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We present a new approach to computing the matter density power spectrum, from large linear scales to

small, highly nonlinear scales. Instead of explicitly computing a partial series of high-order diagrams, as

in perturbative resummation schemes, we embed the standard perturbation theory within a realistic

nonlinear Lagrangian-space ansatz. We also point out that an ‘‘adhesion-like’’ regularization of the shell-

crossing regime is more realistic than a ‘‘Zel’dovich-like’’ behavior, where particles freely escape to

infinity. This provides a ‘‘cosmic web’’ power spectrum with good small-scale properties that provide a

good matching with a halo model on mildly nonlinear scales. We obtain a good agreement with numerical

simulations on large scales, better than 3% for k � 1h Mpc�1, and on small scales, better than 10% for

k � 10h Mpc�1, at z � 0:35, which improves over previous methods.
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I. INTRODUCTION

The description of gravitational clustering can follow
two different frameworks: the Eulerian approach, where
one studies density and velocity fields on a fixed grid, and
the Lagrangian approach, where one studies particle tra-
jectories themselves [1].

The Eulerian approach is more convenient for some
practical purposes, because we observe density fields
and not trajectories (and it is also better suited to
baryonic physics, which involves pressure and tempera-
ture fields). However, it has the theoretical disadvantage
that one should in principle work with the phase-space
distribution function fðx; v; tÞ, which involves seven var-
iables and is very heavy for numerical and analytical
computations. Then in practice, most analytical ap-
proaches are based on the fluid approximation, which
replaces the Vlasov equation with hydrodynamical equa-
tions for the density and velocity fields �ðx; tÞ and
vðx; tÞ, which are much easier to handle. However, this
is only exact in the single-stream regime, and these
equations of motion themselves break down after shell
crossing. This makes the matching between the pertur-
bative and nonperturbative regimes rather difficult. More
precisely, because the dynamics is not well defined
(these equations of motion are not sufficient to deter-
mine the evolution after shell crossing), the asymptotic
regime at high wave numbers of the power spectrum

obtained within this framework is not obvious and not
clearly related to physical behaviors.
In contrast, in the Lagrangian approach, the trajectories

xðq; tÞ, where particles are identified by their initial posi-
tion q, are always well defined, and the behavior after shell
crossing is (at least implicitly) defined within each peculiar
scheme. This offers the prospect of a more convenient
matching to the highly nonlinear regime. Moreover, in
contrast to the Eulerian case, the Lagrangian approach is
not sensitive to the ‘‘sweeping effect’’ associated with
almost uniform translations by long wavelengths of the
velocity field [2–4] (i.e., this can be automatically removed
as a random uniform shift), and it is a more direct probe of
the structures of the density field. From an observational
point of view, this framework is also more convenient for
including redshift-space distortions. However, to compare
theoretical predictions with observations, one typically
needs to compute again the density fields, and the deriva-
tion of the latter from the particle trajectories usually
introduces additional approximations and problems.
This latter disadvantage explains why most perturbative

schemes that have been recently developed follow the
Eulerian framework [5–14]. They provide a good match
with numerical simulations on quasilinear scales by using
resummation schemes that are exact up to the one- or two-
loop order and improve over the standard perturbative
approach by including partial resummations of higher-
order diagrams. However, it has been difficult so far to
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obtain a good model up to the highly nonlinear scales (by
embedding the perturbative predictions within a phenome-
nological halo model), as one usually underestimates the
power spectrum on transition scales [11,15]. This discrep-
ancy is even worse for Lagrangian schemes, which usually
give rise to a perturbative power spectrum that decays
faster than the linear power spectrum at high k
[11,16,17], whereas the Eulerian schemes can show a
variety of behaviors, a similar fast decay, a convergence
back to the linear power, or a higher tail.

In this paper, we follow two main motivations:
(1) Develop a Lagrangian-based approach.
(2) Obtain a good matching with the highly nonlinear

regime.

Indeed, a Lagrangian-based approach is expected to pro-

vide a better starting point for eventually tackling redshift-

space distortions and biasing (although we do not address

these points here). Moreover, it is not sensitive to the

sweeping effect, so that the modeling can be directly

focused on density structures—that is, relative displace-

ments. Next, because our final goal is to obtain a unified

description from linear to highly nonlinear scales, it is

necessary to pay attention to transition scales. Moreover,

the requirement of a good matching to nonlinear scales is

likely to shed light on the asymptotic behavior that should

be satisfied by good perturbative schemes.
To reach these goals, we advocate a new perspective

while drawing on some previous works. Our main new
ideas are the following:

(a) Instead of building a perturbative resummation

scheme, which explicitly computes a partial series

of high-order diagrams, we build a self-consistent

ansatz that we next make consistent with standard

perturbation theory up to some order (one-loop or-

der in this paper).
(b) Instead of the usual ‘‘Zel’dovich-like’’ behavior in

the shell-crossing regime, we impose an ‘‘adhesion-
like’’ behavior.

These two strategies are motivated by the wish to obtain a
good behavior up to nonlinear scales.

First, most perturbative schemes are not guaranteed to
provide at each order self-consistent predictions, whether
they involve a sharp truncation at a finite order (as in
standard perturbation theory) or include partial resumma-
tions of high-order terms. In other words, they do not
guarantee that their predictions can be realized by a physi-
cal density field (such that the density is real and positive),
and one may encounter unphysical behaviors at high k
(such as a negative power spectrum). This is not neces-
sarily a problem, if one restricts the focus to the range of
validity of the perturbative scheme. However, since we
intend to build a unified model that applies up to nonlinear
scales, we need to obtain as a building block a perturbative
power spectrum that remains well behaved in all regimes.

A second reason is that physical self-consistency (at least
to some degree) can be expected to ensure good conver-
gence properties, or at least a reasonable high-k tail. For
instance, this clearly rules out the bad behavior of the
standard Eulerian perturbation theory, where higher-order
contributions grow increasingly fast on small scales and
lead to power spectra that can change sign with the trun-
cation order. Then, we can hope that a better-controlled
high-k behavior and a better convergence can in turn
improve the accuracy on quasilinear scales.
The method that we develop to achieve this goal is first

to build an ansatz for the power spectrum that is always
well behaved, and next to tune its parameters (in our case,
the skewness of the longitudinal displacement) so that its
perturbative expansion matches the standard perturbative
expansion up to the required order (here up to the second
order over PL).
Second, the Zel’dovich-like behavior of usual

Lagrangian perturbative schemes, where particles escape
to infinity after shell crossing, leads to a fast decay of the
power spectrum on nonlinear scales. This is due to the
erasing of intermediate-scale structures such as pancakes
soon after their formation, because particles do not remain
trapped within potential wells. As recalled above, this may
be the source of a significant underestimation of the power
spectrum on transition scales. The ‘‘adhesion model’’ in-
troduced in Ref. [18], where particles stick together after
shell crossing, seems a more realistic approximation. In
particular, this provides a good description of the cosmic
web. Because it is not easy to implement the exact adhe-
sion model within a model for the power spectrum, we use
a simplified ansatz, inspired from Ref. [19], to include
some form of ‘‘sticking’’ of particle pairs after shell cross-
ing. This models the formation of pancakes and yields
additional power at high k, which should be more realistic
and more accurate than previous methods.
These ingredients allow us to build a model for the

‘‘cosmic web’’ power spectrum, associated with large
and intermediate scale structures (bulk flows, voids, and
pancackes). Next, following Refs. [11,15], we combine
these results with a phenomenological halo model to ex-
tend our model up to highly nonlinear scales, associated
with inner halo regions.
This paper is organized as follows: After recalling the

expression of the matter density power spectrum in a
Lagrangian-space framework in Sec. II, we describe in
Sec. III our model for the cosmic web power spectrum.
This corresponds to both the large-scale perturbative re-
gime and the nonperturbative intermediate-scale regime
associated with pancakes. Next, we explain in Sec. IV
how we combine this cosmic web power spectrum with a
halo model to extend our model to highly nonlinear scales,
associated with inner halo regions. Then, we compare our
model with numerical simulations in Sec. V, and we con-
clude in Sec. VI.
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The reader who is only interested in our final numerical
results may directly go to Sec. V.

In this paper, we mainly focus on a flat �CDM cosmol-
ogy derived from the five-year observation by the WMAP
satellite [20]. We measure some of the ingredients in our
model from five out of 60 realizations of N-body simula-
tions performed in Ref. [14], adopting this cosmological
model. The numerical data for the power spectrum at large
scales (k < 1h Mpc�1) is taken from the full 60 simula-
tions in that paper, while we refer to a higher-resolution
simulation by Ref. [11] for smaller scales. Finally, we show
how well our model can reproduce the power spectrum
from N-body simulations done in two other cosmologies.

II. MATTER DENSITY POWER SPECTRUM
IN A LAGRANGIAN FRAMEWORK

In a Lagrangian framework, one considers the trajecto-
ries xðq; tÞ of all particles, of initial Lagrangian coordinates
q and Eulerian coordinates x at time t. In particular, at any
given time t, this defines a mapping, q � x, from
Lagrangian to Eulerian space, which fully determines the
Eulerian density field �ðxÞ through the conservation of
matter,

�ðxÞdx ¼ ��dq; (1)

where �� is the mean comoving matter density of the
Universe and we work in comoving coordinates. Then,
defining the density contrast as

�ðx; tÞ ¼ �ðx; tÞ � ��

��
; (2)

and its Fourier transform as

~�ðkÞ ¼
Z dx

ð2�Þ3 e
�ik�x�ðxÞ; (3)

one obtains from Eq. (1)

~�ðkÞ ¼
Z dq

ð2�Þ3 ðe
�ik�xðqÞ � e�ik�qÞ: (4)

Next, defining the density power spectrum as

h~�ðk1Þ ~�ðk2Þi ¼ �Dðk1 þ k2ÞPðk1Þ; (5)

we obtain from Eq. (4), using statistical homogeneity
[21,22],

PðkÞ ¼
Z d�q

ð2�Þ3 he
ik��x � eik��qi; (6)

where we introduced the Lagrangian-space and Eulerian-
space separations �q and �x,

�q ¼ q2 � q1; �x ¼ x2 � x1; (7)

between two particles q1 and q2. The expression in
Eq. (6) is fully general, since it is a simple consequence
of the matter conservation [Eq. (1)] and of statistical

homogeneity. In particular, it holds for any dynamics,
such as the one associated with the Zel’dovich approxima-
tion [23], where the mapping xðqÞ is given by the linear
displacement field.

III. LARGE-SCALE POWER SPECTRUM
(COSMIC WEB)

Our final goal is to build a unified model for the power
spectrum that applies from linear to highly nonlinear
scales, which requires at some level a phenomenological
model to describe small scales. As described in Sec. IV
below, following Refs. [11,15] we use a halo model to
combine large-scale perturbative schemes with phenome-
nological approaches. However, we first focus on our
perturbative approach, where we neglect the formation of
virialized halos. Thus, we consider in this section the
power spectrum associated with large-scale bulk flows—
that is, the formation of the cosmic web—disregarding
small-scale structures such as inner halo regions. This
actually includes two regimes: (i) the very large scales
where shell crossing can be neglected, and (ii) the inter-
mediate scales, associated with pancakes or filaments,
where shell crossing comes into play to shape the cosmic
web, but where the internal structure of pancakes and
filaments can be neglected. The first regime can be
described by perturbation theory, and it is considered in
Secs. III A and III B. Next, we tackle the second regime in
Sec. III C.

A. Zel’dovich power spectrum

If all particle pairs can be described by the same pertur-
bative framework, the power spectrum [Eq. (6)] can be
written as

PðkÞ ¼
Z d�q

ð2�Þ3 he
ik��xi (8)

¼
Z d�q

ð2�Þ3 exp

�X1
n¼1

hðik ��xÞnic
n!

�
: (9)

In the first line we used the fact that the integral of the last
term in Eq. (6) gives a Dirac factor �DðkÞ that can be
discarded for k > 0, and in the second line we used the
usual expansion over cumulants.
In the well-known Zel’dovich approximation [23], we

use the linear prediction for the Eulerian separation �x.
Then, for Gaussian initial conditions, only the first- and
second-order cumulants are nonzero. Introducing the dis-
placement field �, xðq; tÞ ¼ qþ�ðq; tÞ, at linear order
we have the longitudinal and transverse variances (with
respect to the direction defined by the initial Lagrangian
separation �q):

�2
kð�qÞ ¼ 2

Z
dk½1� cos ðk1�qÞ� k

2
1

k4
PLðkÞ; (10)
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�2
?ð�qÞ ¼ 2

Z
dk½1� cos ðk1�qÞ� k

2
2

k4
PLðkÞ: (11)

Here we took �q ¼ ð�qÞe1 along the first axis, e1, and
we labeled the two transverse axes as e2 and e3. Thus,
�2

k ¼ hð��LkÞ2i ¼ hð��L1Þ2i and �2
? ¼ hð��L2Þ2i ¼

hð��L3Þ2i. Introducing the integrals

I‘ðqÞ ¼ 4�

3

Z 1

0
dkPLðkÞj‘ðqkÞ; (12)

and the variance of the linear one-point displacement along
one dimension,

�2
v ¼ 1

3
hj�LðqÞj2i ¼ I0ð0Þ; (13)

we have

�2
kð�qÞ ¼ 2�2

v � 2I0ð�qÞ þ 4I2ð�qÞ; (14)

�2
?ð�qÞ ¼ 2�2

v � 2I0ð�qÞ � 2I2ð�qÞ: (15)

Then, in the Zel’dovich approximation, where x ¼ qþ
�L, Eq. (9) reads as

PZðkÞ ¼
Z d�q

ð2�Þ3 e
ik��q�1

2k
2�2�2

k�1
2k

2ð1��2Þ�2
? ; (16)

where � ¼ ðk � �qÞ=ðk�qÞ. (By symmetry, we always
have h��i ¼ 0.) At large distances, the linear displace-
ments �ðq1Þ and �ðq2Þ of the two particles become
independent and�2

k and�
2
? converge to 2�2

v, in agreement

with Eqs. (14) and (15). Then, Eq. (16) is formally diver-
gent at large q, as it contains a Dirac factor �DðkÞ, and for
numerical computations it is convenient to compute in a
separate fashion the low-order terms.

By expanding the exponential in Eq. (9) over powers of
PL, one recovers the standard Eulerian perturbation theory.
Within the Zel’dovich approximation, we obtain, for in-
stance, up to second order [24],

PZðkÞ ¼ PLðkÞ þ PZ
1 loopðkÞ þ � � � (17)

with

PZ
1 loopðkÞ ¼ �k2�2

vPLðkÞ þ
Z

dk1dk2�Dðk1 þ k2 � kÞ

� ðk � k1Þ2ðk � k2Þ2
2k41k

4
2

PLðk1ÞPLðk2Þ: (18)

This is different from the exact one-loop contribution
P1 loop generated by the actual gravitational dynamics,

because at this order we should include the third-order
cumulants and loop corrections to the second-order cumu-
lants. [The cumulant of order n scales as hð��Þnic / Pn�1

L

at leading order.]

We compare in Fig. 1 the power spectra obtained from
the true gravitational dynamics (at linear and one-loop
order, as well as the full nonlinear power spectrum from
N-body simulations) with those associated with the
Zel’dovich approximation (at one-loop order and for
the full nonlinear power spectrum). As is well known, the
standard Eulerian one-loop prediction P1 loop improves the

agreement with simulations as compared with linear theory
on large scales, but quickly gives too much power and is
badly behaved at high k. In contrast, the nonlinear
Zel’dovich power spectrum PZ decays faster than the linear
power at high k [21,22]. For instance, for a power-law
linear power spectrum PLðkÞ / kn with �3< n<�1,

we have PZðkÞ � k�3þ3ðnþ3Þ=ðnþ1Þ at high k [2]. This is
due to the fact that within the approximation of linear
trajectories, particles keep moving along straight lines after
shell crossing, so that pancakes and filaments quickly
fatten and dissolve after their formation. This also leads
to a one-loop Zel’dovich prediction [Eq. (18)] that is
smaller than the linear power spectrum on weakly non-
linear scales, where it is meaningful and follows the full
nonlinear power PZ. Therefore, at one-loop order, the
Zel’dovich approximation is actually worse than the simple
linear approximation.
Figure 1 teaches us two things if we wish to describe the

power spectrum in a Lagrangian framework:
(1) We must explicitly modify the Zel’dovich approxi-

mation at one-loop order to (partly) cure the under-
estimation of the power spectrum on weakly
nonlinear scales.

(2) We must modify the behavior after shell crossing to
cure the high-k damping.

 0
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 0.1  1  10

(k
h

)1.
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(k
)

k [h Mpc-1]

P1loop
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P Z
1loop

P Z

z=0.35

FIG. 1 (color online). Matter density power spectrum at z ¼
0:35 [multiplied by a factor ðkhÞ1:5 to decrease the vertical
range]. We show the results from N-body simulations (data
points), the linear power spectrum PL, the standard one-loop
prediction P1 loop, the one-loop prediction PZ

1 loop [Eq. (18)]

within the Zel’dovich approximation, and the full nonlinear
Zel’dovich power spectrum PZ [Eq. (16)].

VALAGEAS, NISHIMICHI, AND TARUYA PHYSICAL REVIEW D 87, 083522 (2013)

083522-4



B. Perturbative Lagrangian ansatz

1. Factorized ansatz

Before tackling the high-k regime in Sec. III C (point 2
above), we address the weakly nonlinear regime in this
section (point 1), where we disregard shell crossing. Thus,
we look for a Lagrangian ansatz that improves over
Eq. (16) on weakly nonlinear scales and shows a perturba-
tive expansion over integer powers of PL as in the true
gravitational dynamics.

By symmetry, the means hð��kÞ2��?ic and

hð��?Þ3ic are zero, and at order P2
L we are left with the

two third-order cumulants, hð��kÞ3ic and h��kð��?Þ2ic.
In particular, the latter average shows that beyond the
Gaussian order [Eq. (16)], the longitudinal and transverse
displacements are generically correlated. Nevertheless, be-
cause our goal is to build a simple ansatz for Eq. (9), we
consider a simplified model where the longitudinal and
transverse displacements are uncorrelated. Then, since
h��4

?ic is of order P3
L, we keep the linear Gaussian for

the transverse part and look for an ansatz of the form

PkðkÞ ¼
Z d�q

ð2�Þ3 he
ik��xk ike�1

2k
2ð1��2Þ�2

? ; (19)

where �xk ¼ �qþ ��k is the longitudinal Eulerian

separation and we need to specify a model for the mean
h� � �ik. Thus, the difference from the Zel’dovich approxi-

mation [Eq. (16)] is that we go beyond the Gaussian for the
longitudinal part. Apart from simplicity and ordering in
perturbation theory, the reason why we focus on the lon-
gitudinal part is that it should be more sensitive than the
transverse part to the progress of nonlinear clustering, even
at a qualitative level. Indeed, by symmetry, the probability
distribution of the relative displacement along any trans-
verse direction, P ð��?Þ, remains even and peaks at
��? ¼ 0, so that on a qualitative level its shape remains
similar to a Gaussian. In contrast, the probability distribu-
tion of the longitudinal Eulerian separation, P ð�xkÞ,
which in the linear regime is a Gaussian centered on�xk ¼
�q, develops an asymmetry (skewness) that is character-
istic of the gravitational dynamics. Moreover, following
Ref. [19], negative values of�xk are expected to be closely
associated with shell crossing, so that keeping track of �xk
will be useful to handle shell-crossing effects, as explained
in Sec. III C below.

2. One-loop order

It is convenient to define the dimensionless Eulerian
longitudinal separation �k by

�k ¼ �xk
�q

¼ 1þ��k
�q

; (20)

and its linear variance and its skewness by

�2
�k ¼

�2
k

ð�qÞ2 ; S
�k
3 ¼ h�3

kic
h�2

ki2c
¼ ð�qÞ hð��kÞ3ic

hð��kÞ2i2c
: (21)

We show the linear variances �k and ��k [as well as the

transverse counterparts�? and��? ¼ �?=ð�qÞ] in Fig. 2.
We can check that above 3h�1 Mpc, at z ¼ 0:35, linear
theory gives a good estimate of these variances. On smaller
scales, nonlinearities and nonperturbative effects (virial-
ized motions in the shell-crossing regime), which we do
not consider in this section, increase the amplitude of these
rms displacements. As noticed above, at large distances �k
and �? converge to

ffiffiffi
2

p
�v, because the motions of the two

particles become independent. This implies that �� de-
creases as 1=ð�qÞ on large scales. On small separations, for
CDM power spectra that decrease faster than k�3 at high k,
�k and�? decrease as�q, and�� converges to a constant.

However, we can see that these asymptotic regimes are
only reached on very large or very small scales. The value
of �� is a better measure of nonlinearity than the rms
displacements �k and �?, and �� � 1marks the transition

to the nonlinear regime. From the definition in Eq. (20), in

a spherical dynamics �k � ð1þ �Þ�1=3, and deviations of

order unity of �k from its mean are associated with density

contrasts of order unity. In particular, �k � 1 ¼ �1 corre-

sponds to shell crossing and infinite density. In CDM
cosmologies, smaller scales turn nonlinear first, and we
can check in Fig. 2 that �� increases on smaller scales.
To further simplify our ansatz, we keep the linear theory

prediction �2
�k for the variance h�2

kic. Then, the only dif-

ference at order P2
L of the power spectrum [Eq. (19)] from

the Zel’dovich approximation [Eq. (16)] arises from the
skewness S

�k
3 :

Pk
1 loopðkÞ ¼ PZ

1 loopðkÞ þ PS3ðkÞ; (22)

with

 0.1

 1

 10

 1  10  100

∆q [h-1Mpc]

√2⎯ σv
σ || σ⊥

σκ||

σκ⊥z=0.35

FIG. 2 (color online). The linear variances �k and �? (in units
of h�1 Mpc) and ��, at z ¼ 0:35. The lines are the linear theory
predictions [Eqs. (10) and (11)], and the points are the results
from N-body simulations.
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PS3ðkÞ ¼
Z d�q

ð2�Þ3 sin ðk��qÞðk��qÞ3 S
�k
3 �4

�k

6
: (23)

The integration over angles gives

PS3ðkÞ ¼
Z 1

0

d�q

2�2
ð�qÞ2 S

�k
3 �4

�k

6

�
½6� ðk�qÞ2� cos ðk�qÞ

þ ½ðk�qÞ2 � 2�3 sin ðk�qÞ
k�q

�
: (24)

Then, to complete our model at one-loop order, we must set
the skewness S

�k
3 . A first choice would be to use the

prediction from lowest-order perturbation theory. Then,
going up to second order in Lagrangian perturbation theory
(‘‘2LPT,’’ see Refs. [25–27]), we obtain

S
�k;P:T:
3 ð�qÞ

¼ 18

7�4
�k

Z
dk1dk2PLðk1ÞPLðk2Þ k1kk2kðk1k þ k2kÞ

k21k
2
2jk1 þ k2j2ð�qÞ3

�
�
1� ðk1 � k2Þ2

k21k
2
2

�
fsin ½ðk1k þ k2kÞ�q�

� sin ðk1k�qÞ � sin ðk2k�qÞg: (25)

However, this choice implies that the power spectrum

PkðkÞ only agrees with perturbation theory at the linear
level. Indeed, it misses the contribution from the cross-
correlation h��kð��?Þ2ic and one-loop contributions to

the variances hð��kÞ2ic and hð��?Þ2ic. In principle, this

could be included by building an ansatz for the bivariate
distribution P ð��k;��?Þ that does not factorize and is

parameterized by the exact second and third cumulants (up
to one-loop order). In this spirit, one may include pertur-
bative results up to any finite order, at the price of increas-
ingly complex models for P ð��k;��?Þ.

Our approach in this paper follows a different strategy.
We consider Eq. (19) as a qualitative ansatz that allows us
to build a simple model that is physically consistent and
provides a good behavior in all regimes, as we explain
below. Then, we treat the parameters of this ansatz as free
parameters that we set so as to match the exact perturbative
expansion up to the required order. In this paper we only go
up to one-loop order (i.e.,P2

L), which means that we choose

S
�k
3 so that Pk

1 loopðkÞ ¼ P1 loopðkÞ; that is,

PS3ðkÞ ¼ P1 loopðkÞ � PZ
1 loopðkÞ; (26)

where P1 loop is the exact one-loop power spectrum given

by standard perturbation theory. Inverting Eq. (24), this
gives the effective skewness:

S
�k;eff
3 ð�qÞ ¼ � 24�

�4
�k

Z 1

0
dk

P1 loopðkÞ � PZ
1 loopðkÞ

ð�qÞ4k2

�
�
2þ cos ðk�qÞ � 3

sin ðk�qÞ
k�q

�
: (27)

The explicit expression of Eq. (27) allows us to recover the
exact one-loop power spectrum for any cosmology. To be
meaningful, such an approach requires that we start from
an ansatz that is not too far from the exact dynamics. This
is indeed the case on a qualitative level, as Eqs. (25) and
(27) show similar functional forms: in both cases (S

�k
3 �4

�k)

is a quadratic integral over PL, and S
�k
3 is independent of

redshift and of the amplitude of the linear power spectrum.
On a quantitative level, the comparison in Fig. 3 shows that
the effective skewness is greater (in amplitude) than the
perturbative skewness by a factor of about 2 and that it has
the same sign.
Of course, if one is interested in the statistics of �k for its

own sake, one should use the perturbative prediction
[Eq. (25)] rather than the effective value [Eq. (27)]. In
particular, Fig. 3 shows that the skewness is well described
by lowest-order perturbation theory above 15h�1 Mpc, at
z ¼ 0:35. (On small scales, the skewness measured in the
simulations increases and becomes positive because of
nonlinearities and nonperturbative effects. As expected,
this upturn shifts to larger scales at lower redshift.)
The effective value [Eq. (27)] only makes sense as an

ingredient for a model for the power spectrum. Thus, we
also show in Fig. 4 the one-loop power spectrum [Eq. (22)]
that would be obtained using the perturbative skewness

[Eq. (25)]. This yields a power spectrum Pk;P:T:
1 loop that is

halfway between the Zel’dovich and gravitational one-
loop power spectra and much closer to the N-body data.
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FIG. 3 (color online). The skewness S
�k
3 given by lowest-order

perturbation theory [Eq. (25), upper dashed line] and by the one-
loop power-spectrum matching, [Eq. (27), lower solid line]. The
points are the results from N-body simulations at z ¼ 0:35
(squares) and z ¼ 2 (triangles).
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Therefore, it already provides a more realistic starting
point than the Zel’dovich approximation. Then, modifying
the skewness as in Eq. (27) to recover the exact one-loop
power spectrum is not a very large modification, and we
can hope that the ansatz determined by Eqs. (19) and (27)
remains sufficiently close to the exact dynamics to be
useful.

3. Resummed ansatz

The one-loop power spectrum of Eq. (22) was obtained
by expanding the exponential in Eq. (9) up to order P2

L,
which only involves the second and third cumulants.
However, one of the main goals of this paper is precisely
not to expand the exponential [Eq. (9)]. Indeed, it is well
known that no probability distribution exists such that all
its cumulants vanish beyond some order n > 3 (i.e., the
only distribution with a finite set of nonzero cumulants is
the Gaussian). In particular, approximations such as the
Gram-Charlier or Edgeworth expansions, where we ex-
pand up to some finite order over cumulants, lead to
functions that are not guaranteed to be positive and may
not be valid probability distributions. Of course, this is not
necessarily a problem, if one restricts oneself to the range
of validity of such approximations. However, the spirit of
this paper is to avoid as far as possible such inconsistencies
and to develop an approach that remains well behaved in
all regimes.

Indeed, we can hope that by satisfying such constraints,
the convergence of our scheme will be improved and the
matching to the highly nonlinear regime will be smoother.
In particular, this should avoid the bad behavior encoun-
tered in the standard Eulerian perturbative expansion,

where higher orders improve the accuracy on very large
scales but yield increasingly divergent quantities on small

scales. Thus, the rise of Pk
1 loop at high k in Fig. 4 around

k > 0:5h=Mpc is an artifact due to the truncation at one-
loop order. As for the Eulerian perturbative expansion,
higher orders will also give large contributions on these
scales, and the much smaller full nonlinear power spectrum
will result from a compensation between these much larger
terms. [Indeed, as explained in point 2 in Sec. III A, we
know that the logarithmic nonlinear power spectrum
k3PðkÞ should not grow much beyond the nonlinear scale
as long as the shell-crossing regime has not been drasti-
cally modified from the Zel’dovich dynamics by trapping
particles in small-scale structures.] This means that the
perturbative expansion has a very slow convergence at
best (provided it is convergent, which is not always the
case [2]), and that including an increasing number of
higher-order terms is not sufficient to build a useful model
for our purposes.
To resum all cumulants, it is convenient to define the

cumulant-generating function ’kðyÞ of �k as

e
�’kðyÞ=�2

�k ¼ he�y�k=�2
�k ik; (28)

which can be expanded at y ¼ 0 as

’kðyÞ ¼ � X1
n¼1

S
�k
n

n!
ð�yÞn; S

�k
n ¼ h�n

kic
�2ðn�1Þ

�k

: (29)

[This function is always well defined by the average in
Eq. (28), at least along the whole imaginary axis, even
when the series in Eq. (29) is divergent or cumulants
beyond a finite order do not exist.] The choice of the
generating function ’k will define our ansatz [Eq. (19)].

From the Taylor expansion [Eq. (29)], we have the behav-
ior at the origin

y ! 0: ’kðyÞ ¼ y� y2

2
þ S

�k
3

y3

6
þ � � � : (30)

Defining the probability distribution P kð�kÞ through its

cumulant-generating function ’kðyÞ shows several advan-
tages. First, imposing the expansion of Eq. (30) up to order
y3 at the origin automatically ensures that the probability
distribution is normalized to unity, its mean is h�ki ¼ 1, its
variance �2

�k , and its skewness S
�k
3 . Second, choosing

coefficients S
�k
n (i.e., a function ’k) that do not depend

on time or the amplitude of the linear power spectrum
automatically ensures the scaling over PL given by pertur-
bation theory (at leading order). Indeed, as we have already
noticed above, in perturbation theory h�n

kic scales as Pn�1
L .

This ensures that the power spectrum [Eq. (19)] can be
expanded over integer powers of PL as in the exact pertur-
bation theory (but of course, the exact value of each term
will not be reproduced by our simple model). Third, from
Eq. (28), we can see that the average h� � �ik that enters
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FIG. 4 (color online). Matter density power spectrum at z ¼
0:35, as in Fig. 1. We show the results from N-body simulations
(data points), the standard one-loop prediction P1 loop, the one-

loop prediction PZ
1 loop of Eq. (18) within the Zel’dovich approxi-

mation, the one-loop prediction Pk;P:T:
1 loop of Eq. (22) using the

perturbative skewness [Eq. (25)], and the full nonlinear predic-
tion Pk of Eq. (35) using the effective skewness [Eq. (27)].
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Eq. (19) has an explicit expression in terms of ’k. This
avoids performing an additional integration over the proba-
bility distribution P kð�kÞ, which is convenient for numeri-

cal purposes. In this paper, we choose the following ansatz
for ’kðyÞ:

’kðyÞ ¼ 1� �

�

�
1þ y

1� �

�
� � 1� �

�
; (31)

where the scale-dependent parameter �ð�qÞ is set from
Eq. (30),

S
�k
3 ¼ �� 2

�� 1
: (32)

This gives the dependence of ’k on the scale �q through

Eq. (27). As seen in Fig. 3, the skewness S
�k;eff
3 is negative;

hence the parameter � falls in the range

1<� � 2: (33)

The case of a zero skewness corresponds to � ¼ 2, where
the generating function [Eq. (31)] becomes the quadratic
polynomial ’kðyÞ ¼ y� y2=2, and we recover the

Gaussian case [i.e., the Zel’dovich approximation,
Eq. (16)].

The power law [Eq. (31)] is the simplest function that
obeys the constraint of Eq. (30) while being a valid
cumulant-generating function. [This requires, for instance,
that �’kðyÞ be convex.] Thus, it provides a simple con-

tinuation of the series of cumulants: instead of truncating at
third order (i.e., at the skewness), we automatically gen-
erate all higher-order cumulants in a manner that provides
a meaningful probability distribution P kð�kÞ in all regimes

[i.e., P kð�kÞ is always positive, normalized to unity, and

with a mean h�ki ¼ 1]. From Eq. (28), this ‘‘perturbative’’

probability distribution P kð�kÞ is given by the inverse

Laplace transform

P kð�kÞ ¼
Z þi1

�i1
dy

2�i�2
�k
e
½�y�’kðyÞ�=�2

�k : (34)

Because the skewness S
�k
3 is negative, the right tail is

sharper than the left tail, as can be checked in Fig. 5. In
agreement with Figs. 3 and 5 shows that using the pertur-
bative prediction [Eq. (25)] with the ansatz [Eq. (31)]
provides a good match to the full probability distribution
measured on large scales in N-body simulations. As ex-
pected, using the larger value [Eq. (27)] for the skewness
amplifies the deviation from the Gaussian and yields a
distribution that is somewhat too skewed towards the left.
However, the point of Fig. 5 is only to check that our
model, defined by Eqs. (27) and (31), provides a physically
consistent and realistic ansatz. This should be understood
as a simpler effective system that is not expected to simul-
taneously reproduce with the same accuracy all statistical
properties of the dynamics. Thus, depending on whether

one is interested in P kð�kÞ or in PðkÞ, one should use either
Eq. (25) or Eq. (27).
In both cases, the skewness is negative, which can be

understood from the effects of gravity, as compared with
the Zel’dovich dynamics (associated with the linear theory
Gaussian). Indeed (considering for instance a spherical
configuration), particles that move outward (�k > 1) will
be slowed down by gravity until they turn around and
eventually merge into a single halo. This leads to an
Eulerian separation that is smaller than the one predicted
by linear theory, whence a sharper cutoff of the probability
distribution P kð�kÞ for large positive �k. In contrast, par-

ticles that move inward will be accelerated by gravity
(because of the 1=r2 behavior of the three-dimensional
gravity). This leads to a smaller value of the Eulerian
separation than the linear prediction, which now gives a
more extended tail towards low values of �k, below the

static value �k;static ¼ 1. Of course, this argument does not

extend to �k < 0, where shell crossing and changes of

direction within virialized halos are expected.
The spirit of our approach is different from resummation

schemes, where one performs partial resummations of
higher-order terms by computing a subset of higher-order
Feynman diagrams [5,6,10,28] or expanding over some
auxiliary parameter [2,7] (such as the dimension of space
d or the number of field components N). Here we do not
explicitly compute approximations to S

�k
n for n � 4 from a

subset of diagrams, as these coefficients are automatically
generated by the functional form [Eq. (31)] from the low-
order ones. (Here we only take S

�k
3 as input, but as in

resummed perturbative approaches, we could exactly in-
clude all terms up to order n and generate approximations

 0.01
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FIG. 5 (color online). The probability distribution of the lon-
gitudinal relative displacement, �k ¼ �xk=�q, at z ¼ 0:35, for
the Lagrangian separations �q ¼ 12:5h�1 Mpc and �q ¼
42:5h�1 Mpc. We show the linear theory Gaussian (dotted
line) and our model [Eq. (34)] (solid lines), using for the skew-
ness either Eq. (25) (intermediate curve) or Eq. (27) (largest
departure from the Gaussian). The points are the results from
N-body simulations.
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for higher orders by using an ansatz for ’k that is parame-

terized by the set fS�k
3 ; . . . ; S

�k
n g.) The advantage of our

approach is that it ensures a well-behaved ‘‘resummed’’
(or rather ‘‘regularized’’) probability distribution P kð�kÞ,
while explicit perturbative approaches do not always guar-
antee that their resummation is physically consistent.

As explained in the Introduction, we can hope that by
ensuring physical consistency, our method will be better
behaved and show a faster convergence. In this approach
we only ensure self-consistency up to a partial degree, in
terms of the probability distribution P kð��kÞ, but we do

not show that physical density fields can exactly realize
such a probability distribution, which is a more difficult
problem. Nevertheless, this is already a significant im-
provement over previous Lagrangian-space methods that
expand the exponential of Eq. (9) and truncate at some
finite order [16,17,29].

Then, Eqs. (31), (32), and (27) fully define the power
spectrum [Eq. (19)]. Using Eq. (28), this yields

PkðkÞ ¼
Z d�q

ð2�Þ3 e
�’kð�yÞ=�2

�ke�
1
2k

2ð1��2Þ�2
? ; (35)

where we denote

y ¼ ik��q�2
�k : (36)

We recover the Zel’dovich approximation [Eq. (16)] for
’kðyÞ ¼ y� y2=2, which corresponds to � ¼ 2 and S

�k
3 ¼

0 in Eqs. (31) and (32). Thus, we can see that our ansatz
[Eq. (35)] is a continuous generalization of the Zel’dovich
power spectrum, parameterized by the skewness S

�k
3 . In

agreement with a well-known mathematical result, it is
only in the Gaussian case (i.e., the Zel’dovich approxima-
tion) that the cumulant-generating function is a finite-order
polynomial.

As seen in Fig. 4, the power spectrum [Eq. (35)] follows
the one-loop power [Eq. (22)] on large scales, which is
identical to the exact one-loop power spectrum because we
use the skewness [Eq. (27)], and it improves over the
Zel’dovich approximation (compare with the Zel’dovich

one-loop power PZ
1 loop, or with Fig. 1). At high k, PkðkÞ

converges back to a behavior similar to the Zel’dovich
power spectrum, due to the fact that particles still escape
to infinity after shell crossing. Although we will modify
this behavior in the next section to include the building of
pancakes in a simplified form, this shows the main property
that we looked for in this section: the power spectrum
remains well behaved at high k, with a universal behavior
that does not change with the order of the perturbation
theory up to which one requires consistency.

The perturbative expansion of the power spectrum
[Eq. (35)] over powers of the linear power spectrum PL

is likely to be divergent for k > kmax , with

kmax ¼ min
�q

�
�� 1

�q�2
�k

�
; (37)

because of the finite radius of convergence of the generat-
ing function ’kðyÞ around y ¼ 0. This gives kmax �
0:2h Mpc�1 at z ¼ 0:35 (and kmax decreases with time
as 1=�2

�k). This does not necessarily apply to the actual

power spectrum built by the gravitational dynamics, and
these values would be modified by using different generat-
ing functions than Eq. (31). However, it explicitly shows a
possible limitation of some perturbative approaches and
the importance of choosing appropriate expansions or re-
summations. This is independent of the limitation due to
shell crossing and only due to the fast growth of high-order
cumulants shown by our ansatz.
The power spectrum [Eq. (35)] is closely related to

Lagrangian perturbation theory. Indeed, it can be expanded
over integer powers of PL, and it is based on a partial
implicit resummation of higher-order cumulants
hð��kÞnic, which scale at leading order over PL as in

perturbation theory. For simplicity, we have only included
the linear theory variances hð��kÞ2i and hð��?Þ2i and the
third-order cumulant hð��kÞ3ic, which is set by the match-

ing with the exact one-loop contribution to the power
spectrum. However, this approach could be made exact
up to an arbitrary order of perturbation theory by including
loop contributions to these quantities and higher-order
cumulants, such as hð��kÞ4ic, and cross-correlations,

such as h��kð��?Þ2ic. As explained above, in contrast

to the standard Eulerian perturbation theory, the resulting
power spectrum would remain well behaved at high k, with
a Zel’dovich-like damping.
An advantage over the Eulerian-based approaches is that

we are not sensitive to the sweeping effect [2,3,24] asso-
ciated with random advection by long wavelengths of the
velocity field, which only move structures by a random
uniform shift, because we directly work with relative dis-
placements. As compared with most Eulerian perturbative
resummation schemes, this means that we do not need to
build a model (from a phenomenological approach or a
partial resummation of perturbative diagrams) for
different-time Eulerian response functions or propagators,
which are governed by the one-point velocity distribution
[4,30]. This should make such Lagrangian-space
approaches more robust because they are not sensitive to
such quantities that introduce additional approximations.

C. Adhesion-like shell-crossing continuation

Whatever the order up to which standard perturbation

theory is exactly recovered by the power spectrum PkðkÞ,
following the procedure described in the previous section,
one ingredient is still missing: the nonperturbative shell-
crossing regime. In contrast to the standard Eulerian per-
turbation theory that becomes meaningless after shell
crossing (the equations of motion themselves no longer
make sense in the multistreaming regime), the Lagrangian
approach, which is based on particle trajectories, still
makes sense after shell crossing. For instance, in the

MATTER POWER SPECTRUM FROM A LAGRANGIAN-SPACE . . . PHYSICAL REVIEW D 87, 083522 (2013)

083522-9



Zel’dovich approximation, the particles keep following
straight lines after shell crossing, xðq; tÞ ¼ qþ�Lðq; tÞ.
A similar behavior is implicitly included in the Lagrangian
ansatz [Eq. (35)]. Shell crossing does not appear in this
formalism, and particles eventually escape to infinity as in
the Zel’dovich approximation: the distributions P kð�xkÞ
and P?ð�x?Þ widen with time.

This implicitly provides a regularization (or completion)
of the Eulerian hydrodynamical equations of motion.
Indeed, as noticed above, the latter do not provide a com-
plete description of the dynamics because they break down
after shell crossing, and one should explicitly state how
particles behave afterwards. For instance, the Zel’dovich
dynamics can also be written in terms of the Eulerian
equations of motion [2,18,31]. As compared with the
gravitational case, one replaces the gravitational potential
(which is coupled to the density field through the Poisson
equation) with the velocity potential (this is exact at linear
order). This yields an Euler equation for the velocity field
that decouples from the density field and gives back the
trajectories predicted by Lagrangian linear theory. As in
the gravitational case, this Euler equation breaks down at
shell crossing (when multistreaming appears), and to con-
tinue the dynamics at later times one needs to go back to
the Lagrangian interpretation in terms of trajectories and
state that particles keep moving along their initial direction
forever. However, this is not the only possible continuation.
For instance, following the adhesion model introduced in
Ref. [18], one can choose to make particles stick together
after collisions in order to mimic the trapping in gravita-
tional potential wells. In fact, in dimensions greater than 1,
several continuations are possible. In the most convenient
geometrical formulation in terms of convex hulls and
Legendre transforms, one obtains an intricate process of
halo mergings and fragmentations [32,33], but it is also
possible to use another continuation (which has no simple
geometrical interpretation), where halos cannot fragment
but show complex motions along the shock manifold [34].
These two continuations and the Zel’dovich dynamics are
identical before shell crossing and have the same perturba-
tive expansion (they obey the same fluid equations in the
single-stream regime); they only differ after shell crossing,
and this only appears through nonperturbative terms.

This simple example shows that we could imagine dif-
ferent continuations of the power spectrum [Eq. (35)] into
the shell-crossing regime. Thus, Eq. (35) implicitly in-
cludes a Zel’dovich-like continuation, but one of the
main ideas of this paper is that this is not the best choice.
Indeed, even though in this section we neglect halo for-
mation, or more precisely the inner halo regions, we would
like to obtain a reasonable description of the cosmic web.
In terms of the halo model that we use in Sec. IV below, the
one-halo term describes the inner halo shells, and the two-
halo term, which is based on the large-scale power spec-
trum that we consider here, describes the cosmic web with

its pancakes and filaments. As is well-known, such
intermediate-scale structures are erased in the Zel’dovich
approximation as particles escape to infinity [26]. This has
led to the ‘‘truncated Zel’dovich approximation’’ [35,36],
where one removes the initial power at high k to suppress
the damping of small-scale structures. More generally, a
Zel’dovich-like continuation, such as Eq. (35), leads to a
falloff of the density power spectrum at high k, due to this
erasing of small-scale structures, and truncating the initial
power cannot provide more than a k�3 tail [2,21,22] (e.g.,
for a power-law linear power spectrum PLðkÞ / kn with

�3<n<�1, we have PZðkÞ�k�3þ3ðnþ3Þ=ðnþ1Þ at high k).
This means that Zel’dovich-like continuations are not

sufficient to describe the cosmic web. Indeed, they miss the
formation of pancakes and filaments that give rise to addi-
tional power at high k. For instance, pancakes, or more
precisely, extended sheets of zero thickness, would give a
contribution PðkÞ � k�2, whereas infinitesimally thin fila-
ments would give PðkÞ � k�1. In the actual case of the
gravitational dynamics with a hierarchical CDM power
spectrum, we do not have such universal and singular
structures (pancakes and filaments can show holes of vari-
ous sizes), and we would rather have a (multi)fractal
density field with a typical scaling PðkÞ � k�1:2 [associated
with a correlation function �ðrÞ � r�1:8] [37–39]. (Another
modification is the finite width of the pancakes and fila-
ments, which can be associated with the inner halo struc-
ture and is not our concern in this section.)
On a quantitative level, as recalled in the Introduction,

previous approaches that try to match perturbation theory
with a halo model give too little power on intermediate
scales, where �2ðkÞ � 1. This could be traced back to the
fact that most resummation schemes converge back to the
linear power at high k or even show a sharper cutoff. From
the discussion above, one explanation is that to match the
very large-scale perturbative regime, where shell crossing
is truly negligible, to the high-k regime associated with
inner halo regions, we need to take into account
intermediate-scale structures such as pancakes that give a
non-negligible contribution on transition scales. This
means that an adhesion-like continuation should be more
efficient than the Zel’dovich-like continuation.
As recalled above, in dimensions greater than 1, shell

crossing is a difficult problem. In fact, in contrast to the
one-dimensional case, defining shell crossing itself is not
obvious, as two particles coming from opposite sides may
join circular orbits in a potential well without physically
crossing each other. In this paper, we take the simple
criterion that was used in Ref. [19] to evaluate the impact
of shell crossing on the power spectrum. If the Lagrangian-
space to Eulerian-space mapping is potential—that is,
xðq; tÞ ¼ @�=@q—as in the Zel’dovich and adhesion
models, then shell crossing is associated with the loss of
convexity of the potential �ðq; tÞ. [In the Zel’dovich dy-
namics, �Z is of the form jqj2=2þ	L, where 	L is
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stochastic and given by linear theory, and �Z loses its
initial convexity as 	L grows with time, while in the
adhesion model we take its convex hull, convð�ZÞ, which
prevents shell crossing but gives rise to shocks [31–33]].
Then, convexity of �ðq; tÞ implies that �xk � 0 (i.e., the

longitudinal Eulerian separation does not change sign, for
any pair of particles) [40,41]. Then we can choose�xk < 0
as a criterion of shell crossing [19]. This is obvious in one
dimension and provides the adequate generalization to
higher dimensions for potential mappings. In the case of
the gravitational dynamics, the mapping is only potential
up to the second order of perturbation theory [42], but we
can still expect that it gives a useful criterion for the
formation of the first large-scale structures.

Therefore, we modify the ‘‘perturbative’’ longitudinal
probability distribution [Eq. (34)] by setting�xk ¼ 0 to all
pairs that had �xk < 0. More precisely, we define the

adhesion-like longitudinal probability distribution as

P ad
k ð�kÞ ¼ a1�ð�k > 0ÞP kð�kÞ þ a0�Dð�kÞ; (38)

where �ð�k > 0Þ is the Heaviside function (1 for �k > 0
and 0 for �k < 0). The parameters a0 and a1 are set by the

constraints h1i ¼ 1 (i.e., the probability distribution is
normalized to unity) and h�ki ¼ 1. From the expression

Eq. (34) we obtain

a1 ¼ ð1þ A1Þ�1 and a0 ¼ 1� a1 þ a1A0; (39)

where we introduce

An ¼
Z 0þþi1

0þ�i1
dy

2�i�2
�k

��2
�k

y

�
nþ1

e
�’kðyÞ=�2

�k ; (40)

where the contour over y runs to the right of the pole at the
origin and to the left of the branch cut at ys ¼ �� 1.
The coefficients An are nonperturbative and scale as

e
�ð��1Þ=ð��2

�k Þ, which gives

ða1 � 1Þ � a0 � e
�ð��1Þ=ð��2

�k Þ: (41)

Therefore, the ‘‘perturbative’’ distribution P k obtained

in Eq. (34) in Sec. III B 3 and its adhesion-like modification
[Eq. (38)] are identical to all orders of perturbation
theory.

We show in Fig. 6 the skewness S
�k
3 defined by this new

probability distribution [Eq. (38)], using either the pertur-
bative skewness [Eq. (25)] or the effective value [Eq. (27)]
for the perturbative part P k. On large scales, we recover

the skewness associated with the regular distribution
[Eq. (34)], with a very fast convergence because the de-

viation decays as �e�ð�qÞ2=�2
v . On small scales, the skew-

ness increases and becomes positive in a fashion similar to
the behavior measured in the simulations. As for the nega-
tive sign in the perturbative regime that we explained in

Sec. III B, this can be understood from the dynamics.
Indeed, because of the sticking of particle pairs at �xk ¼
0, in the nonlinear regime (i.e., on small scales), which
becomes sensitive to this modification, the low-�k tail

becomes very sharp (it is zero for �k < 0), whereas the

high-�k tail still extends to infinity, albeit with an

exponential-like decay. Therefore, the global shape of the
probability distribution now shows a broader right tail, in
contrast with the perturbative regime shown in Fig. 5,
which now leads to a positive skewness. In the actual
gravitational case, there is no such exact sticking to
�xk ¼ 0, but there is a trapping within small virialized

halos. Thus, collapsed pairs remain boundwith a separation
set by the typical size xhalo of virialized halos. This plays the
role of the left-tail cutoff, which is no longer sharp at�xk ¼
0 but decays on a scale of order xhalo, whereas the right tail
still extends to infinity and is not strongly affected by
smaller-scale virialization (it corresponds to rare voids).
Of course, we cannot expect the simple model of Eq. (38)
to provide an accurate prediction for S

�k
3 , even when we use

the correct perturbative limit [Eq. (25)] on large scales.
However, we can check in Fig. 6 that it already provides a
good qualitative description. In particular, it captures the
dependence on redshift of the upturn of S

�k
3 , due to these

nonperturbative effects that occur after shell crossing.
Then, we modify the perturbative power spectrum

[Eq. (35)] by replacing the perturbative probability distri-
bution [Eq. (34)] with its adhesion-like extension
[Eq. (38)]. Substituting into Eq. (19) gives the cosmic
web power spectrum
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–

FIG. 6 (color online). Skewness S
�k
3 given by low-order per-

turbation theory [Eq. (25), upper dashed line] and by the effec-
tive value [Eq. (27), lower dashed line]. The solid lines that arise
from these two large-scale asymptotes are the predictions at
redshifts z ¼ 0:35, 1, 2 and 3 (from right to left) obtained from
the nonperturbative adhesion-like probability distribution
[Eq. (38)], determined by the corresponding perturbative part
P k. The points are the results from N-body simulations at z ¼
0:35 (squares), z ¼ 1 (diamonds), z ¼ 2 (triangles), and z ¼ 3
(circles).
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Pc:w:ðkÞ ¼
Z d�q

ð2�Þ3
1

1þA1

�
e
�’kð�ik��q�2

�k Þ=�2
�k þA1

þ
Z 0þþi1

0þ�i1
dy

2�i
e
�’kðyÞ=�2

�k
�
1

y
� 1

yþ ik��q�2
�k

��

�e�
1
2k

2ð1��2Þ�2
? ; (42)

where the contour over y again crosses the real axis be-
tween 0< y< �� 1. As in Ref. [19], this is a ‘‘sticky
model’’ that can be seen as a very simplified version of the
full 3D adhesion model. Since we do not modify the
transverse motion, the ‘‘adhesion’’ only takes place along
the longitudinal direction, which also serves as the signal
of shell crossing. Therefore, we only include planar struc-
tures (thin pancakes). To describe filaments, we should also
include some sticking along one transverse direction, but
this would require additional ingredients and free parame-
ters (e.g., to set the relative mass between filaments and
pancakes). Hence, for simplicity we only take into account
pancakes as in Eq. (42), which fits in a natural fashion in
our framework where we have already kept track of the
longitudinal separation.

As explained above, the shell-crossing correction is
nonperturbative, and the power spectrum of Eq. (42) is
identical to the power spectrum of Eq. (35) to all orders
over PL.

We compare in Fig. 7 the three Lagrangian-space power
spectra that we have obtained, the usual Zel’dovich ap-

proximation PZ, our nonlinear ansatz Pk, and its adhesion-
like continuationPc:w:. On large scales, the nonperturbative
correction is negligible, and we recover the perturbative

power spectrum Pk, which is somewhat larger than the
Zel’dovich power spectrum because of the nonzero skew-
ness S

�k
3 that allows us to ensure consistency with standard

perturbation theory up to one-loop order. On small scales,

the nonperturbative correction becomes dominant and
gives some extra power, associated with the formation of
pancakes, with a high-k tail �k�2 that decreases more
slowly than the Zel’dovich-like tails (that are steeper than
k�3). The nonlinear power spectrum Pc:w: is the
Lagrangian ansatz that we use in this paper to describe
the cosmic web.

IV. COMBINING THE COSMIC WEB POWER
SPECTRUM WITH THE HALO MODEL

A. The halo model from a Lagrangian point of view

Because our goal is to build a unified model for the
power spectrum that applies from linear to highly nonlinear
scales, we must combine the perturbative approach de-
scribed in the previous section (which is systematic and
accurate but only applies to large scales) with phenome-
nological models (that are not systematic and only show an
accuracy of 10% but can be applied to small scales).
Following Refs. [11,15], we consider the halo model
from a Lagrangian point of view instead of the usual
Eulerian framework [43]. This provides a convenient
framework to include our Lagrangian perturbative ap-
proach within the halo model (the latter being mostly
used to describe small, highly nonlinear scales). In par-
ticular, the transition from the perturbative large scales,
driven by bulk flows, to the inner halo regions, driven by
virialization, takes place in a gradual fashion while satisfy-
ing matter conservation (i.e., without double counting).
Following Ref. [11], we split the average in Eq. (6) over

two terms, P1H and P2H, associated with pairs fq1;q2g that
belong either to a single halo or to two different halos,

PðkÞ ¼ P1HðkÞ þ P2HðkÞ; (43)

with

P1HðkÞ ¼
Z d�q

ð2�Þ3 F1Hð�qÞheik��x � eik��qi1H (44)

and

P2HðkÞ ¼
Z d�q

ð2�Þ3 F2Hð�qÞheik��x � eik��qi2H: (45)

Here the averages h� � �i1H and h� � �i2H are the conditional
averages, knowing that the pair of length �q belongs to a
single halo or to two halos, while F1H and F2H are the
associated probabilities. The approximation of spherical
halos in Lagrangian space gives, for the probability that the
pair belongs to a single halo [11],

F1Hð�qÞ¼
Z 1


�q=2

d




fð
Þ ð2qM��qÞ2ð4qMþ�qÞ

16q3M
; (46)

where qM is the Lagrangian radius associated with the
mass M, M ¼ 4� ��q3M=3, and fð
Þ is the scaling function
that defines the halo mass function,
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FIG. 7 (color online). Matter density power spectrum at z ¼
0:35, as in Figs. 1 and 4. We show the results from N-body
simulations (data points), the nonlinear Zel’dovich power spec-
trum PZ [Eq. (16)], the nonlinear ansatz Pk [Eq. (35)], and the
adhesion-like continuation Pc:w: [Eq. (42)] for the cosmic web.
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nðMÞ dM
M

¼ ��

M
fð
Þ d




; with 
 ¼ �L

�ðMÞ : (47)

Here �ðMÞ is the rms linear density contrast at scale M,
and �L ¼ F�1ð200Þ is the linear density contrast associ-
ated with the nonlinear density threshold that defines col-
lapsed halos, which we choose to equal 200. In numerical
computations, we use the fit to the halo mass function from
Ref. [44], which has been shown to match numerical
simulations while obeying the asymptotic large-mass tail

fð
Þ � e�
2=2 [45]. The probability that the pair belongs to
two different halos reads as

F2Hð�qÞ ¼ 1� F1Hð�qÞ: (48)

This automatically avoids any double counting in the
decomposition [Eq. (43)], and it ensures that we count all
matter once.

B. One-halo term

The decomposition [Eq. (43)] also corresponds to the
one-halo and two-halo terms of the usual halo model [43].
In particular, Eqs. (44) and (46) yield [11,15]

P1HðkÞ ¼
Z 1

0

d




fð
Þ M

��ð2�Þ3 ð~uMðkÞ �
~WðkqMÞÞ2: (49)

Here ~uMðkÞ is the normalized Fourier transform of the halo
radial profile,

~uMðkÞ ¼
R
dxe�ik�x�MðxÞR

dx�MðxÞ ¼ 1

M

Z
dxe�ik�x�MðxÞ; (50)

where �MðxÞ is the halo density profile for a halo of mass
M, and ~WðkqÞ is the normalized Fourier transform of the
top hat of radius q,

~WðkqÞ ¼
Z
V

dq

V
eik�q ¼ 3

sin ðkqÞ � kq cos ðkqÞ
ðkqÞ3 : (51)

To derive Eq. (49) we used the approximation of fully virial-
ized halos: the two particles q1 and q2 have lost all memory
of their initial locations and are independently located at
random within the halo. As in Ref. [11], in numerical com-
putations we use the usual NFW halo profile [46].

The counterterm ~W in Eq. (49) arises from the counter-
term eik��q of Eq. (44) (this subtracts the contribution from
the mean density). The computation in Ref. [11] would
rather give a factor (~u2M � ~W2), but we prefer to use the
factor (~uM � ~W) that readily extends to higher-order multi-
spectra as seen in Ref. [15]. Moreover, this ensures that the
one-halo contribution to the matter power spectrum will
decay as k4 at low k, as implied by the conservation of
matter and momentum for small-scale redistributions of
matter [47] [whereas the factor (~u2M � ~W2) only ensures a
k2 tail, which is consistent with the conservation of matter
but not of momentum].We show in Fig. 22 in the Appendix
the impact of this low-k tail of the one-halo term on the

power spectrum. We find that using a factor (~u2M � ~W2),
which gives a slower falloff at low k, can overestimate the
power spectrum by about 5% on transition scales. Indeed,
at higher k, in the highly nonlinear regime, the counterterm
~W is negligible, whereas at lower k the one-halo term itself
is negligible. This shows that on transition scales, where
�2ðkÞ � 1, the power spectrum is sensitive to details of the
halo model if we require an accuracy of a few percent.
Fortunately, this only appears on a limited range of scales
and has no impact on the perturbative scales. (However, it
is important to ensure that the one-halo term decays at least
as k2 at low k rather than converging to a constant as in the
usual prescription without any counterterm.)

C. Two-halo term

At a perturbative level, F1H and P1H are identically zero
while F2H is unity, because of the exponential decay of the

halo mass function, of the form e�1=�2ðMÞ, in the rare event
limit. Then, as noticed in Ref. [11], the power spectrum
given by perturbation theory is included in the two-halo
contribution [Eq. (45)]. More precisely, the expansion over
powers of PL of P2H must recover the standard perturbative
expansion. In Ref. [11], we used the simple approximation
P2HðkÞ ’ F2Hð1=kÞPpertðkÞ, where PpertðkÞ is the power

spectrum given by the Eulerian ‘‘steepest descent’’ resum-
mation scheme developed in Refs. [7,24]. Any other
Eulerian or Lagrangian resummation scheme could be
used, provided it is well behaved at high k, where it becomes
subdominant with respect to the one-halo term. (This ex-
cludes the standard perturbation theory, which grows too
fast at high k, unless one adds an extra high-k cutoff.)
However, the approaches investigated in Ref. [11] did

not manage to provide a fully satisfactory matching to the
highly nonlinear regime, because they predicted too little
power on intermediate scales [where �2ðkÞ � 1–10]. This
can be traced to the fact that they usually go back to the
linear power at most at high k, which leads to insufficient
power on transition scales where P2H and P1H are of the
same order. Another problem was that Lagrangian pertur-
bative schemes, which would be more convenient to embed
within Eq. (45) and to extend to redshift space, made this
lack of power even worse, because they usually display a
strong cutoff at high k. In this paper, our goal is to improve
over Ref. [11] by implementing a Lagrangian perturbative
scheme that is free of this problem and provides reasonably
accurate predictions up to the transition scales. Thus, we
use the cosmic web power spectrum developed in Sec. III
as a basis of our two-halo term, which we write as

P2HðkÞ ¼
Z d�q

ð2�Þ3 F2Hð�qÞheik��xivir�q

1

1þ A1

e�
1
2k

2ð1��2Þ�2
?

�
�
e
�’kð�ik��q�2

�k Þ=�2
�k þ A1 þ
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dy
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� e
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1

y
� 1

yþ ik��q�2
�k

��
: (52)
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We recognize the cosmic web power spectrum given by
Eq. (42), to which we added the factors F2H and heik��xivir�q.

As explained in Eqs. (43)–(45), the factor F2H, given by
Eqs. (48) and (46), ensures that mass is conserved: there is
no double counting of particle pairs. The factor heik��xivir�q

is associated with small-scale motions.
Indeed, as seen from the derivation of Eq. (42) in

Sec. III, the cosmic web power spectrum Pc:w: arises
from the statistical average of eik��x due to large-scale
motions, associated with the bulk flows described by per-
turbation theory that we regularize by an adhesion-like
continuation. As noticed in Sec. III C, this simple proce-
dure takes into account the formation of idealized, infini-
tesimally thin pancakes. In the actual gravitational process,
pancakes and filaments have a finite width, as particles
keep moving for some time after shell crossing instead of
instantaneously sticking together, and have finite-size turn-
around radii and virialized orbits. More generally, we can
split the motion of particles into two components, a first
one associated with large-scale bulk flows, which was
considered in Sec. III and corresponds to the ‘‘skeleton’’
of the large-scale structures, and a second one associated
with small-scale virialized motions, which gives some
thickness to this skeleton. In particular, for hierarchical
linear power spectra with a high-k tail that does not de-
crease faster than k�3, all particles are expected to belong
to collapsed objects (this may not be the case for linear
power spectra with less power at high k). Then, making the
approximation that these small-scale and large-scale mo-
tions are decorrelated, we write

heik��xi ¼ heik��xibulkheik��xivir: (53)

The first part was the focus of Sec. III and corresponds to
the cosmic web power spectrum Pc:w:. Assuming, as in the
derivation of the one-halo term [Eq. (49)], full virialization
[11]—that is, that the two particles q1 and q2 are indepen-
dently located at random in their host halo—we write

heik��xivir�q ¼
R d
1


1
fð
1Þheik�x1iM1R d
1


1
fð
1Þ

R d
2


2
fð
2Þheik�x2iM2R d
2


2
fð
2Þ

¼
�R
�q=2

0
d


 fð
Þ~uMðkÞR
�q=2

0
d


 fð
Þ

�
2
: (54)

In contrast with the one-halo case [Eq. (49)] where the two
particles belong to the same halo, which gave rise to the
factor ~u2M, here the two particles belong to two different
halos, whence the integration over two halo mass func-
tions, each one with its factor ~uM. In Eq. (54), we only
integrate over halos of radius smaller than �q=2, to take
into account in an approximate fashion that if a pair of
separation �q belongs to two different halos, these halos
are unlikely to have a radius much greater than �q=2.
Thus, massive halos only contribute to the one-halo term

[Eq. (49)] and to the two-halo term [Eq. (52)] at large
distances.
We show in Fig. 22 in the Appendix the impact of this

‘‘virial damping’’ factor on the matter power spectrum, by
plotting the deviation that would be obtained by neglecting
this term. Because of the upper bound on halo mass in
Eq. (54), this factor does not induce a significant damping
of the power spectrum [Eq. (52)] on large scales. Indeed, in
the weakly nonlinear regime where the two-halo term is
dominant, power at wavenumber k typically comes from
pairs of initial separation �q� 1=k, which selects halo
radii qM that are smaller than 1=k for which the factor
~uMðkÞ is close to unity. On small, highly nonlinear scales it
yields a greater damping as 1=k becomes smaller than the
typical size of the halos. However, on these scales, the
matter power spectrum given by our approach is not accu-
rate to better than 10% because of the one-halo term itself,
which involves the halo profiles and their concentration
parameters that are not modeled to a very high accuracy.
Nevertheless, we include this factor in our computations
because it naturally arises in our framework.

D. Nonperturbative effects on large scales

Thus, in our approach we include nonperturbative and
shell-crossing effects on the large-scale power spectrum
through the factors F2H and heik��xivir�q, associated with

halo formation and virialized motions, and through the
adhesion-like continuation described in Sec. III C (in addi-
tion to the one-halo term itself). This is different from
recent Eulerian-space works [48,49] that propose to in-
clude the impact of such nonperturbative effects on large
scales through additional terms in the hydrodynamical
equations of motion of the fluid approximation, that may
be obtained by a combination of coarse-graining (that sets
the form of these terms) and phenomenology (they include
coefficients that are measured in simulations). Indeed, in
our approach the hydrodynamical equations of motion
enter through the perturbative expansion that they imply
for the power spectrum, which is not affected by these
nonperturbative effects. Then, the impact of a small-scale
velocity dispersion, due to virialized motions, is described
by the factor heik��xivir�q in Eq. (53). This would play the

role of some pressurelike terms included in Refs. [48,49].
The trapping within potential wells that is described in a
simplified manner by the nonperturbative correction
[Eq. (42)] associated with the adhesion-like continuation
may also be described within such methods through a
pressure or viscosity term, as in the original adhesion
model [18], where the pressureless Euler equation is re-
placed with the Burgers equation.
As seen in Sec. III C, the ‘‘sticky model’’ that we use for

the cosmic web power spectrum corresponds to a one-
dimensional adhesion model in the inviscid limit; that is,
when the viscosity parameter 
 is sent to 0þ. The associ-
ated Euler equation is also known as the Burgers equation
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[50], introduced as a model for turbulence. Within a spe-
cific geometrical formulation of the inviscid limit, the
equations of motion can be explicitly solved in any dimen-
sion through Legendre transforms and convex hulls
[31,33]. However, it remains very difficult to obtain ex-
plicit results for the statistical properties of the associated
density and velocity fields, except for a few cases in one
dimension (for power-law initial conditions with n ¼ �2
[51,52] or n ¼ 0 [53,54]). If we keep a finite viscosity
parameter 
, the solution is more regular (there are no
shocks), but there are no explicit results for statistical
properties of the displacement field either. This is why
we use the simple model of Sec. III C, which provides
the simple explicit expression in Eq. (42), whereas a fully
three-dimensional adhesion model with finite viscosity
would yield more intricate path integrals. A second reason
for our choice is to avoid introducing additional free pa-
rameters. Indeed, by introducing a finite viscosity parame-
ter, which may also depend on the local density and on
time, as well as other nonlinear terms in the equations of
motion, one needs to build a model for these new parame-
ters or functions. Although these parameters may be esti-
mated from simulations, we prefer in this paper to stick to
the simplest possible modeling that captures some of the
nonperturbative shell-crossing effects. It may be possible
to improve over this first step by considering more realistic
equations of motion (e.g., see Refs. [55,56] for earlier
works), but we leave this for future studies.

Another approach to take into account such effects
would be to go back to the Vlasov equation of motion
[57–59]. In principle, this could provide systematic
schemes, but the methods that have been proposed so far
lead to heavier computations, and no fast and accurate
method has been presented yet.

As noticed in the Introduction, the advantage of the
Lagrangian-space framework over the Eulerian-space
framework is that particle trajectories can describe both
the single-stream and multistream regimes, which allows
us to include these nonperturbative effects in the simple
fashion described in the previous sections. However, this
approach is not fully systematic, and it involves some
phenomenological insight.

V. NUMERICAL RESULTS

A. WMAP5 cosmology

We first compare our model with numerical simulations
for a WMAP5 cosmology, that is, with the set of cosmo-
logical parameters h ¼ 0:701, �m ¼ 0:279, �8 ¼ 0:8159,
ns ¼ 0:96, andwde ¼ �1. While we use the N-body data of
Ref. [14] on large scales (k < 0:3h Mpc�1), we use the
measurements of Ref. [11] on smaller scales. This is because
the former one is tuned to give an accurate power spectrum
on BAO scales and has a larger total volume [60�
ð2048h�1 MpcÞ3 � 515h�3 Gpc3], while the latter gives
more reliable results over a wide range in k by carefully

combining the measurements from some simulations with
different resolutions [the highest-resolution simulation em-
ploys 20483 particles in a ð512h�1 MpcÞ3 cube]. Similarly,
we use the simulation results from these papers for the two-
point correlation function: data points from Ref. [14] are
shown on BAO scales (from 70 to 140h�1 Mpc), while
those from Ref. [11] are depicted on smaller separations.
We show our results for the redshifts z ¼ 3, 1, and 0.35,

which were already used in the previous sections to illus-
trate the building blocks of our model. The redshift
z ¼ 0:35 is the lowest available redshift for this set of
simulations (but we also consider z ¼ 0 in another set of
simulations in Sec. VB 1). However, it is also relevant
from an observational point of view, as recent or upcoming
redshift surveys aiming at measuring cosmic expansion or
structure growth via baryon acoustic oscillations and
redshift-space distortions probe similar redshifts (e.g., the
SDSS LRG sample [60,61]) or higher redshifts (e.g., z�
0:57 for BOSS DR9 [62]).

1. Power spectrum

We show in Fig. 8 the final power spectrum obtained by
our model, combining the cosmic web power spectrum
obtained in Sec. III with the halo model. We clearly see
how the two-halo and one-halo contributions are dominant
on large and small scales, respectively. The transition takes
place around k� 1h Mpc�1 at low redshift, in a gradual
manner. In contrast with previous studies [11,15], we no
longer underestimate the power spectrum on these transi-
tion scales, and we obtain a good agreement up to the
highly nonlinear regime. This is because our two-halo
contribution is no longer based on a perturbative power
spectrum that goes back to the linear power at high k but on
the cosmic web power spectrum of Sec. III, which shows
more power on nonlinear scales because it takes into
account intermediate-scale structures such as pancakes.
This gives a more realistic basis that appears indeed to
provide a better match to the N-body results.
Although our simple modeling takes into account the

formation of pancakes, as described in Sec. III, it does not
include filaments. Indeed, this would require going beyond
the linear regime in more than one dimension, to model the
trapping of particles within filaments. Then, we may ex-
pect an underestimation of the power spectrum on transi-
tion scales. We do not try to remedy for this effect in this
paper, and Fig. 8 shows that the impact on our results is not
very large. In fact, it is likely that this loss of power is
hidden within the limited accuracy of our model (due, for
instance, to the ambiguities associated with the splitting
over one-halo and two-halo terms, while the actual cosmic
web is clearly more complex, as pancakes, filaments, and
virialized objects are connected with each other without
sharp symmetric boundaries).
The upper row in Fig. 8 clearly shows how the slope of

the power spectrum evolves with redshift. For CDM power
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spectra, the transition scale shifts to higher k at higher
redshift, which leads to a ‘‘redder’’ power spectrum (the
local slope n of the linear power spectrum decreases and
typically shifts from �1:5 to �2:5). In turn, this yields a
two-halo contribution that becomes larger with respect to
the one-halo contribution on highly nonlinear scales. In
retrospect, this explains why the underestimation of the
power spectrum on transition scales was more severe at
higher redshift in Refs. [11,15]. Although using the cosmic
web power spectrum of Sec. III is a significant improve-
ment over these previous works, our two-halo contribution
is unlikely to be very accurate at high k, and this is probably
one of the reasons for the discrepancy found in the right-
most panels of Fig. 8 at k > 3h Mpc�1. On these small
scales, we may overestimate the two-halo contribution.

Another source of inaccuracy in this regime is the un-
certainty of the halo-profile parameters themselves, in
particular the mass-concentration relation cðMÞ. We show
in Fig. 8 the results obtained by using for cðMÞ the fits to
N-body simulations fromRefs. [63,64], aswell as the formula

cðMÞ ¼ 11

�
M

2� 1012h�1M�

��0:1ð1þ zÞ�1:5 (55)

for 0:35 � z � 3, where halos are defined by a density
contrast of 200 with respect to the mean density of the
Universe. This gives a power spectrum that is in between
those obtained with the fits from Refs. [63,64] and gives a
slightly bettermatch to our simulations at high k. In principle,
the relation cðMÞ used for the power spectrum is expected to
be slightly different from the one measured in simulations
because of its finite scatter, as inclusion in the matter power
spectrum is associatedwith an implicit weight thatmay differ
from the averaging procedure used to measure the relation
cðMÞ in the simulations. In any case, we can see in Fig. 8 that
the discrepancy between our model and the power spectrum
measured in theN-body simulation is of the same order as the
difference between the predictions that use either Ref. [63] or
Ref. [64] for cðMÞ. This means that the power spectrum at
these high wave numbers still shows an uncertainty on the
order of 10%, whether it is computed through the halomodel
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FIG. 8 (color online). Upper row: matter density power spectrum PðkÞ at z ¼ 0:35, 1, and 3, from left to right, multiplied by a factor
ðkhÞ1:5 as in Fig. 7. Lower row: logarithmic matter power spectrum, �2ðkÞ ¼ 4�k3PðkÞ. We show the linear power spectrum, the two-
halo and one-halo contributions P2H [Eq. (52)] and P1H [Eq. (49)], the full nonlinear power spectrum [Eq. (43)], and the results from
numerical simulations. For the full nonlinear power spectrum [Eq. (43)], in addition to the result obtained with the mass-concentration
relation [Eq. (55)] (solid line), we also show the results obtained using the mass-concentration relations from Refs. [63,64] (dashed
lines).
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or directly from the N-body simulations. In particular, shot
noise certainly explains part of the rise of the power spectrum
measured in the N-body simulations at z ¼ 3 for k >
20h Mpc�1 above our predictions (lower-right panel in
Fig. 8). This is clearly seen from the comparison with the
panels in the lower row obtained at lower redshift, which
probe deeper into the nonlinear regime before being affected
by shot noise, where we can see that the logarithmic power
spectrum follows the shape predicted from the halomodel. In
particular, at z ¼ 0:35we clearly see the slowing downof the
growth of�2ðkÞ ¼ 4�k3PðkÞ in the highly nonlinear regime,
and we would expect a similar behavior at z ¼ 3. (Actually,
wewould expect a slightly faster slowdown because the local
slope n of the linear power spectrum is redder.) Therefore, in
this regime it seems that semianalytical approaches like ours,
based on the halo model, are competitive with direct N-body
simulations. (At very high k, the semianalytic approaches are
expected to remain reasonable, because they are based on a
physically reasonable ansatz and/or assumption, whereas the
direct results from simulations suffer from shot noise.)

We show in Figs. 9 and 10 the relative deviation between
the power spectrum predicted by our model and the N-
body measurements. We obtain an accuracy of about 2%
up to k� 0:3h Mpc�1, and 5% up to k� 3h Mpc�1, for
z � 0:35. The small underestimation of the power spec-
trum on the transition scales (k� 0:5h Mpc�1 at z � 1)
may be due to the fact that filaments are not explicitly
included in our model of the cosmic web. The accuracy
degrades rapidly in the highly nonlinear regime, because of
the uncertainty of the halo model and of the N-body
simulations themselves (in particular, because of shot noise
at very high k). Fortunately, as shown in Fig. 9, the
uncertainties of the halo model (i.e., the parameters of
halo profiles) do not contaminate the predictions for the

power spectrum on large scales, k < 1h Mpc�1. Therefore,
these large scales remain a robust probe of cosmology. This
is also one interest of such analytical approaches that are
complementary to numerical simulations: they allow us to
estimate the impact of different processes on the final
power spectrum and to estimate the range of wave numbers
that are not affected by small-scale uncertainties and can be
safely used to constrain cosmology up to a good accuracy.

2. Two-point correlation function

We show in Fig. 11 our results for the matter density
two-point correlation �ðxÞ, given by

�ðxÞ ¼ 4�
Z 1

0
dkk2PðkÞ sin ðkxÞ

kx
: (56)

As in previous works [11,15,65,66], we can see that using a
well-behaved perturbative contribution that includes one-
loop contributions provides a good accuracy on baryon
acoustic oscillation (BAO) scales. In particular, we repro-
duce the well-known damping of the baryonic peak at
�105h�1 Mpc as compared with linear theory. We can
see in the lower panel the transition between the two-halo
and one-halo contributions, at x� 1h�1 Mpc. As for the
power spectrum, we obtain a significant improvement over
previous studies [11,15], as we no longer underestimate the
two-point correlation on these transition scales. In particu-
lar, we recover the shape of the two-point correlation from
linear to highly nonlinear scales. Again, the two-halo con-
tribution becomes significantly greater than the linear cor-
relation (or the linear power spectrum in Fig. 8) on small
scales because of the adhesion-like continuation explained
in Sec. III C. This is more important at higher redshift
because the local slope of the linear power spectrum on
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transition scales becomes redder while our cosmic web
power spectrum shows a universal k�2 tail. The good
match with simulations on transition scales suggests that
using such a two-halo contribution that is greater than the
linear one on nonlinear scales is an important ingredient for
recovering the full nonlinear power spectrum.

On small scales, the discrepancy between our model and
the numerical simulations is again on the order of the scatter
due to the uncertainty of the halo-model mass-concentration
relation. Fortunately, this only affects very small scales,
where the physics of baryons should also be included (for
instance, through the halo-model parameters) [67].

We show inFigs. 12 and 13 the relative deviation between
the two-point correlation predicted by our model and the
one measured in the N-body simulations. We obtain an
accuracy of about 2% on the BAO scales and of about
5% down to 0:5h�1 Mpc. Again, the accuracy degrades
on smaller scales because of the uncertainties of the
halo-model parameters and of the finite resolution of the

N-body simulations themselves. On very large scales, the
statistical error bars of the simulations grow because of the
finite box size and become much larger than the inaccuracy
of the analytical model. In fact, it seems that we predict
more power than is measured in the simulations by about
2% on large scales. Part of this offset may be due to a lack of
large-scale power in the N-body simulations because of
their finite size. Indeed, we obtain a better agreement on
intermediate scales, 20< x< 60h�1 Mpc. Moreover, the
two-point correlation function changes sign and vanishes at
x0 � 130h�1 Mpc, so that small absolute deviations are
amplified after we take the ratio to �simðxÞ, and the relative
deviation becomes infinite at x0 because of the finite accu-
racy of models and simulations. Thus, as for the power
spectrum, semianalytical approaches like ours appear com-
petitive with direct N-body simulations.
In this paper, we have not considered the impact of

baryon physics on the matter density power spectrum
and correlation function. Hydrodynamic simulations that
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FIG. 11 (color online). Upper row: matter density correlation function �ðxÞ at z ¼ 0:35, 1, and 3, from left to right, multiplied by a
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include a strong AGN feedback (to cure the overcooling
problem and to reproduce x-ray data) suggest that such
effects can modify the power spectrum by 10% at k�
1h Mpc�1 at z ¼ 0 [68]. Fortunately, most of these effects
may be described through modifications to the halo model
[69] (e.g., by distinguishing the stellar, gas, and dark matter
profiles around and within virialized halos). This may
also be incorporated within our framework. In this
respect, semianalytic approaches like ours can be used to
investigate the impact of such modifications of the halo

model parameters onto integrated quantities, such as the
matter power spectrum or correlation function, and in
particular how they affect different scales.

3. Baryon acoustic oscillations

In this section, we focus on BAO scales to investigate
how the oscillations in PðkÞ and the peak in �ðrÞ depend on
the details of the model. As usual, to emphasize the baryon
acoustic oscillations, we show in Fig. 14 the ratio of the
nonlinear power spectrum PðkÞ to a reference linear power
spectrum Pno-wiggleðkÞ without baryon oscillations, at z ¼
0:35. (This is the lowest redshift of this set of simulations,
but it also corresponds to the range probed by some surveys
that use the baryon oscillations to probe cosmology
[60,61].) Because of high-order mode couplings, all non-
linear results plotted in Fig. 14 show a damping of high-k
oscillations, as compared with the linear power spectrum,
where we can still distinguish the oscillations at
k� 0:25h Mpc�1 and k� 0:31h Mpc�1. This damping
is common to most perturbative schemes that go beyond
linear order, because the contribution to the full nonlinear
power spectrum of the linear part decreases (e.g., because it
is multiplied by decaying propagators [65]), whereas the
higher-order contributions mix different wave numbers
(through high-order convolutions of the linear power)
and smooth the final power.
From a physical point of view, this damping is due to the

displacements of matter particles, through large-scale bulk
flows and small-scale virial motions [70]. This broadens
the peak in the real-space correlation function (as seen in
Fig. 15), over a width of a few Mpc set by the typical
relative displacements of particle pairs. Then, this yields a
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damping of the oscillations in Fourier space. As shown by
Fig. 14, this effect is already captured by the Zel’dovich
power spectrum PZ [Eq. (16)], which corresponds to a
Gaussian approximation for particle displacements.
However, in agreement with the analysis in Sec. III A,
this also yields an overall damping of the power spectrum

that is too strong. Then, the perturbative approximation Pk
[Eq. (35)] increases the power by going beyond the
Gaussian approximation (taking into account the exact
one-loop contribution through the skewness of the relative
displacement, as in Fig. 5), and the nonperturbative
adhesion-like continuation of Sec. III C, which enters the
two-halo term P2H [Eq. (52)], provides a further increase

(associated with pancakes). These two nonlinear correc-
tions, which involve high-order mode couplings, do not
keep much of the initial linear oscillations, and this even
further damps the relative importance of the oscillations at
high k. Finally, the one-halo contribution, which corre-
sponds to the difference PðkÞ � P2HðkÞ, only becomes
important for k > 0:23h Mpc�1 and is also very smooth.
We show the real-space correlation function associated

with these different models in Fig. 15. We clearly see how
the damping of the oscillations found in Fig. 14 corre-
sponds to a broadening of the real-space peak, for all
nonlinear models. One striking result is that all nonlinear
correlations are very close to each other, despite the dif-

ferences seen in Fig. 14. In particular, �k, �2H, and � cannot
be distinguished in this figure. This shows that small-scale
virial motions are largely subdominant as compared with
large-scale bulk flows, with respect to the broadening of
the acoustic peak. Moreover, the Zel’dovich approximation
�Z already provides a remarkably good description of the
broadening, even though it shows a small but noticeable
departure from the simulations. (Of course, these curves
start to show significant deviations from each other on
smaller nonlinear scales, x < 4h�1 Mpc.) This shows that
even though the baryon acoustic peak is significantly
modified from linear theory, all reasonable Lagrangian-
space-based models are able to model this nonlinear evo-
lution (see also Refs. [16,29]). This also holds for the
simplest one (i.e., the Zel’dovich approximation), although
it shows small departures from simulations, and higher-
order models (i.e., that include one-loop corrections) pro-
vide a very good match. This explains why reconstruction
techniques [71], which are inspired by the Zel’dovich
approximation, perform very well. For observational
purposes, this confirms again that the baryon acoustic
peak is a very robust probe of cosmology [70], and that the
real-space correlation may be more convenient than the
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Fourier-space power spectrum, because these nonlineari-
ties may be more naturally understood as particle displace-
ments than resonant wave couplings [2,4].

Redshift-space distortions also have a (smaller) impact
on the acoustic peak of the correlation function [71], but
we leave the study of these effects for future works.

B. Other cosmologies

To further test our model, we also compare our predic-
tions with numerical simulations for two other cosmologies.

1. WMAP3 cosmology

We first use an older set of WMAP3 simulations, with
h ¼ 0:734, �m ¼ 0:234, �8 ¼ 0:76, ns ¼ 0:961, and
wde ¼ �1, performed in Ref. [72]. These simulations

have a smaller box size (1000h�1 Mpc) and a lower reso-
lution (5123 particles); hence we only perform the com-
parison on large scales. On the other hand, they allow us to
go down to redshift z ¼ 0.
We show our results for the power spectrum in Figs. 16

and 17. These results are similar to those obtained in
Figs. 8 and 9 for the WMAP5 cosmology, with larger error
bars in Fig. 17 because of the smaller box size of the
simulations.

2. Quintessence cosmology

We finally consider a less standard cosmology, where
the dark energy does not behave as a cosmological
constant. Thus, we choose a dark energy equation-of-state
parameter wde ¼�1:281, and h¼ 0:7737,�m ¼ 0:23638,
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�8 ¼ 0:7692, and ns ¼ 1:0177. We use the measurements
from N-body simulations done in Ref. [14] for this
cosmological model. These simulations are done in
2048h�1 Mpc boxes with 10243 particles, and eight statis-
tically independent realizations are available.

We show our results for the matter power spectrum
in Figs. 18 and 19, and for the correlation function
in Figs. 20 and 21. We again obtain similar behaviors to
those found for the LCDM WMAP5 cosmology in
Sec. VA.

This confirms that our method provides efficient
predictions that can be used for a variety of cosmologies.

VI. CONCLUSION

We have developed in this paper a new approach to a
systematic modeling of the cosmological density field:
instead of looking for explicit partial resummation
schemes, we embed the standard perturbation theory
within a realistic nonlinear ansatz. This automatically en-
sures a reasonable behavior on small scales, while being
consistent with perturbative approaches up to the required
order. Then, this allows us to obtain a reasonable matching
with the highly nonlinear regime.
We have shown how this can be achieved within a

Lagrangian-space framework. Because the lowest-order
approximation that appears in this context is the
Zel’dovich approximation [23], we first discussed the
lack of power on weakly nonlinear scales associated with
this Gaussian approximation. Then, we explained how this
can be partially cured by including higher-order terms (i.e.,
the skewness) while keeping a well-behaved ansatz.
Because the Gaussian is the only probability distribution
with a finite set of nonzero cumulants, this requires includ-
ing nonzero cumulants at all orders, and we describe a
simple ansatz that provides a well-behaved probability
distribution for the longitudinal displacement field. This
provides a perturbative power spectrum that has the same
qualitative properties as the true gravitational dynamics
power spectrum. Moreover, it can be made consistent
with the exact perturbative expansion up to the required
order, while keeping all these qualitative properties. Here
we only go up to order P2

L, but higher orders could be taken
into account by explicitly choosing the kurtosis and higher-
order cumulants of the displacement field (at the price of a
more complex ansatz for the cumulant-generating
function).
Next, we argued that for a good description of inter-

mediate scales it is important to include some effects
associated with the shell-crossing regime. In particular,
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we pointed out that the small-scale behavior implied by the
Zel’dovich power spectrum and most previous Lagrangian-
space schemes, associated with the escape of particles to
infinity, is not adequate, and a more realistic picture is
provided by the adhesion model. We presented a simplified
sticking model that captures some features of this trapping
of particles within potential wells and describes the first
stages of pancake formation. In particular, it captures the
(nonperturbative) increase and change of sign of the skew-
ness of the displacement field on small scales. This gives a
cosmic web power spectrum that shows a broader high-k
tail than the original Zel’dovich power spectrum, with a
universal k�2 decay instead of the steeper-than-k�3 falloff.
The final expression for this cosmic web power spectrum is
summarized as follows [see Eq. (42)]:

Pc:w:ðkÞ ¼
Z d�q

ð2�Þ3
1
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e
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? ;

with the quantities �2
?, �

2
�k ¼ �2

k=ð�qÞ2, and A1 respec-

tively given by Eqs. (14), (15), and (40). For the cumulant-
generating function ’k, we adopt the simple ansatz of

Eq. (31), which is parameterized by the effective skewness
[Eq. (27)] through the scale-dependent parameter �ð�qÞ
[Eq. (32)].

This provides a well-behaved cosmic web power spec-
trum that can be combined with a halo model to describe
all regimes of the cosmological density field, from large
linear to small, highly nonlinear scales. The explicit
expression for the power spectrum, given as the sum of
the two contributions P1HðkÞ and P2HðkÞ, is described in
Sec. IV [see Eqs. (49) and (52)].

A comparison with numerical simulations shows that
our new proposition extends the range of validity of theo-
retical predictions over previous models. We obtain an
accuracy better than 2% for k � 0:3h Mpc�1 and better
than 5% for k � 3h Mpc�1, at z � 0:35. This also yields
an accuracy of 2% on BAO scales for the two-point corre-
lation function and of 5% down to 0:5h�1 Mpc. We
checked that a similar accuracy is obtained for an alter-
native less standard cosmology, with a dark energy
equation-of-state parameter wde ¼ �1:28.

Our approach should be generalized in two directions to
provide a more direct comparison with observations. First,
we should take into account redshift-space distortions,
which should be possible within our Lagrangian-space
framework. Second, we could consider the statistics of
biased tracers, such as galaxies of different mass or lumi-
nosity. We leave these generalizations to further works.

The model developed in this paper can also be directly
applied to several topics. First, following Refs. [73,74], we
can use our predictions for the 3D density field power

spectrum to obtain the power spectrum of the weak-lensing
shear (in the Born approximation) by integrating along the
line of sight. Second, as in Refs. [75,76], we can study less
standard scenarios that involve modifications of gravity on
cosmological scales, or consider the possible impact on the
power spectrum of a warm dark matter component [77]. It
should also be possible to study the effect of neutrinos [78]
or of baryons [12] on the power spectrum.
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APPENDIX: HALO MODEL DETAILS

We show in Fig. 22 the impact on the matter power
spectrum of some details of the halo model.
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FIG. 22 (color online). Relative deviation from our model
in Eqs. (49)–(52) of the power spectra obtained with a factor
(~u2M � ~W2) instead of ð~uM � ~WÞ2 in Eq. (49) (left solid lines), or
with a virial damping factor heik��xivir�q set to unity instead

of Eq. (54) in Eq. (52) (right dashed lines). We show our results
for the WMAP5 cosmology of Sec. VA at redshifts z ¼ 0:35, 1,
and 3.
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The solid curves show the relative deviation from our
prediction that would be obtained by using a factor (~u2M �
~W2), as in Ref. [11], instead of ð~uM � ~WÞ2, in Eq. (49).
This only gives a k2 decay at low k instead of a k4 tail
(i.e., it satisfies matter conservation but not momentum
conservation [47]). This would slightly overestimate the
power spectrum on weakly nonlinear scales, where the
one-halo term starts being non-negligible while remaining
sensitive to its asymptotic low-k behavior.

The dashed curves show the relative deviation from our
prediction that would be obtained by neglecting the virial
damping factor heik��xivir�q in Eq. (52). This would over-

estimate the power spectrum in the highly nonlinear regime
on small scales, which are sensitive to motions within halo
cores. However, on these scales our model suffers from
other uncertainties, due to the limited accuracy of halo
profiles and concentration parameters, and the approximate
form of our two-halo contribution.
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