather high
levels of non-Gaussianities in these models [23,25,26].)We
impose the initial conditions on the modes when k=ðaHÞ ’
250, which we find to be suitable for the range of parame-
ters of the potentials that we work with. We evaluate the
scalar and the tensor perturbation spectra, viz.

P SðkÞ¼ k2

2�2
jRkj2 and P TðkÞ¼ 8

k2

2�2
jhkj2; (6)

at super-Hubble scales, when the amplitude of the curva-
ture and the tensor perturbations have frozen in [typically,
when k=ðaHÞ ’ 10�5].

C. Priors

As we mentioned, we shall assume the background cos-
mological model to be the standard, spatially flat, �CDM
model. The model can be characterized by the following
four parameters:�bh

2,�ch
2, � and �. The first two repre-

sent the baryon and the CDMdensities (with h being related
to the Hubble parameter), while the last two denote the ratio

of the sound horizon to the angular diameter distance at
decoupling and the optical depth to re-ionization, respec-
tively. In Table I below, we have listed the priors that we
work with on these four parameters.
As we had discussed earlier, we shall include the tensor

perturbations in our analysis. When the slow roll consis-
tency condition is imposed, the power law spectra are
completely described by the scalar amplitude AS, the scalar
spectral index nS and the tensor-to-scalar ratio r. It is worth
noting here that, in the inflationary models, the parameters
that describe the potential determine the scalar as well as
the tensor spectra entirely.
It is clear that, in the absence of the oscillatory terms in

the potential, the two inflationary models of our interest
will lead to nearly scale invariant spectra. Therefore, the
primary parameter that describes the two models, viz. m in
the chaotic inflationary model and � in the case of the
axion monodromy model, are essentially determined by
COBE normalization. In the absence of oscillations in the
potential, we find that the best fit chaotic model leads to a
power law spectrum with a scalar spectral index of about
0.96, while the monodromy model corresponds to nS ’
0:97. Also, as one would have anticipated, both of them
perform almost equally well against the data. However,
when the oscillations in the potential are taken into ac-
count, they induce modulations in the slow roll parameters,
which in turn lead to oscillations in the scalar power
spectrum. As we shall see, when the oscillations are in-
cluded, the monodromy model performs better against the
data than the chaotic inflation model.
We have chosen the priors on the two inflationary mod-

els such that the amplitude of the resulting scalar spectra
remain close to the COBE value, lead to the desired
spectral index, and result in a certain minimum duration
of inflation. The choice of priors have also been guided by
the results from the earlier analysis [21,23,24], and they
allow us to capture the resonance that can arise in these
models. We have listed the priors that we haveworked with
on the inflationary models in Table II.

D. Comparison with the recent CMB observations

To compare our models with the recent CMB observa-
tions, we perform the by-now common practice of the
Markov chain Monte Carlo sampling of the parameter

TABLE I. The priors on the four parameters that describe the
background, spatially flat, �CDM model. We keep the same
priors on the background parameters for all the models and
datasets that we consider.

Background parameter Lower limit Upper limit

�bh
2 0.005 0.1

�ch
2 0.01 0.99

� 0.5 10.0

� 0.01 0.8
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space using the publicly available CosmoMC package
[30,31]. The CosmoMC code in turn utilizes the
Boltzmann code CAMB [32,33] to arrive at the CMB
angular power spectrum from given primordial scalar and
tensor spectra. We evaluate the inflationary scalar as well
as tensor spectra using an accurate and efficient numerical
code (as outlined in Sec. II B) and feed these primordial
spectra into CAMB to obtain the corresponding CMB
angular power spectra. We should stress here that we
actually evolve all the modes that are required by CAMB
from the sub- to the super-Hubble scales to obtain the
perturbation spectra, rather than evolve for a smaller set
of modes and interpolate to arrive at the complete spec-
trum. This becomes imperative in the models of our inter-
est which (as one would expect, and as we shall illustrate
below) contain fine features in the scalar power spectrum.
It should be pointed out here that, while the chaotic model
leads to a tensor-to-scalar ratio of 0.16, the monodromy
model results in r ’ 0:06. Though these tensor amplitudes
are rather small to make any significant changes to the
results, we have developed the code to evaluate the infla-
tionary power spectra with future datasets (such as, say,
Planck) in mind, and hence we nevertheless take the ten-
sors into account exactly.

For our analysis, we consider theWMAP seven year data
and the small scale data from ACT [3]. We have worked
with the May 2010 versions of the CosmoMC and CAMB
codes [30–33], and we have made use of the WMAP
(version v4p1) and the ACT likelihoods while comparing
with the corresponding data [34]. While ACT has observed
CMB at the frequencies of 148 GHz as well as 218GHz, we
shall only consider the 148GHz data. Moreover, though the
ACT data spans over a wide range of multipoles (500 &
‘ & 10000), for the sake of numerical efficiency (as has
been implemented in Ref. [3]), we have set the CMB
spectrum to zero for ‘ > 4000, since the contribution at
larger multipoles is negligible. When considering the ACT
data, following the earlier work [3], in the power law case,

we have marginalized over the three secondary parameters
ASZ, AP and AC, where ASZ denotes the Sunyaev-Zeldovich
amplitude, AP the amplitude for the Poisson power from
radio and infrared point sources, while AC is the amplitude
corresponding to the cluster power. However, when com-
paring the oscillatory inflationary potentials with the ACT
data, we have only marginalized over ASZ and have fixed
the values of the other two parameters AP and AC.
We should mention that we have taken gravitational

lensing into account. Note that, to generate highly
accurate lensed CMB spectra, CAMB requires ‘max scalar ’
ð‘max þ 500Þ, where ‘max is, say, the largest multipole
moment for which the data is available. The WMAP seven
year data is available up to ‘ ’ 1200, while the ACT data
is available up to ‘ ’ 10000. For the WMAP seven year
data, we set ‘max scalar ’ 1800, and for ACT we choose
‘max scalar ’ 4500 since we are ignoring the data for
‘ > 4000. We set ‘max tensor ’ 400 for all the datasets, as
they decay down quickly after that. ACT has measured
only CTT

‘ , so the constraints from polarization, if any, will

come only from the WMAP data.
Lastly, since the primordial power spectra that we ex-

pect to arise in the inflationary models of our interest
contain repeated patterns extending over a wide range of
scales, one can expect that equivalent patterns would be
present in the CMB angular power spectrum running over
all angular scales. It is well known that the Boltzmann
code CAMB uses an effective sampling and a highly
accurate spline interpolation to determine the CMB angu-
lar power spectrum over the multipoles of interest [32,33].
However, when the underlying potential power spectra
contain oscillations, this default technique might not be
accurate (see Refs. [18,23]; in this context, also see
Ref. [35]). Following a method adopted earlier in a similar
context [18], we incorporate suitable changes in the stan-
dard CAMB and CosmoMC packages to avoid limited
sampling, and evaluate the angular power spectrum at
all multipoles.

TABLE II. The priors on the three parameters that describe the primordial spectra in the power
law case, and the parameters that describe the two inflationary potentials of our interest. We
work with the same priors when comparing the models with the WMAP as well as the ACT data.

Model Parameter Lower limit Upper limit

Power law case

ln ½1010AS� 2.7 4.0

nS 0.5 1.5

r 0.0 1.0

Chaotic model with sinusoidal

modulation

ln ½1010m2� �0:77 �0:58
� 0 2� 10�3

� 2� 10�2 1

� �� �

Axion monodromy model

ln ½1010�� 0.7 1.25

� 0 2� 10�4

� 3� 10�4 1� 10�3

� �� �
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III. RESULTS

In this section, we shall discuss the results of our analy-
sis. We shall present the best fit values of the various
parameters and also discuss the resulting primordial and
CMB angular power spectra.

A. The best fit cosmological
and inflationary parameters

We shall tabulate the best fit parameters in this subsec-
tion. We find that our results for the power law case are in
good agreement with the WMAP seven year [2] and the
ACT results [3]. In fact, we have cross checked our results
with and without the tensor contribution. As stated earlier,
we have made use of the three secondary parameters ASZ,
AP and AC when comparing the power law case with the
combined WMAP seven year and ACT data. In this case,
we obtain the mean value of AP to be 16.0, whereas AC is
described by a single tailed distribution which suggests that
AC < 8:4 at 95% C.L. (when the tensors are not taken into
account). We find that, for the power law spectra, if we fix
AP at the above-mentioned mean value and set AC to be
zero, the least squared parameter 	2

eff changes by a negli-

gible amount (in fact,�	2
eff ’ 0:2–0:3), and the best fit, the

mean values and the deviations too do not change appreci-
ably. So, in the case of the two inflationary models of our
interest, we have set AP ¼ 16:0, AC ¼ 0, and have margi-
nalized over ASZ. In Table III below, we have listed the best
fit values that we arrive at for the background cosmological
parameters and the parameters that describe the chaotic
inflationary model with superposed oscillations and the
axion monodromy model.

B. The spectra and the improvement in the fit

In Table IV, we have listed the least squares parameter
	2
eff for the different models and datasets that we have

considered. From the table it is clear that the monodromy
model leads to a much better fit with 	2

eff improving by

about 13 in the case of the WMAP seven year data and by
about 5 when the ACT data has also been included. (We
shall discuss the reason for this difference in the conclud-
ing section.) The table also seems to indicate two further
points. Firstly, even though the chaotic model with the
sinusoidal modulation does not perform as well as the
monodromy model, the fact that the model performs better
when the small scale data from ACT is included suggests
that oscillations can be favored by the data. Secondly,
oscillations of fixed amplitude in the potential as in the
monodromy model seem to be more favored by the data
than the oscillations of varying amplitude as in the case of
the chaotic model with sinusoidal modulations. In fact, this
strengthens similar conclusions that has been arrived at
earlier [18,19], wherein Planck scale oscillations of a

TABLE IV. The 	2
eff for the different models and datasets that

we have considered. Note that we have used the Gibbs approach
in the WMAP likelihood code to calculate the 	2

eff for the CMB

TT spectrum at the low multipoles (i.e., for ‘ < 32) [1,2].

Datasets

WMAP-7 WMAP-7þ ACTModel

Power law case 7468.4 7500.4

Chaotic model with sinusoidal

modulation

7468.0 7498.2

Axion monodromy model 7455.3 7495.2

TABLE III. The best fit values for the two inflationary models on comparing with the WMAP
seven year data (denoted as WMAP-7 here, and in the following table) alone, and along with the
ACT data.

Datasets WMAP-7 WMAP-7þ ACT
Model Parameter Best fit Best fit

Chaotic model with sinusoidal

modulation

�bh
2 0.0220 0.0218

�ch
2 0.1164 0.1215

� 1.038 1.040

� 0.0850 0.0876

ln ½1010m2� �0:667 �0:687
� 0:256� 10�3 0:998� 10�3

� 0.1624 0.2106

� 2.256 �2:2

Axion monodromy model

�bh
2 0.0227 0.0223

�ch
2 0.1079 0.1119

� 1.040 1.041

� 0.0921 0.0884

ln ½1010�� 0.9213 0.9332

� 1:84� 10�4 1:75� 10�4

� 4:50� 10�4 5:42� 10�4

� 0.336 �0:6342
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certain amplitude in the primordial spectrum was found to
lead to a considerably better fit to the data.

It is now interesting to enquire as to whether there exist
localized windows of multipoles over which the improve-
ment in the fit occurs. We find that, in the case of the
chaotic model with sinusoidal modulations, as far as the
WMAP seven year data is concerned, there is an improve-
ment of at most unity in all the multipoles combined. For
the monodromy model, the improvement at the low multi-
poles (i.e., for ‘ < 32) is just about 3 in the WMAP seven
year TT data, and there is hardly any improvement in the fit
from the available TE and EE data. We find that most of
the improvement occurs at the higher multipoles in the TT
data. In Fig. 1, after binning suitably, we have plotted the
difference �	2

eff ¼ ½	2
effðmodelÞ � 	2

effðpower lawÞ�, as a

function of the multipoles for the WMAP seven year TT
and TE data in the case of the axion monodromy model. It
is clear from the figure that the source of the improvement

in the fit is not confined to any specific set of multipoles,
and it arises due to small increments that accrue over the
entire range of available data. We believe that, in order to
capture the persistent oscillations in the power spectrum,
we have worked with sufficient resolution in the k space.
We find that working with a higher level of accuracy
changes the resulting 	2 only to a small extent (of the
order of unity) at the low multipoles (around ‘ � 80). In
Figs. 2 and 3, we have plotted the scalar power spectra and
the corresponding CMB TT angular power spectra for the
best fit values of the WMAP seven year data in the two
inflationary models that we have considered. And, in
Fig. 4, we have plotted the corresponding CMBEE angular
power spectra and TE amplitude for all the models,
including the power law case.

IV. CAN PLANCK SEE THE OSCILLATIONS?

In this section, we shall discuss the extent to which the
data from Planck—that is expected to be coming forth in
the very near future—will be able to constrain the presence
and characteristics of extended features in the primordial
spectrum.
Many of the parameters of inflationary models of the

type that we are considering here can have a credible
physical influence on the cosmological data, even if their
presence has not yet been detected. It is expected that data
from current missions such as Planck and beyond would
be able to determine many of the presently unknown
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FIG. 1 (color online). The difference in 	2
eff with respect to the

reference model, i.e., �	2
eff ¼ ½	2

effðmodelÞ � 	2
effðpower lawÞ�,

in the case of the axion monodromy model has been plotted as a
function of the multipole moment for the WMAP seven year
data, after binning in the multipole space with ‘bin ¼ 10. While
the figure on top corresponds to the WMAP seven year TT data
(for ‘ > 32), the lower one is for the TE data (for ‘ > 24).

 1e-09

 1e-08

 1e-05  0.0001  0.001  0.01  0.1  1

P
s(

k)

k

 1e-09

 1e-08

 0.001  0.01

FIG. 2 (color online). The scalar power spectra corresponding
to the best fit values of the WMAP seven year data for the two
inflationary models that we have considered. The solid red and
the blue lines (highly oscillating) describe the scalar power
spectra in the cases of the chaotic model with a sinusoidal
modulation and the axion monodromy model, respectively.
The spectrum corresponding to the best fit power law model
would essentially be the same as in the chaotic model with
sinusoidal modulations, but without any oscillations. The inset
highlights the extraordinary extent of persistent oscillations in
the case of the monodromy model.
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effects of the cosmological parameters. When performing a
parameter error forecast for future observations, it is the
Fisher matrix formalism that is commonly adopted. The
error bars on the additional parameters are estimated from
the derivatives of the observables with respect to the model
parameters around the best fit point (for a discussion, see,
for example, Ref. [36]). Such an analysis assumes that the
likelihood of the cosmological parameters approximates a
Gaussian multivariate. However, parameter degeneracies
can occur where certain combinations of the parameters
are not well constrained by the data. Also, the probability
distribution of the parameters defined over a finite range
may occasionally fail to converge at the boundaries. These
lead to considerable deviations from the assumption of a
multivariate Gaussian function.

We arrive at the possible constraints on the parameters
using a different technique wherein we make suitable mod-
ifications to the CosmoMC code with a publicly available
add-on code FuturCMB [37–39]. We firstly generate a
simulated dataset for Planck, using realistic isotropic noise
levels and the sky coverage fraction fsky. We consider only

isotropic noise modeled as spatially uniform Gaussian
white noise. This ensures that the noise term is diagonal
in the multipole space. The CMB angular power spectrum
generated from the best fit parameters of the axion mono-
dromy model (cf. Table III) using the WMAP seven year
data is treated as the fiducial power spectrum for generating
the Planck mock data. We use this simulated data and

incorporate the ‘‘all_l_exact’’ data format in the
CosmoMC code [40] to extract the projected parameter
errors by sampling the likelihood and estimating the margi-
nalized probability distribution in the parameter space. As
we mentioned above, it is expected that this procedure
would bemore reliable than the Fishermatrix analysis since
there is no assumption on the likelihood functions of these
parameters being multivariate Gaussian distributions.
We have plotted the resulting one dimensional distribu-

tions for the inflationary parameters in Fig. 5. The figure
contains the constraints from the WMAP-7, WMAP-7þ
ACT as well as the Planck simulated data for the original
parameter m of the chaotic model and the amplitude,
frequency and phase parameters �, � and � of the super-
imposed sinusoidal modulations. For the axion mono-
dromy model, we have plotted the distributions for the

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10  100  1000

WMAP unbinned
Powerlaw

Sine
Monodromy

-150

-100

-50

 0

 50

 100

 150

 100  1000

∆Cl

FIG. 3 (color online). The CMB TT angular power spectra
corresponding to the best fit values of the different models for the
WMAP seven year data. The red (dots), green (dashed), and
the black (solid) curves correspond to the power law model, the
chaotic model with sinusoidal modulation and the axion mono-
dromy model, respectively. The gray circles with error bars
denote the WMAP seven year unbinned data. The inset high-
lights the difference in the angular power spectrum between the
monodromy model and the power law case. In the case of the
axion monodromy model, the tiny and continued oscillations in
the power spectrum lead to small improvements in the fit to the
data over a wide range of multipoles, which eventually add up to
a good extent.
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FIG. 4 (color online). The CMB TE and the EE angular power
spectra corresponding to the best fit values of the different
models for the WMAP seven year data. The red (dots), green
(dashed), and the black (solid) curves represent the TE=EE
spectrum (in fact, magnitude of TE spectrum) in the power
law case, the chaotic model with sinusoidal modulations and
the axion monodromy model, respectively. As in the earlier
figure, the insets highlight the difference in the TE=EE spectrum
between the monodromy model and the power law case.
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initial parameter � and the parameters �, � and � charac-
terizing the oscillations for the same datasets. The one
dimensional distribution for � is very flat suggesting the
lack of a specific region in the parameter space of � which
provides a good fit to the data. However, � is a phase
parameter in the oscillating inflaton potential which shifts
the oscillations within one period in our analysis; a flat
likelihood does not necessarily indicate the failure of the
particular model.

Figure 6 contains the two dimensional contour plots for
the parametersm and � for the sinusoidal model and � and
� for the monodromy model. Again, we have displayed the
constraints from all the three datasets. It can be easily
perceived from these set of figures that the Planck data
leads to much tighter bounds on the inflationary parameters
than the currently available data for the same range of
priors for the various parameters.

V. DISCUSSION

In this work, our main aim has been to investigate if the
CMB data support certain nonlocal features—i.e., a certain
repeated and characteristic pattern that extends over a wide
range of scales—in the primordial scalar power spectrum.

With this goal in mind, we have studied two models of
inflation, both of which contain oscillatory terms in the
inflaton potential. The oscillations in the potential produces
oscillations in the slow roll parameters, which in turn
generate oscillations in the primordial as well as the CMB
power spectra. Earlier work in this context had utilized the
analytical expressions for the primordial power spectra,
obtained under certain approximations, to compare such
models with the data [21,23,24]. Instead, we have used an
accurate and efficient numerical code to arrive at the infla-
tionary scalar and tensor power spectra. In fact, in order to
ensure a good level of accuracy, rather than evolve a finite set
of modes and interpolate, we have evolved and computed the
inflationary perturbation spectra for all the modes that is
required by CAMB to arrive at the corresponding CMB
angular power spectra. While this reflects the extent of the
numerical accuracy of our computations, the efficiency of the
code can be gauged by the fact that we have able to been able
to complete the required runs within a reasonable amount of
time despite such additional demands.
Prior experience, gained in a different context, had

already suggested the possibility that small and continued
oscillations in the scalar power spectra can lead to a better
fit to the data [18]. This experience has been corroborated

FIG. 5 (color online). One dimensional distributions of the inflationary model parameters from the WMAP-7 (dot-dashed),
WMAP-7þ ACT (dashed), and the Planck (solid) simulated data. We have plotted the constraints on the parameters m, �, �, and
� of the chaotic model with sinusoidal modulations (on the left column) and the parameters �, �, �, and � for the axion monodromy
model (on the right column). It is evident that the simulated Planck data tightens the bounds on the parameters substantially.
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by the earlier [21,23,24] and our current analysis (in this
context, see, however, Ref. [35]; we shall comment further
on this point below). We find that, oscillations, such as
those occur in the axion monodromy model lead to a
superior fit to the data. In fact, as far as the WMAP seven
year data is concerned, on evaluating the CMB angular
power spectrum at all the required multipoles without any
interpolation, we obtain an improvement of about 13 in the
least squared parameter 	2

eff for the axion monodromy

model, just as the earlier analytical efforts had (see the

first of the two references in Refs. [23]). The time taken
to compute the uninterpolated inflationary power spectra
depends not only on the number of points required, but also
on the frequency of the oscillations in the inflaton poten-
tials that we have considered. In the case of the axion
monodromy model, over the range of parameters that we
have worked with, our code takes about 3–12 seconds to
calculate the inflationary power spectra (both scalar and
tensor) for the nearly 2000 k points which are required by
CAMB. While such a level efficiency seems adequate for
comparing the models of our interest with the WMAP
seven year data, we found that evaluating the uninterpo-
lated CMB angular power spectra for comparing with the
WMAP as well as the ACT datasets did not prove to be
feasible in reasonable amount of time. As a result, we were
forced to use the default, interpolated CMB angular power
spectra obtained by CAMB in this situation. It is for this
reason that we have not been able to achieve an equivalent
improvement in the 	2

eff for the monodromy model when

the ACT data has been included.
Nevertheless, we believe that the limited level of com-

parison with the ACT data has its own role to play. The
ACT data we have used in our analysis is the binned data
provided in the ACT likelihood software. For a small sky
coverage experiment such as ACT, a lot of systematics are
involved in reconstructing the unbinned data. The differ-
ence in 	2

eff values using only the WMAP dataset and both

the WMAP and ACT datasets approximately corresponds
to the number of binned data points in the ACT dataset.
The reason we have incorporated the ACT dataset is to
cover the large multipole regime in the angular power
spectrum. For the monodromy model, we see that the
tiny oscillations do continue till small scales which does
not overlap with the WMAP seven year dataset, but can be
probed using the ACT dataset. Combining the two datasets,
one can form an informed estimate of the model parame-
ters over a wide range of angular scales.
In addition to comparing with the already available data,

we have also discussed on the extent to which Planck may
be able to constrain the parameters that describe the oscil-
latory terms in the potential. Rather than adopt the standard
method of forecasting for the model parameters using the
Fisher matrix, we have been able to arrive at the constraints
with suitable modifications to CosmoMC. We believe that
the method we have adopted is more reliable than the
Fisher matrix approach which does not work equally well
when the parameters are not described by multivariate
Gaussian distributions. The one-dimensional marginalized
distributions and the two-dimensional contours for the
parameters of the inflationary models that we have arrived
at show that future full sky CMB datasets such as Planck
would be capable of narrowing the constraints on these
parameters considerably.
Finally, before closing, it is important that we com-

ment on a recent work wherein it has been argued that
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FIG. 6 (color online). The joint two dimensional constraints
on the inflationary model parameters from the WMAP-7,
WMAP-7þ ACT and the Planck simulated data. The figure
on top illustrates the joint constrains on the parameters m and
� that characterize the chaotic model with sinusoidal modula-
tions, while the lower figure displays the joint constraints on the
parameters � and � that describe the axion monodromy model.
Note that the red contours (unfilled with thick dashed lines) are
the 1-
 and the 2-
 constraints from WMAP-7, the blue con-
tours (filled) are from WMAP-7þ ACT, while the small green
contours (filled, shaded) are from the simulated Planck data. It is
again clear that the simulated Planck data constrains the parame-
ters considerably more than the available data.
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fine features in the primordial spectrum as generated by
models such as the axion monodromy model have been
not conclusively detected by the data [35]. It should be
emphasized that, in this work, we have evaluated an
uninterpolated CMB angular power spectrum while com-
paring the models with the data. Moreover, the resulting
best fit CMB angular power spectra (cf. Figs. 3 and 4) do
indeed contain the tiny and persistent features encoun-
tered in the recent (see Fig. 4 of Ref. [35]) as well as the
earlier work [18,19,23]. Also, as we have highlighted
before, the results from our numerical evaluation of the
inflationary power spectra largely match the earlier re-
sults arrived at from the corresponding analytical spectra.
While it may be true that the evidence for the oscillations
may still not be conclusive, repeated analyses have
unambiguously pointed to the fact that they are more
favored by the data than a simpler and smooth primordial

spectrum. As we have argued, we believe that Planck
may be able to provide conclusive evidence in this
regard.
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