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The velocity distribution function (VDF) of the hypothetical weakly interacting massive particles

(WIMPs), currently the most favored candidate for the dark matter in the Galaxy, is determined directly

from the circular speed (‘‘rotation’’) curve data of the Galaxy assuming isotropic VDF. This is done by

‘‘inverting’’—using Eddington’s method—the Navarro-Frenk-White universal density profile of the dark

matter halo of the Galaxy, the parameters of which are determined by using the Markov chain

Monte Carlo technique from a recently compiled set of observational data on the Galaxy’s rotation curve

extended to distances well beyond the visible edge of the disk of the Galaxy. The derived most-likely local

isotropic VDF strongly differs from the Maxwellian form assumed in the ‘‘standard halo model’’

customarily used in the analysis of the results of WIMP direct-detection experiments. A parametrized

(non-Maxwellian) form of the derived most-likely local VDF is given. The astrophysical ‘‘g factor’’ that

determines the effect of the WIMP VDF on the expected event rate in a direct-detection experiment can be

lower for the derived most-likely VDF than that for the best Maxwellian fit to it by as much as 2 orders of

magnitude at the lowest WIMP mass threshold of a typical experiment.
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Several experiments worldwide are currently trying to
directly detect the hypothetical weakly interacting massive
particles (WIMPs), thought to constitute the dark matter
(DM) halo of our Galaxy, by looking for nuclear recoil
events due to scattering of WIMPs off nuclei of suitably
chosen detector materials in low background underground
facilities. The rate of nuclear recoil events depends cru-
cially on the local (i.e., solar neighborhood) density and
velocity distribution of the WIMPs in the Galaxy [1],
which are a priori unknown. Estimates based on a variety
of observational data typically yield values for the local
density of DM, �DM;�, in the range 0:2–0:4 GeV cm�3

[ð0:527–1:0Þ � 10�2M� pc�3] [2]. In contrast, not much
knowledge directly based on observational data is available
on the likely form of the velocity distribution function
(VDF) of the WIMPs in the Galaxy. The standard practice
is to use what is often referred to as the ‘‘standard halo
model’’ (SHM), in which the DM halo of the Galaxy is
described as a single-component isothermal sphere [3], for
which the VDF is assumed to be isotropic and of Maxwell-
Boltzmann (hereafter simply ‘‘Maxwellian’’) form, fðvÞ /
exp ð�jvj2=v0

2Þ, with a truncation at an assumed value of

the local escape speed, and with v0 ¼ vc;�, the circular

rotation velocity at the location of the Sun. Apart from
several theoretical issues (see, e.g., Ref. [4]) concerning

the self-consistency of the SHM as a model of a finite-size,
finite-mass DM halo of the Galaxy, high resolution
cosmological simulations of DM halos [5] give strong
indications of significant departure of the VDF from the
Maxwellian. On the other hand, these cosmological simu-
lations do not yet satisfactorily include the gravitational
effects of the visible matter (VM) components of the real
Galaxy, namely, the central bulge and the disk, which
provide the dominant gravitational potential in the inner
regions of the Galaxy including the solar neighborhood
region.
The VDF of the DM particles at any location in the

Galaxy is self-consistently related to their spatial density as
well as to the total gravitational potential, �ðxÞ, at that
location. For a spherical system of collisionless particles
(WIMPs, for example) with isotropic VDF satisfying the
collisionless Boltzmann equation, the Jeans theorem [3]
ensures that the phase space distribution function F ðx; vÞ
depends on the phase space coordinates ðx; vÞ only through
the total energy (per unit mass), E ¼ 1

2v
2 þ�ðrÞ, where

v ¼ jvj, r ¼ jxj. For such a system, given a isotropic
spatial density distribution �ðrÞ � R

d3vF ðEÞ, one can

get a unique F by the Eddington formula [3,6]

F ðEÞ ¼ 1
ffiffiffi
8

p
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where�ðrÞ � ��ðrÞ þ�ðr ¼ 1Þ is the relative potential
and E � �Eþ�ðr ¼ 1Þ ¼ �ðrÞ � 1

2v
2 is the relative

energy, with F > 0 for E > 0, and F ¼ 0 for E � 0.
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The latter condition implies that at any location r, the VDF
frðvÞ ¼ F =�ðrÞ has a natural truncation at a maximum

value of v, namely, vmax ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðrÞp

.
Thus, given a isotropic density profile of a set of

collisionless particles, we can calculate the VDF, frðvÞ,
using Eq. (1) provided the total gravitational potential�ðrÞ
in which the particles move is known. A direct observa-
tional probe of�ðrÞ is provided by the rotation curve (RC)
of the Galaxy, the circular velocity of a test particle as a
function of the galactocentric distance. In this paper we
reconstruct the total gravitational potential �ðrÞ in the
Galaxy directly from the Galactic RC data and then use
Eq. (1) to obtain the VDF, frðvÞ, of the WIMPs at any
location in the Galaxy [7].

We shall assume that the DM density profile to be used
on the right-hand side of Eq. (1) is of the universal
Navarro-Frenk-White [9] form, which, when normalized
to DM density at solar location, can be written as

�DMðrÞ ¼ �DM;�
�
R0

r

��
rs þ R0

rs þ r

�
2
; (2)

where R0 is the distance of the Sun from the Galactic
center. The profile given by Eq. (2) has two free parame-
ters, namely, the density �DM;� and the scale radius rs.

The total gravitational potential seen by the DM particle,
�, is given by � ¼ �DM þ�VM, where �DM is the DM
potential corresponding to the density distribution given by
Eq. (2) and �VM is the total potential due to the VM
component of the Galaxy. The latter can be effectively
modeled [10] in terms of a spheroidal bulge superposed
on an axisymmetric disk, with density distributions given,

respectively, by �b ¼ �b0ð1þ ðr=rbÞ2Þ�3=2, where �b0 and
rb are the central density and scale radius of the bulge,

respectively, and �dðR; zÞ ¼ ��
2zd

e�ðR�R0Þ=Rd e�jzj=zd , where
R and z are the axisymmetric cylindrical coordinates with

r ¼ ðR2 þ z2Þ1=2, Rd and zd are the scale length and scale
height of the disk, respectively, and �� is its local surface
density. The corresponding gravitational potentials for
these density models, �bulge and �disk, can be easily ob-

tained by numerically solving the respective Poisson equa-
tions, thus giving �VM ¼ �bulge þ�disk.

The density models specified above have a total of seven
free parameters, namely, rs, �DM;�, �b0, rb, ��, Rd, and zd.

We determine the most-likely (ML) values and the
68% C.L. upper and lower ranges of these parameters by
performing a Markov chain Monte Carlo (MCMC) analy-
sis (see, e.g., Ref. [11]) using the observed RC data of the
Galaxy. For a given set of the Galactic model parameters,
the circular rotation speed, vcðRÞ, as a function of the
galactocentric distance R, is given by

v2
cðRÞ ¼ R

@

@R
½�DMðR; z ¼ 0Þ þ�VMðR; z ¼ 0Þ�: (3)

For the observational data, we use a recently compiled set of
RC data [12] that extends to galactocentric distances well
beyond the visible edge of the Galaxy. This data set
corresponds to a choice of the local standard of rest
(LSR) set to ðR0;vc;�Þ¼ð8:0kpc;200kms�1Þ [13]. For the
MCMC analysis, we use the �2-test statistic defined as

�2 � P
i¼N
i¼1 ð

vi
c;obs

�vi
c;th

vi
c;error

Þ2, where vi
c;obs and v

i
c;error are, respec-

tively, the observational value of the circular rotation
speed and its error at the ith value of the galactocentric
distance, and vi

c;th is the corresponding theoretically calcu-

lated circular rotation speed. For priors on the free parame-
ters involved, we have taken the following ranges of the
relevant parameters based on currently available observa-
tional knowledge: For the VM parameters, �b0: ½0:1–2��
4:2�102M� pc�3 [10]; rb: ½0:01–0:2� � 0:103 kpc [10];
��: ½35–58�M� pc�2 [14]; Rd: ½1:7–3:5� kpc [10,15].
The parameter zd has been fixed at 340 pc [16] since the
results are fairly insensitive to this parameter. For
the DM parameters we took a wide enough prior range for
rs: ½0:1–100� kpc and �DM;�: ½0:1–0:5� GeV cm�3 consis-

tent with values recently quoted in the literature [2].
The results of our MCMC analysis are summarized in

Table I and Fig. 1. Figure 2 shows the theoretically calcu-
lated rotation curve for the most-likely set of values of the
Galactic model parameters obtained from the MCMC
analysis and listed in Table I, and its comparison with the
observed rotation curve data. In Table II, we display the
values of some of the physical quantities of interest char-
acterizing the Galaxy, derived from the Galactic parame-
ters listed in Table I. The values in Table II are in
reasonably good agreement with the values of these quan-
tities quoted in recent literature [8,12,17]. The relatively
large uncertainties in the values of some of the quantities

TABLE I. The most-likely values of the Galactic model parameters, as well as their 68% C.L. lower and upper ranges, means and
standard deviations, obtained from our MCMC analysis using the observed rotation curve data.

Parameter rs (kpc) �DM;� ðGeV=cm3Þ �b0 � 10�4 ðGeV=cm3Þ rb (kpc) �� ðM�=pc2Þ Rd (kpc)

Most-likely 30.36 0.19 1.83 0.092 57.9 3.2

Lower 14.27 0.17 1.68 0.083 55.51 2.99

Upper 53.37 0.23 2.0 0.102 58.0 3.27

Mean 41.35 0.20 1.84 0.092 54.30 3.14

Standard deviations 20.51 0.02 0.059 0.001 3.47 0.11
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that receive dominant contribution from the DM halo
properties at large galactocentric distances are simply a
reflection of the relatively large uncertainties of the rota-
tion curve data at those distances.

The Galactic model parameters determined above allow
us to reconstruct the total gravitational potential �ðxÞ at
any location in the Galaxy. Because of the axisymmetric
nature of the VM disk, this potential is nonspherical. To use
Eq. (1), which is valid only for a spherically symmetric
situation, we use the spherical approximation [8,18],
�VMðrÞ ’ G

R
r
0 MVMðr0Þ=r02dr0, where MVM is the total

VM mass contained within r [19].
The resulting normalized speed distribution frðvÞ �

ð4�v2ÞfrðvÞ [with
R
frðvÞdv ¼ 1] evaluated at the loca-

tion of the Sun, giving the most-likely f�ðvÞ, is shown in
Fig. 3. For comparison, we also show in the same figure
the best Maxwellian fit (BMF) [with fMaxwell� ðvÞ /
v2 exp ð�v2=v2

0Þ] to the most-likely f�ðvÞ obtained from

MCMC analysis. We also compare our results with those
from four large N-body simulations [5].

As evident from Fig. 3, the speed distribution differs
significantly from the Maxwellian form. We find that the
following parametrized form, which goes over to the stan-
dard Maxwellian form in the limit of the parameter k ! 0,
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FIG. 2. Rotation curve of the Galaxy with the most-likely set
of values of the Galactic model parameters listed in Table I. The
data with error bars are from Ref. [12].
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FIG. 1. The 2D posterior probability density function for dark
matter parameters (rs � �DM;�), marginalized over the visible

matter parameters.

TABLE II. The most-likely values of various relevant physical
parameters of the Milky Way and their upper and lower ranges
derived from the most-likely and 68% C.L. upper and lower
ranges of values of the Galactic model parameters listed in
Table I.

Derived quantities Unit Values

Bulge mass (Mb) 1010M� 3:53þ1:81
�1:29

Disk mass (Md) 1010M� 4:55þ0:2
�0:22

Total VM mass (MVM ¼ Mb þMd) 1010M� 8:07þ2:01
�1:51

DM halo virial radius (rvir) kpc 199:0þ75
�53:5

Concentration parameter ðrvirrs
Þ � � � 6:55þ5:01

�2:05

DM halo virial mass (Mh) 1011M� 8:61þ14:01
�5:22

Total mass of Galaxy (MVM þMh) 1011M� 9:42þ14:21
�5:37

DM mass within R0 1010M� 1:89þ0:72
�0:3

Total mass within R0 1010M� 7:09þ1:9
�1:15

Total surface density at

R0ðjzj � 1:1 kpcÞ
M� pc�2 69:21þ2:52

�3:55

Total mass within 60 kpc 1011M� 3:93þ2:15
�1:41

Total mass within 100 kpc 1011M� 5:92þ4:35
�2:56

Local circular velocity ðvc;�Þ km s�1 206:47þ24:67
�16:3

Local maximum velocity ðvmax ;�Þ km s�1 516:02þ120:85
�97:58
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FIG. 3. Normalized local speed distribution f�ðvÞ correspond-
ing to the ML set of values of the Galactic model parameters
given in Table I (solid curve) and its uncertainty band (shaded)
corresponding to the 68% C.L. upper and lower ranges of the
Galactic model parameters. The four panels show comparison of
our results with those from four different N-body simulations
[5], as indicated. In each panel, the best non-Maxwellian fit
(BNMF) [Eq. (4)—almost indistinguishable from the ML curve]
as well as the BMF, the latter with the form fMaxwell� ðvÞ/
v2expð�v2=v2

0Þ truncated at vmax ;�¼516 kms�1 (see Table II)

and with the free parameter v0 determined to be 206 km s�1, are
also shown.
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gives a good fit to our numerically obtained most-likely
local speed distribution shown in Fig. 3:

f�ðvÞ � 4�v2ð�ð�Þ � �ð�max ÞÞ; (4)

where �ðxÞ ¼ ð1þ xÞke�xð1�kÞ
, � ¼ v2=v2

0, �max ¼
v2
max ;�=v2

0, v0 ¼ 339 km s�1, and k ¼ �1:47. As a quan-
titative measure of the deviation of a model form of the
local speed distribution, fmodel, from the numerically
obtained ML form fML shown in Fig. 3, the quantity �2

f �
ð1=NÞPN

i¼1½fMLðviÞ � fmodelðviÞ�2 has a value of 	7:2�
10�5 for the parametrized form given by Eq. (4) compared
to a value 	1:7� 10�3 for the best Maxwellian fit shown
in Fig. 3. Note also that our results differ significantly from
those obtained from the N-body simulations.

In Fig. 4 we show the most-likely frðvÞ’s at several
different values of the galactocentric distance r. Notice
how the peak of the distribution shifts towards smaller
values of v and the width of the distribution shrinks, as
we go to larger r, with the distribution eventually becom-
ing a delta function at zero speed at asymptotically large
distances, as expected. The non-Maxwellian nature of
the distribution at all locations is also clearly seen, with
the Maxwellian approximation always overestimating the
number of particles at both low as well as extreme high
velocities. The inset in Fig. 4 shows our results for the

pseudophase space density, Q � �=hv2i3=2, as a function
of r, and its comparison with the power-law behavior
predicted from simulation results [20]. Note the agreement
with the power-law behavior at large distances but strong
deviation from it at smaller galactocentric radii, which
we attribute to the effect of the visible matter: For a given
DM density profile, the additional gravitational potential
provided by the VM supports higher velocity dispersion

of the DM particles, making Q smaller than that for the
DM-only case.
We now discuss the implications of our results for the

analysis of direct-detection experiments. The differential
rate of nuclear recoil events per unit detector mass
(typically measured in counts/day/kg/keV), in which a
WIMP (hereafter generically denoted by � with mass
m�) elastically scatters off a target nucleus of mass mN

leaving the recoiling nucleus with a kinetic energy ER, can
be written as [1]

dR
dER

ðER; tÞ ¼ �ðq2 ¼ 2mNERÞ
2m��

2
��gðER; tÞ; (5)

where �� � �DM;� is the local mass density of WIMPs,

�ðq2Þ is the momentum transfer dependent effective
WIMP-nucleus elastic cross section, � ¼ m�mN=ðm� þ
mNÞ is the reduced mass of the WIMP-nucleus system, and

gðER;tÞ¼
Z umax ðtÞ

u>umin ðERÞ
d3u

u
f�ðuþvEðtÞÞ�ðumax�uminÞ; (6)

is the crucial ‘‘g factor’’ that contains all information about
the local VDF of the WIMPs [21]. In Eq. (6) the variable u
(with u ¼ juj) represents the relative velocity of theWIMP
with respect to the detector at rest on Earth, and vEðtÞ is the
(time-dependent) velocity of Earth relative to the Galactic

rest frame. The quantity umin ðERÞ ¼ ðmNER=2�
2Þ1=2 is the

minimum WIMP speed required for giving a recoil energy
ER to the nucleus, and umax ðtÞ is the (time-dependent)
maximumWIMP speed [4] corresponding to the maximum
speed vmax (defined in the Galactic rest frame) for the VDF
under consideration.
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Note that the quantity gðER; tÞ takes its largest value at
ER ¼ Eth, the threshold energy for the experiment under
consideration. To illustrate the effect of the non-
Maxwellian nature of the VDF and its uncertainty, we
define the quantity � � gMLðEthÞ=gMaxwellðEthÞ, the ratio
of the g factor calculated with our ML form of f�ðvÞ shown
in Fig. 3 to that for the best Maxwellian fit to it also shown
in Fig. 3, both evaluated at ER ¼ Eth. A plot of � as a
function of the WIMP mass m�, for two different target

nuclei, viz. sodium and xenon, in both case with Eth ¼
2 keV, is shown in Fig. 5.

The lowest WIMP mass that can be probed by a given
experiment is given by m�;min ¼mN½ð2mNðvmax ;�þvEÞ2=
EthÞ1=2�1��1. As seen from Fig. 5, the effect of the
departure from Maxwellian distribution is most significant

at the lowest WIMP mass where the difference can be as
much as 2 orders of magnitude.
To summarize, a first attempt has been made to derive

the velocity distribution (assumed isotropic) of the dark
matter particles in the Galaxy directly using the rotation
curve data. The distribution is found to be significantly
non-Maxwellian in nature, the implication of which is a
sizable deviation of the expected direct-detection event
rates from those calculated with the usual Maxwellian
form.
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