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We introduce a new framework for loop quantum gravity: mimicking the spin foam quantization
procedure we propose to study the symmetric sectors of the theory imposing the reduction weakly on the
full kinematical Hilbert space of the canonical theory. As a first application of quantum-reduced loop
gravity we study the inhomogeneous extension of the Bianchi I model. The emerging quantum
cosmological model represents a simplified arena on which the complete canonical quantization program
can be tested. The achievements of this analysis could elucidate the relationship between loop quantum

cosmology and the full theory.
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L. INTRODUCTION

The realization of a quantum theory for the gravitational
field must provide an explanation to the current puzzles of
general relativity (GR), i.e. the presence of mathematical
singularities. These singularities have been shown to be
unavoidable in some symmetry reduced models describing
relevant physical situations, such as the collapse of stan-
dard matter and the beginning (eventually also the end) of
the Universe evolution [1]. Hence, it is demanded to a
quantum formulation of gravity to answer to the questions
posed by the unpredictability of GR in these cases.

Loop quantum gravity (LQG) [2,3] constitutes the most
advanced model which pursues the quantization of geo-
metric degrees of freedom. It is based on a canonical
quantization a la Dirac of the holonomy-flux algebra
associated with Ashtekar-Barbero variables [4] in the
Hilbert space of distributional connections. One first de-
fines a kinematical Hilbert space in which the Gauss con-
straint is then solved. The resulting basis elements are the
so-called spin networks: these are labeled by graphs I" and
belong to L2(SU(2)E/SU(2)V), E and V being the total
number of edges and vertices of I', respectively. The
invariance under diffeomorphisms is then implemented
by summing over the orbit of the associated operator,
which gives the so-called s-knots [5]: these are distribu-
tional states representing the equivalence class of spin
networks under diffeomorphisms. In the space of s-knots,
the super-Hamiltonian operator can be regularized [6,7]
and, thanks to diffeomorphisms invariance, the regulator
can be safely removed leading to an anomaly-free quanti-
zation of the Dirac algebra. However, particularly in view
of the presence of the volume operator [8,9], the explicit
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analytical expression for the matrix elements of the super-
Hamiltonian and the properties of the physical Hilbert
space are still elusive. For these reasons other approaches
such as the master constraint program [10] or the more
recent deparametrized system in terms of matter fields [11]
have been introduced in the canonical framework.

Cosmology is a natural arena to test the theory and its
dynamics due to the high degree of symmetry of the
configuration space. The cosmological implementation of
LQG has been realized in the framework of loop quantum
cosmology (LQC) [12,13] (see [14-16] for alternative
proposals). This is based on the implementation of a min-
isuperspace quantization scheme, in which the phase space
is reduced on a classical level according to the symmetries
of the model. Because the Universe is described by a
homogeneous (and eventually isotropic) space-time mani-
fold, the resulting configuration space is parametrized by
three spatial-independent variables. These variables de-
scribe the connections and the momenta of the reduced
model after a gauge fixing of both the SU(2) gauge
symmetry and diffeomorphism invariance has been per-
formed. As a consequence, the regularization of the super-
Hamiltonian operator can be accomplished by fixing an
external parameter g related with the existence of an
underlying quantum geometry [17] (see [18] for a critical
discussion on the regularization in LQC). The resulting
theory is a well established research field with several
remarkable features and physical consequences, the main
ones being a bounce replacing the initial singularity
[17,19-22], the generation of initial conditions for inflation
to start [23,24], and the prediction of peculiar effects on the
cosmic microwave background radiation spectrum [25-30]
(see also [31-33])).

However, LQC has not yet been shown to be the cos-
mological sector of LQG and, in order to solve the tension
between the regularization procedures of the two theories,
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new approaches have been recently envisaged in order to
provide an alternative definition of the super-Hamiltonian
operator in the full theory (see [34] that brings it closer to
the @& scheme of LQC). In this paper, we give a detailed
presentation of the procedure introduced in [35], in which
we adopt the opposite viewpoint assuming LQG as the
correct theory obtained by quantizing GR and then we
look for its cosmological sector imposing a symmetry
reduction at the quantum level. This way we construct a
theory in which we first quantize and then reduce instead of
first classically reducing and then quantizing as it is usually
done in LQC. This approach is not expected to work only
in cosmology, but it can be extended also to other sym-
metric sectors of the theory. This way, we define a new
framework for the analysis of the implications of LQG in
relevant (symmetry-reduced) physical cases (quantum-
reduced loop gravity). Our cosmological quantum model
will then be a proper truncation of the full kinematical
Hilbert space of LQG. The virtue of our approach mainly
consists in the possibility to realize a fundamental descrip-
tion of a cosmological space-time, which fills the gap with
the full theory and on which Thiemann’s regularization
procedure for the super-Hamiltonian [6] can be applied.

The paper is organized as follows: In Sec. Il we quickly
review the main tools of the LQG quantization of GR,
while in Sec. III the homogeneous Bianchi models are
presented and the LQC framework is shortly discussed.
Then in Sec. IV we perform a classical analysis and we
outline how, by considering a proper inhomogeneous ex-
tension, it is possible to retain a certain dependence from
spatial coordinates into the reduced variables describing a
Bianchi I model. Within this scheme, we get the following
set of additional symmetries: (i) three independent U(1)
gauge transformation, denoted by U(1); (i =1, 2, 3),
defined in the one-dimensional space generated by fiducial
vectors w; = d;, and (ii) reduced diffeomorphisms, which
act as one-dimensional diffeomorphisms along a given
fiducial direct i and rigid translations along the other
directions j # i. We also outline how a similar formulation
will be relevant within the Belinski-Khalatnikov-Lifshitz
(BKL) conjecture [36] scheme.

In Sec. V we discuss the implications of this formulation
in a reduced quantization scheme. The elements of the
associated Hilbert space are defined over reduced graphs,
whose edges are parallel to fiducial vectors and to each
edge e;//d; is associated a U(1); group element. Within
this scheme, a proper quantum implementation can be
given to the algebra of reduced holonomy-flux variables.
The additional symmetries can then be implemented as in
full LQG and they imply the conservation of U(1); quan-
tum numbers along the integral curves of fiducial vectors 9;
and that states have to be defined over reduced s-knots.
However, we will note that no meaningful expression for
the super-Hamiltonian operator can be given.

The failure of reduced quantization to account for the
proper dynamics is the motivation for considering a
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different approach, in which a truncation of full LQG is
performed. This is done in Sec. VI where the truncation is
realized such that

(1) the elements of the full Hilbert space are defined
over the reduced graph: this is implemented via a
projection and this implies the restriction of arbi-
trary diffeomorphisms to reduced ones.

(2) The SU(2) gauge group is broken to the U(1); sub-
groups along each edge e;: this is realized by im-
posing weakly a gauge-fixing condition on each
group element over an edge e;.

A proper quantum-reduced kinematical Hilbert space is
found by mimicking the analogous procedure adopted in
spin foam models to solve the simplicity constraints [37].
In particular, we develop projected U(1); networks [38] by
which we can embed functionals over the U(1); group into
functionals over the SU(2) group. Hence, we impose
strongly a master constraint condition obtained by squaring
and summing all the gauge-fixing conditions. This require-
ment fixes the relation between SU(2) and U(1); quantum
numbers and the resulting projected U(1); networks solve
the gauge-fixing conditions weakly. At the end, the reduced
U(1); elements are obtained from full SU(2) ones by
projecting over the states with maximum magnetic number
along the internal direction i. The projection to U(1);
elements can then be applied directly to SU(2)-invariant
states. As a result some nontrivial intertwiners are induced
between U(1); group elements for different values of the
index i. These intertwiners coincide with the projection of
the coherent Livine-Speziale intertwiners [39] on the usual
intertwiners base. Hence, the U(1); states are not kinemati-
cally independent, but they realize a true three-dimensional
vertex structure. This result allows us to implement the
super-Hamiltonian operator according with Thiemann
regularization scheme [6]. In fact, by defining states over
reduced s-knots it is possible to remove the regulator and
get a well-defined expression. Moreover, thanks to the
simplifications due to the reduced Hilbert space structure
(the volume operator is diagonal), we evaluate in Sec. VII
the explicit expression of the super-Hamiltonian matrix
elements in the case of a 3-valence vertex. Concluding
remarks follow in Sec. VIII.

II. LOOP QUANTUM GRAVITY

The kinematical Hilbert space of LQG FH X" is devel-
oped by quantizing the holonomy-flux algebra of the cor-
responding classical model, whose phase space is
parametrized by Ashtekar-Barbero connections A’ and
densitized triads E¢. In particular, the space of all holon-
omies is embedded into the space of generic homomor-
phisms from the set of all piecewise analytical paths of the
spatial manifold into the topological SU(2) group X [40].
On such a space a regular Borel probability measure is
induced from the SU(2) Haar one and the kinematical
Hilbert space for a graph I' is the tensor product of
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L2(X, dw) for each edge e. A basis in this kinematical
Hilbert space can be obtained using the Peter-Weyl theo-
rem. Introducing an SU(2) matrix element in representa-
tion j, {glj, @, B) = Diy B(g), the generic basis element of
HY™ for a given graph I' with edges e will be of the form

(RIT, jo, e, BeY = @D 4. (he), (1)

ecl’

from which we can reconstruct the whole kinematical
Hilbert space as FH ki = @p H k.

Fluxes E;(S) across a surface S are quantized such that a
faithful representation of the holonomy-flux algebra is
realized and they turn out to act as left(right)-invariant
vector fields of the SU(2) group. In particular, given a
surface S which intersects I" in a single point P belonging
to an edge e such that e = ¢;|J ¢, and ¢; Ne, = P, the
action of E;(S) reads

E/(S)DY(h,) = 8myl2o(e, S)D/(h, Vet Die(h,),  (2)

v and [p being the Immirzi parameter and the Planck
length, respectively, and the factor o(e, S) is equal to 0,
1, —1 according to the relative sign of e and the normal to
S, while /e 7' denotes the SU(2) generator in j,-dimensional
representation.

The set of GR constraints in Ashtekar variables, i.e. the
Gauss constraint G, generating SU(2) gauge symmetry, the
vector constraint V,, generating 3-diffeomorphisms, and
the Hamiltonian constraint H, generating time reparamet-
rizations, are implemented in J{*" according with the
Dirac prescription for the quantization of constrained sys-
tems [41], namely promoting the constraints to operators
acting on %" and looking for the physical Hilbert space
FHPYs, where the operator equations G =0, V,=0,
H = 0 hold. We quickly review how these constraints are
implemented in LQG:

(i) G maps h, in h, = )ts(e)he/\;(el), s(e) and t(e) being
the initial and final points of e, respectively, while A
denotes SU(2) group elements and the condition
G =0 is solved implementing a group averaging
procedure. To this aim, one introduces a projector
Pg to the SU(2)-invariant Hilbert space 9 X", by
integrating over the SU(2) group elements A and
Au(e) for each edge. Basis elements of 9 X" are then
the so-called spin networks:

@IC G ) = [T x - D). @

vEl ecl

x, being the SU(2) invariant intertwiners at the
nodes v and they can be seen as maps between the
representations associated with the edges emanating
from v and - means index contraction.

(i) The action of finite diffeomorphisms ¢ maps the
original holonomy into the one evaluated on the
transformed path, 7, — h,): states invariant under
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this action can be found in the dual of J{*" and they
are the so-called s-knots [5], namely equivalence
class of spin networks under diffeomorphisms.

(iii) The Hamiltonian constraint A in the gauge and
diffeomorphism invariant Hilbert space can be
regularized by adopting the standard prescription
given by Thiemann [6] or an alternative recent
proposal [7], but at present only the first one has
been shown to reproduce the Dirac algebra without
anomalies. We resume Thiemann construction be-
cause it will be adapted to the cosmological model
of interest in this article.

We restrict our attention to the so-called Euclidean part

of the Hamiltonian constraint, which can be written as

H[N] = fz PrNCOHG) = —2 fz NTHF A A VY, @)

V being the volume operator of the full space, while A and
F denote the connection 1-form and the curvature 2-form,
respectively. The regularization is based on defining a
triangulation T adapted to the graph I' on which the
operator acts. In particular, for each pair of links e; and
e; incident at a node v of I', we choose semianalytic arcs
a;; whose end points s, , S, are interior points of e; and
ej, respectively, and a;; NI" = {s,, s, }. The arc s; (s;) is
the segment of e; (e;) from v to s,, (S¢,)s while s;, s;, and
a;; generate a triangle «;; = s; © a;; © sj_l.

Three (nonplanar) links define a tetrahedra (see Fig. 1).
The full triangulation 7 contains the tetrahedra obtained by
considering all the incident links at a given node and all the
possible nodes of the graph I'. Now we can decompose (4)
into the sum of the following term per each tetrahedra A of
the triangulation 7"

H[N] = Z -2 [ d>xN e Tr(F ,{A., V).  (5)

AET A
The connection A and the curvature F are regularized by
writing them in terms of holonomy R = p[s] € SU2)
in a general representation m along the segments s; and the

loop a;;, respectively. This yields
\ ajk
ki
Sk ij
S5
v Si
r

FIG. 1. An elementary tetrahedron A € T constructed by

adapting it to a graph I which underlies a cylindrical function.
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HY[N]:= %

m

€k Ty [h(m)h(m) l{hg(n), V}], (6)

the trace being in an arbitrary irreducible representation
m: Tr,[D] = Ti[D™(U)], where D" is a matrix
representation of U &€ SU(2), while N2 =Tr,[r7!]=
—@2m+ Dm(m+1) and A" = D™ (k). As shown in
[42], the right-hand side of Eq. (6) converges to the
Hamiltonian constraint (5) if the triangulation is suffi-
ciently fine. The expression (6) can finally be promoted
to a quantum operator, since the volume and the holono-
mies have corresponding well-defined operators in JH i
and replacing the Poisson brackets with the commutator

(3= =il T we get
A%[NT = N)Cm)e* T A AT [ALY, VI (D)

= __ =i _
where C(m) SN

triangulation 7 acts as a regularization parameter and
it can be removed in a suitable operator topology in the space
of s-knots, see [6] for details. This is essentially due to the fact
that via a diffeomorphism it is possible to change €, thus the
result of the computation of HY over diffeomorphism-
invariant states does not depend on such a regulator.

Remarkably it is possible to formally write solutions to
the quantum Hamiltonian constraint: these are linear com-
binations of spin networks based on graph with “dressed”
nodes (see [3]) characterized by “‘extraordinary links,” i.e.
links with three-valent nodes as boundary attached to two
collinear links. Because of the particular nature of the
“dressed” spin networks, the procedure described gives
an anomaly free quantization of the Dirac algebra.
However, these solutions are only formal because the ex-
plicit expression of the matrix elements of H is very
complicated [43] and it is unknown in a closed form
because of the presence of the volume operator (for which
only numerical calculations are available for arbitrary
valence and spins [44]). In the quantum-reduced model
that we are going to introduce, instead the volume operator
is diagonal and this will allow us to explicitly compute the
matrix element of H, opening the way to construct the
physical quantum states.

The lattice spacing € of the

I11. BIANCHI MODELS

The early phases of the Universe are described by skip-
ping the assumptions of the Friedmann-Robertson-Walker
(FRW) model, i.e. isotropy and homogeneity. The relaxing
of the former leads to the Bianchi models for the Universe
(see [45] for a recent review), which are described by the
following line element:

ds* = N} ()dr* — e2*0(e*PV) 0" ® (8)

a, N, and B,, depending on time coordinates. « deter-
mines the total volume, while the matrix B,, describes
local anisotropies and it can be taken as diagonal and with a
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vanishing trace, such that two independent components
remain. The fiducial 1-forms @’ determine the fiducial
metric on the spatial manifold.

For a Bianchi model, the homogeneity of the fiducial
metric allows one to define some structure constant C}k as

follows:
do' = C;ka)j A ok )]

Each model is determined by C;k and the Bianchi types
I, 11, and IX are characterized by C';, ={0, 8\€j,, €},
respectively. In the following, we will restrict our attention
to the so-called class A models for which Cﬁj =0.

Densitized 3-bein vectors can be determined from the
expression of the spatial metric tensor in Eq. (8). However,
it is not possible to fix uniquely E{ because one is always
free to perform a rotation in the internal space which does
not modify the metric tensor. A useful choice is to set E¢
parallel to the vectors w;, defined as w'(w;) = 8; such
that it is possible to separate gauge and dynamical degrees
of freedom [46]. It is worth noting how this choice implies
a gauge fixing of the symmetry under internal rotations.
The associated gauge-fixing condition reads [47,48]

Xi = €, E{wl. (10)

At the end, the following expression for densitized
3-bein vectors is inferred:

E¢ = pi(ww?, pl = e**e Pi, (11)
o being the determinant of w{,, while the index i is not
summed. In the following, repeated gauge indices will not
be summed while the Einstein convention will still be
applied to the indices in the tangent space. The associated
Ashtekar-Barbero-Immirzi connections can be inferred by
evaluating the extrinsic curvature K,, and the three-
dimensional spin connections w;;,. The extrinsic curvature
involves time derivatives of the 3-metric and K}, = K e’
reads

, 1
Kl

a = ﬁathab =

1 . _
ﬁ(d + Bie*ePiwl,  (12)
while the expression of the spin connection w;, is given by

j o —1k
Wija zak (aa] ay Clk+a a;la;'C,—aa; a Ci)),

(13)

where a; = e®*#i. The connection A, is given by the sum
of yKi and } €' w ;,, and it can be written as

M=ol o= (L@ po) ta)esetn (14)

where «; depends on the kind of Bianchi model adopted
(22} Uk j - aiwiz)-
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A. Loop quantum cosmology

The LQC formulation of homogeneous Bianchi models
implements the quantization procedure in the reduced
phase space parametrized by {c;, p’/} [49].

The induced symplectic structure leads to the following
Poisson brackets:

. 877G .
P00} == =78, (15)
0

the other vanishing, where V,, denotes the volume of the
fiducial cell on which the spatial integration occurs.

The Hilbert space is defined by addressing a polymerlike
quantization and it turns out to be the direct product of
three Bohr compactifications of the real line, H =
L2(R3,,, dfi), one for each fiducial direction. A generic
basis element is thus the direct product of three quasiperi-
odic functions, i.e.

(e, €, c3) = ®;etich, (16)

i = {u;} being real numbers. The operators associated
with momenta p' act as follows:

Pl alcy, o c3) = 8mylh i z(cy, ca, €3). (17)

The scalar constraint is derived by rewriting the one of
LQG (6) in terms of the holonomies associated with the

connections (14) and of the reduced volume operator V =

Vo p' p?p’. However, the area of the additional plaquette
a;; cannot be sent to 0. The difference with respect to the
full theory can be traced back to the loss of diffeomorphism
symmetry, which was responsible for the restriction to
s-knots. This issue has been solved by evaluating the scalar
constraint at some fixed nonvanishing values f; i ; for the
area of the plaquettes «;;. These values are related with the
scale at which the discretization of the geometry in LQG
occurs [17]. The resulting dynamics has been analyzed for
Bianchi I, II, and IX models [17,19-22] and the presence of
f’s provides a nontrivial evolution for the early phase of
the Universe, whose most impressive consequence is the
replacement of the initial singularity with a bounce.

Therefore, in LQC the & parameters contain all the
information on the quantum geometry underlying the con-
tinuous spatial picture and, at the same time, they are
responsible for the departure from the standard big bang
paradigm.

However, this construction only mimics the original
LQG quantization and even if it is well defined on physical
ground there is still a gap between the full theory and this
scheme. The formalism that we are going to introduce is
instead obtained by a direct reduction from the full theory
at a quantum level and it could shed light on the & scheme
at the base of LQC.
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IV. INHOMOGENEOUS VARIABLES

Our aim is to consider a weaker classical reduction of
the full phase space with respect to the one used in LQC, in
such a way that a reduced diffeomorphism invariance is
retained and there is then more freedom in the regulariza-
tion of the super-Hamiltonian operator. In this respect, we
will consider an inhomogeneous extension of the Bianchi I
model.

The Bianchi I model describes a spatial manifold iso-
morphic to a three-dimensional hyperplane. The structure
constants C;'.k vanish and the 1-forms ' can be taken as
w' = 8dx*. The metric of the Bianchi I model can be
written in Cartesian coordinates as follows:

ds? = N*di* — ai(r)dx' ® dx' — a3(1)dx* ® dx*
— a3(ndx® ® dx?, (18)

a; (i =1, 2, 3) being the three scale factors depending on
the time variable only.

Let us now consider the following inhomogeneous ex-
tension of the line element (18):

ds? = N*(x, t)dt* — a3(t, x)dx' ® dx' — a3(t, x)dx* ® dx?
— a3(t, x)dx* ® dx3, (19)

in which each scale factor a; is a function of time and of the
spatial coordinates. As soon as the gauge condition (10)
holds the densitized inverse 3-bein vectors read

— i ; _ d1dras
E¢ = pi(t, x)6¢, p = — (20)
l
i.e. they take the same expression as in the relation (11), the
only difference being that now reduced variables p' depend
also on spatial coordinates. A similar result is obtained for
the projected extrinsic curvature, i.e.

. 1 .
K, = Ndi(t’ x) 84, 21

while the spin connections w;j, for the inhomogeneous
model are given by
wijq = a; a; ' 848%9,a; — a;?a; ' 64,67 9pa;  (22)

At this point let us consider two different cases: (1) the
reparametrized Bianchi I model and (2) the generalized
Kasner solution within a fixed Kasner epoch.

In a reparametrized Bianchi I model we assume that
each scale factor is a function of time and of the corre-
sponding Cartesian coordinate x' only, i.e.

a; = ai(t) xi)) (23)

such that d,a; > &) and the spin connections @;;, vanish
identically. Obviously, the dependence on x' is fictitious
and it can always be avoided by a diffeomorphism, so
finding the homogeneous Bianchi I model. However, the
reparametrized model is endowed with an additional gauge
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symmetry, which will have a key role in the development
of the quantum theory.

The same result concerning the vanishing of spin
connections can also be obtained in the limit in which
the spatial gradients of the metric components can be
neglected with respect to the time derivatives. This ap-
proximation scheme corresponds to the notion of “local
homogeneity,” which is implemented when the BKL
mechanism is extended to the generic cosmological solu-
tion [36,45]. This is done by considering the generalized
Kasner model [50], which describes the behavior of the
generic cosmological solution during each Kasner epoch.
This model has been realized by considering an extension
of the Kasner solution, in which the Kasner exponents are
functions of spatial coordinates. Indeed, in general the
fiducial vectors do not coincide with the ones of the
homogeneous Bianchi I model and they are subjected
to a rotation signaling the transition to a new epoch.
Nevertheless, within each epoch, one can neglect the rota-
tion of Kasner axes and take at the leading order the
fiducial vectors w!, = &7,

Therefore, in both cases (1) and (2) the connections
retain the same expression as in the homogeneous case,
but reduced variables depend on spatial coordinates as
follows:

Ci(t’ .x) = Za, (24)

Ai t, = [ ty 5la’
1(0.2) = i(6.2) :

The Poisson brackets between Al and E¢ induce the
following Poisson algebra:

{P'(x 1), ¢;(y, 0} = 87Gy8 & (x —y),  (25)

the other vanishing.

Since we did not impose homogeneity, the SU(2) Gauss
constraint G; and the super-momentum constraint H, do
not vanish identically. In particular, G; reads

G; = 8{a,p' = 9;p', (26)
while the generator of 3-diffeomorphisms takes the follow-
ing expression:

DI = [ &1, ~ ALG )
=3 [tepio, + @ewelds @

&9 being arbitrary parameters, while & = £957,.

V. REDUCED QUANTIZATION FOR THE
INHOMOGENEOUS EXTENSION OF THE
BIANCHI I MODEL

Let us now discuss how the quantization of the inhomo-
geneous extension of the Bianchi I model can be performed
in reduced phase space.

PHYSICAL REVIEW D 87, 083521 (2013)

In this case, one should define the Hilbert space for
functionals of reduced variables c;, whose conjugate var-
iables are p’, and consider the set of reduced constraints. In
particular, the SU(2) Gauss constraint is replaced by the
conditions (26), which for a given i can be regarded as a
U(1) Gauss constraint along the one-dimensional space
generated by the vector dual to w' = 8. dx‘, ie. 9; =
6¢d,. We denote the U(1) group of transformations
generated by G; as U(1);. Since {G,, G} = 0, the U(1);
transformations are all independent from each other.

A convenient choice of variables for the loop quantiza-
tion is to consider the U(1); holonomies for the connec-
tions ¢; along the edges e, parallel to 9,, i.e.

redp, = P(e’ J. ey (28)

Hence, we are not dealing with a U(1)3 gauge theory on
a three-dimensional space, since holonomies associated
with different U(1); have support on different edges e;.
What we have is the direct product of three one-
dimensional U(1) gauge theories.

The Hilbert space can be labeled by reduced graphs T',
which are cuboidal lattices made by the union of (at most)
six-valent vertices with the ingoing and outgoing edges of
the kind e;, and it can be defined as the direct product of the
space of square integrable functionals over the U(1); group
elements associated with each e¢;, i.e.

3
red 7 — ® ® Lz(U(l)V d,LLi), (29)

i=1 ¢;€l

du; being the U(1); Haar measure.
A generic element is given by taking the direct product
of U(1); networks over ¢; and they read

3

br=Q v.. (30)

i=1 ¢;€l

where ¢, is a U;(1) function, which can be expanded in
U(1), irreducible representations as follows:

we, — Zei”ieiw};:y (31)

n;

0" being the parameter over the U(1); group, while n;
denotes the U(1); quantum number.

Momenta p’ have to be smeared over the surfaces S’
dual to e; and the associated operators can be inferred by
quantizing the Poisson algebra (15), so finding

plS)p,, = 8wyl nje? . (32)

In order to develop the gauge-invariant Hilbert space
red G in which the conditions (26) are solved, one must
insert the invariant intertwiners associated with the three
U(1); groups. These intertwiners map U(1); group ele-
ments into U(1); group elements for a fixed value of i.
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FIG. 2. The representation of a vertex in reduced quantization:
the quantum numbers n;, n,, n; are conserved along the direc-
tions i = 1, 2, 3, respectively.

This means that they do not provide us with a real three-
dimensional vertex structure, since they connect only
group elements defined over intersecting edges parallel to
the same vector field 9;.

At a single vertex v, one can have at most two U(1);
group elements for a given i: the ones associated with the
two edges e; and ¢! emanating form v (see Fig. 2).

As soon as ¢, and . are expanded in irreducible

!
representations ¢’ and 1//2, (31), respectively, the invariant

intertwiner selects those representations for which n; = n!.

Therefore, the projection to "¢ % implies that the
U(1); quantum numbers are preserved along each integral
curve of the vectors 9;.

A. Diffeomorphisms

The conditions (20) and (24) imply a partial gauge fixing
of the diffeomorphism symmetry. In fact, under a generic
3-diffeomorphism connections and momenta transform as
follows:

8eAL = 09 AL + 0,EPAL

. . (33)
0:E! = £P0,E] — 3,6 F].
Starting from the expression (14), one gets
8§A; = fbabciﬁfl + fbciabﬁfl + aafbééci
= £09,¢;8 + d.0c;. (34)

It is worth noting that for arbitrary £ the connection
cannot be written as in (14). This feature signals that by
choosing connections as in (24) we are actually performing
a partial gauge fixing of the diffeomorphism group. The
same result is obtained for E¢. However, there is a residual
set of admissible transformations which preserve the con-
ditions (14) and (11) and they are those for which

9 &' = 8, — & = £'(x). (35)

PHYSICAL REVIEW D 87, 083521 (2013)

As soon as the condition above holds, each & is the
infinitesimal parameter of an arbitrary translation along the
direction i and a rigid translation along other directions.
We denote this transformation as reduced diffeomorphisms
&¢. We are going to show how the constraint (27) implies
the invariance under reduced diffeomorphisms.

In reduced phase space, the constraint (27) acts on a
reduced holonomy (28) as follows:

D[E]redhe[ = 8mwyl} [e.mdhe’_(oys,)(fbabci

+ (aigi)ci)redhe[(s/,l)dxi(s/)x (36)
e;(0,s") and e;(s’, 1) being the edges from s = 0 to s = s
and from s = s’ to s = 1, respectively.

The transformation (36) has to be compared with
the changing induced by a reduced diffeomorphism
Ggi x(s) = x'%(s) = x(s) + £ under the -condition
(35). A diffeomorphism ¢ maps an edge ¢; into one which
is generically not of the reduced class. In fact the tangent
vector at the leading order is given by the following
expression:

dx'® dx? dx?
=——+ 9,9 —— = 8¢ + 9,£°6%
s ds %3 ds * 0; »&6;
=8¢ + abffb‘j?‘éf’. (37)

The second term on the right side gets contributions
also from the fiducial vectors d; with j # i, such that the
tangent vector of ¢(e;) is not proportional to ;. However,
if one considers the reduced class of transformations (35),
these additional contributions vanish and the tangent vec-
tor of @(e;) is parallel to 9;. Hence, reduced diffeomor-
phism @ map reduced edges e; to each other.
The holonomy along ¢, is thus given by

h P(efci(x’)ﬁédx’“ , (38)

Bele) =
and by computing the integrand one gets

c;(x")8Ldx'* = c;(x)8Ldx* + £Y9,c; 8 dx¢
+ c;(x)d, & dx. 39)

From the expression above and by considering that
dx® = 6¢dx'(s), the following relation follows:

hgi _ P(ef""(x')‘sid"'" _ P(e]c,-(x)tszdx")

=f redhg[(o,s/)(é':babci
€
+ (9,6 c)h

h

Peler)

el_(s,,l)dx" (s, (40)
which coincides with the expression (36). Therefore, the
reduced diffeomorphism & (35) map reduced holonomies
into reduced holonomies and they are associated with the
action of the relic diffeomorphism constraint (27) in

083521-7



EMANUELE ALESCI AND FRANCESCO CIANFRANI

p p
n n n n+1 n
1
1 p+1
p p

FIG. 3. The action of the operator associated with the
curvature changes U(1); quantum numbers such that it maps
the state out of the gauge-invariant Hilbert space (we did not
draw the edges along the third direction).

reduced phase space. This residual symmetry can be used
to define reduced knot classes as in the full theory.

B. Dynamics

The super-Hamiltonian operator in reduced-phase space
takes the following form:

1,2 2,3 3,1
H[N]:fd3XN \/p 14 L1C2+Jp 14 »2C3+ prp Cc3C1 |

3 1 2

p p p

(41)

and the quantization of this expression requires to (i) give a
meaning to the operator 1 /[P’ and (ii) replace c¢; with
some expression containing holonomies. These are the
standard issues one encounters in LQG, which are solved
by quantizing the expression (6). Therefore, the quantiza-
tion of the super-Hamiltonian operator in the reduced
model can be realized by implementing in the reduced
Hilbert space the procedure adopted in the full theory.
This can be done formally by replacing SU(2) group
elements with U(1); ones and by defining a cubulation of
the spatial manifold, such that the loop «;; is a rectangle
with edges along fiducial vectors. Unfortunately, the re-
sulting expression for the super-Hamiltonian operator
regularized & la Thiemann is not defined in "¢ J{ %i. This
is due to the fact that the operator haij increases (decreases)
the U(1); [U(1);] quantum number associated with the
segment s; (s;). As a consequence, the U(1); quantum
number is not conserved along the edge e; and the U(1);
symmetry is broken (see Fig. 3).

Therefore, it cannot be given a proper definition of the
super-Hamiltonian operator in reduced quantization. This
is due to the lack of a real three-dimensional vertex struc-
ture, which instead can be inferred starting from the full
LQG theory.

VI. COSMOLOGICAL LQG

Let us now discuss how to realize in the SU (2) kine-
matical Hilbert space of LQG JHXin the conditions (20) and
(24) via a reduction from SU(2) to U(1) group elements.

PHYSICAL REVIEW D 87, 083521 (2013)

At first, we impose the restriction to edges e; parallel to
fiducial vectors d; and we discuss the fate of diffeomor-
phism invariance. Then, we will deal with the restriction
from SU(2) to U(1) group elements and with the relic
features of the original SU(2) invariance.

A. Quantum diff-constraint

The restriction to cylindrical functionals over edges e;
implies the kind of restriction on the diffeomorphism trans-
formations which we discussed in Sec. VA. We can imple-
ment this feature on a quantum level via the action of a
projector P onto the space HH » made of holonomies along
reduced graphs (edges e; adapted to the w;). This projector
P acting on F{X" is then nonvanishing only for holono-
mies along edges e;.

Let us consider a generic diffeomorphisms ¢, whose
associated operator U(¢) in the space of cylindrical func-
tional acts on a generic holonomy 4, along an edge e as
follows:

0(§D§)he = hgaé(e)' (42)

The projection of U(g,) in the graph-reduced Hilbert
space H p is given by

=0(p;) = PU(¢,)P, (43)

where Ph, = h, if e = e; for some i, otherwise it vanishes.
The action of ™U(¢) on a graph-reduced holonomy h,
reads then

*40(p)h,, = PU(¢s)Ph, = PU(ps)h, = Ph (44)

@g(ei)'

As we pointed out in Sec. VA, ¢,(e;) is parallel to w; if
¢ is a reduced diffeomorphism &. Hence, the relation (44)
is nonvanishing only if ¢ = & and one finds

©d(p) = U(p). (45)

Therefore, in FH p the relic diffeomorphisms are reduced
ones. The development of knot classes with respect to
reduced diffeomorphisms will allow us to regularize the
expression of the super-Hamiltonian operator a la
Thiemann.

B. Classical holonomies and quantum reduction

On a classical level, the SU(2) holonomies Rhéi associ-
ated with connections (24) are given by

Fhl, = (e /. C"“’”“”"), (46)

s being the arc length along e;.

Henceforth, ®h}, are SU(2) holonomies that belong
to the U(1) subgroup generated by 7; and they can be
written as

Rpl = exp (ia'r,), (47)
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where «' is a real number and the gauge indices are not
summed as usual.

These holonomies in the base |j, m;) that diagonalize 7'
take the form

G, milRRL\j, nyy = e ™8, . (48)

Similarly, we evaluate fluxes only across the surfaces S’
dual to e; and the associated fluxes in a cosmological
space-time read from Eq. (11):

E;(S%) = [E?Sfldudv = Bf[p,»dudv. (49)

It is worth noting how only the diagonal components of
E;(S) are nonvanishing. Now our task is to find a quantum
symmetry reduction implementing consistently on the
kinematical Hilbert space of LQG " the classical con-
ditions (47) and (49) representing the holonomized version
of the variables (24) and (20) with Poisson brackets (25).

How can we proceed?

First, we observe that the skew-symmetric part of the
matrix E,(S/) can be avoided by imposing the following
conditions:

Xi =D €, Ex(S) =0. (50)
Lk

The relation above together with the SU(2) Gauss con-
straint constitutes a second-class system of constraints,
thus it is actually a gauge fixing. As a consequence, the
condition (50) cannot be implemented on a SU(2) invariant
quantum space according with the Dirac prescription. One
possibility is to retain the full unconstrained set of con-
figuration variables and to define the action of quantum
operators starting from Dirac brackets instead of Poisson
brackets. This way however, the connections become non-
commutative [47,48] and it is difficult to envisage how to
carry on the quantization procedure in the full kinematical
Hilbert space.

Henceforth, mimicking the procedure adopted in spin
foam models to impose the simplicity constraints [37], we
consider the master constraint condition, that arises ex-
tracting the gauge invariant part of y;,

X =D xixi

= > [6™6,E(SNE,, (S) — E{(SYEL(S)]=0. (51)
i,m,k,l

By imposing the condition (51) strongly on FH 5, it will
turn out that Eq. (50) holds weakly and the classical
relation (49) can be implemented in a proper subspace of

p, as soon as p; are identified with the left invariant
vector fields of the U(1); groups generated by 7;.

If §? is applied to a SU(2) holonomy A}, and e; N S =

b(e;), b(e;) being the beginning point of e;, one finds

R2h) = BmyR) (2 — 7;m)hi, (52)

PHYSICAL REVIEW D 87, 083521 (2013)

thus an appropriate solution to y?> = 0 is given by

*hl =0, Y k#i (53)

To find the quantum states that implement x> =0
strongly and Eq. (53) weakly, we will use projected spin
networks [38,51].

C. Projected U(1)

We now introduce the projected spin network formal-
ism, in which we define functions over SU(2) starting from
their restriction over the U(1); subgroups generated by ;.

This way, we lift the U(1); group elements associated
with reduced holonomies (47) to the SU(2) elements of the
full theory. This lifting will help us later in embedding
reduced elements in the SU(2)-invariant Hilbert space.

Let us consider the Dupuis-Livine map [38] f: U(1) —
SU(2) from functions on U(1) to functions on SU(2):

J(g) = f dhK(g, p(h), g €SUQR). (54)
U(l)

with Kernel given by

K(g.h)=3 fU " dky ™ (gk) x"(kh), (55

where y/"(g) are the SU(2) characters in the j(n) repre-
sentations and y"(%) are the U(1) ones, while j(n) denotes
a half integer depending on an integer n. It is true that
Y (g)lyay = ¢ and this implies that the image of f is a
subspace of the space of functions on SU(2) such that
i@ = [ ke wim,  gesu@. G0
i.e. the function ¢(g) is entirely determined by its restric-

tion to a U(1) subgroup. If we expand ¢ using the Peter-
Weyl theorem we get

Y(h) =D x" (W), (57)
and the coefficients /" are given by
o= dnxw (58)
u(1)
Equation (54) is then
i(g) = kDA () D (X" (K) ™,
P9 =3 [ DR @DE W w0, 69

where D{,(,',') are the Wigner matrices in a generic spin base
|/, m). Now let us consider projected functions defined over
the edge e; and let us choose the U(1); subgroup of SU(2)
in the definition (54) as the one generated by 7;, calling its
elements k; and the quantum numbers n;. The previous
expression becomes
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4o =¥ [ dk;

/(n )

mr—*j(n)
Jn;) i) . _
= [ a0 3 DI (@) 6,00
n Y8 mr=—j(n;)
S DI (g (60

iD{,E'r’f) being the Wigner matrices in the spin base |}, m);
that diagonalize the operators J? and J; and 6; are the
coordinates on the U(1); groups. Note that the matrices
D, (g) are obtained by the SU(2) transformation D/ (ii;)
which acts on the vector €, sending it to the vector i; =
Ré. as

1

"Dhn(g) = D7, (@) D]s()D7 (i) (61)

This is valid for an arbitrary degree j(n;). Now we have
to select a condition ensuring the vanishing of Eq. (52) on a
quantum level. The condition on basis element of

LA(SU(2)) ‘Dh(g) = {j, mlglj, r); reads
omlxglj, ri = Gomlglj, )i (GG + 1) — m?). (62)

This relation implies that if we apply y? to our projected
spin networks, whose basis elements are of the form
iDJ")(g), by fixing |n;] = j(n) an approximate solution
to x*> = 0 is given as j — +o0. In the following we will
consider only the plus sign [52], since the opposite one can
be obtained by reversing the orientation of the associated
edge e;.

It is worth noting that introducing coherent states for
SU(2), defined by
Di(i)lj, jy =

lj, &) = ZIJ, myDI (@), (63)

the basis elements which are solutions of the constraint are
‘DYi(g) = (. ii;| DI ()l ii;) (64)

fori =1, 2, 3.
|

{AL(x, 1), EZ(y, 1)} < 818563 (x, y)

| quantization

h, € SUQ2), Ey(SHh,, « 8irih,,

Despite the possibility to project the Hilbert space of
quantum reduced holonomies into the one of reduced
quantization, there is a substantial difference between
these two kinds of reductions. The U(1) representations
we get are obtained by stabilizing the SU(2) group along

DI () DI (ki) x™ (k) el

reduced phase space

X=0  xi~0,

PHYSICAL REVIEW D 87, 083521 (2013)
Henceforth, we find

(9., = YD) (65)

J

Basis states of this form also satisfy the condition (53)
weakly in fact

FHELSIT)
—8myE ZW [de D) @n) @l =0, ki

(66)

In this way the resulting quantum states associated with
an edge e¢; are entirely determined by their projection into
the subspace with maximum magnetic numbers along the
internal direction i. We call the projected SU(2) states of
the form (65) quantum-reduced states and they define a
subspace of HH p that will be denoted JH . The restriction
of states (g) € JH® to their U(1); subgroup reads

Yo, = 0(Qelua, = DIy, (67)
J

Therefore, the restriction to the U(1); subgroup gives the
element of ™ (31).

Moreover, the action of fluxes E;(S¥) on 17/6,, is non-
vanishing only for [ = k = i and each E;(S’) behaves as
follows [we are assuming S' N e; = b(e)]:

Ei(S") ., = 8my[38] D), (68)
J

By restricting the expression (68) to the U(1) subgroup,
one gets

E(SY e luay, = E(S) ., = 8myl38!> je® Iyl (69)
J

thus Ei(Si) ., behaves as the left-invariant vector field of

the U(1); subgroup and its action on ¢, reproduces the

action of momenta in reduced quantization (32). Therefore,

the restriction to the U(1); subgroup maps the quantum-

reduced states, elements of JH X, to the Hilbert space JH ™4
obtained when quantizing in reduced phase space:

{eilx, 1), p*(y, 0} = 878 (x — y)
| quantization (70)

o, €U,  pripel o Sinyipe!.

different internal directions and the U(1); transformations
associated with different i are not independent at all
(they are rotations along the i axis). As we will see in the
next section, for this reason some nonvanishing inter-
twiners exist among them.
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D. Gauge invariant states

The original SU(2) gauge invariant Hilbert space
L*(SUQ):/SU(2)Y) is made of spin networks of the
form (3). These are invariant under the action of gauge
transformations on the holonomies. If we define as U g()\)
the operator that generates local SU(2) gauge transforma-
tions A(x), its action on basis elements of FH " is given by

Ug(NDin(h) = Dhin(Agohe Ay, (71)
and by group averaging we get the projector

Pg = f dAUg(A), (72)

acting on the source and target link and producing the
intertwiners at the nodes thanks to the formula

[ ) 1 .
J A T] Db W T2
o=1 i=1

i

— *
- me]...mo,n’l...n'l'x’llw"o,m'lmm;’ (73)
X

PHYSICAL REVIEW D 87, 083521 (2013)

where x,, . are the SU(2) intertwiners between /

incoming and O outgoing representations, respectively.
The projector (72) restricts the SU(2) functionals to be
gauge invariant with coefficients

<F: {je}r {xv}ll/j> = 'ﬁijv = l_[xv ’ l_[ {ém (74)

vel el

where the gauge invariant basis elements are of the form

(T, Geh ) = [Txw - T1P hn (75)

vell eel’

As we have seen in the previous section the imposition of
the quantum constraint y> = 0 reduces the allowed SU(2)
representations on the links to be of the kind D'J’- j(h). Let us
focus on a single vertex v with [ ingoing links e; and O
outgoing links e,, respectively, such that s(e,) = t(e;) =
v V i, o: if we apply the projector (72) acting on v to the
quantum reduced basis elements (64) we get

1

o 1 o

Pg [1°07, (he) TP (he) = [ an, [T70% 0, Aute)" D3 g, (he resty, rest gy T T Dl e Dy (A
o= i= o=
o

B [d/\v l_[ Djiljo'yn(IZO)Dj’yoSn(/\U)Dj‘soao(IZU){)D{;OIBO (he”)reStﬂﬂj’)
o=1

1

. i —1 > i — i ->
X rest] ]'[ "Dy (o)D" s (@)D, (A, )DT (i)

i=

0

L i GADI . (7D .
vam/lmm,y’,-..y}x”sv51<'~50’5’1--'5'1 l_[D J,,VO(MO)D 50%(”0) Danﬁo(heo)reStﬂalo
xU

o=1

I
/ ! 7\DJ = \ipi
X l_[lrest j,-ﬁﬁD agag(”l)D y;j,»(ul) DB;a;(hei), (76)
ol

where rest (rest’) indicates the part of the holonomy whose final (initial) index transforms under gauge transformation with
a group element A # A, and in the second and third equality we used the equations (61) and (73), respectively. The
previous expression can be reformulated introducing a Livine-Speziale coherent intertwiner [39] |jo, U, ji, ;) €
[19 H’> ® [T} H*/ adapted to incoming and outgoing edges:

0 I
|j0’ ﬁO’ jI’ ﬁ]> = |j0’ ﬁ0> ® <jI’ ﬁ[l = [d)\ l_[ )\_lljw ﬁo> ® l_[<jir ﬁiIA’ (77)
o=1 i=1
and noting that its projection on the usual intertwiner base |jo, j1, X) = x;, R 19 1o, m,) ® [Ti;, m!] with
ljo, j1. x) E 12 H> ® [T} H"' is exactly the coefficient appearing in (76): e

0 I
e > e o e . ; L S
(Jo o, 1 Uljo, j1 xu) = X oy ] l_[l D/, (ii,) l_! Dy, (@), (78)
o= i=

or equivalently
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0 .
Pg Ul ()D§Zj0 (he()) l_[ lD.;I./l (h )

=Y (jo. o, j1. Usljo. j1. Xy)Xy,.5,...50.5! .8

‘XU

0]
X [1D75,0,0)°Dl g, (he,) restg,

o=1

1
X an;;a;(ﬁ,») rest/jiﬁ,’D;B‘, ,(hei), (79)
i=1
thus we see that the gauge invariant projector brings us out
of the space of reduced holonomies. This was expected
since the Gauss constraint G that generates the SU(2)
transformations does not commute with the second class
constraint y = 0 imposed weakly. Our class of states can
then be selected asking that the states averaged over G now
also satisfy the constraint y = 0; to ensure this condition it
is enough to select the maximum weight spin in the sum
over a, and «! inside the expression (79),

o I
[P G l'[l °Dy; (h,,) l_! 'Dj; (he) ]R
o= i=

= z<j0, o, jr. Uljo. j1. xuXjo 1 Xuljo, U0, jr. Up)
X

X ]‘[01)!0 s, (b, )resty ;. ]'[ rest; D}y (he,). (80)
o= i=1

The previous equation can then be seen as the replace-
ment of the usual projector on the gauge invariant states of
the full theory Pg: H¥ M — G H¥n with its reduced ver-
sion Pg,,: HY" — GHR where Pg , = PLPgP, is given
by the composition of the Gauss projector with the projec-
tor on the quantum reduced space with P, : FH*" — FHE,

The reduced basis states will then be of the form

(hIT, joo x,0r = [T G0 %o lir 8 - l'[lD’” (k). (8D

vel

[ denoting ingoing and outgoing directions of the links ¢;
with tangent vectors u; in v, while (j,, x,|j;, 4;) a short
hand notation for the generic reduced intertwiner of the
kind (78). The contraction now is just standard multiplica-
tion according to the orientation and connectivity of the
holonomies.

The expansion of the projected spin network (65) on this
base is then

&L je xoly = TG i liv o) - [T'wer, (82)

vell eel’

with 'y’ = G i g1j i)
What about the scalar product? This is induced from the
one of the full theory i.e.

<F, je’ xvlr’, jle, Xi,> 61" 1—*/5 /6 (83)

JerJe

PHYSICAL REVIEW D 87, 083521 (2013)

In fact, looking at a single edge we see that (83) is based on
the orthogonality relation

1
d- Jljz

J1

f dAD I (A)D2,(2) = 8acbpar (84

which naturally induces on the reduced basis elements:
[dAD]l]l (A)Djzjz(A) j ]1 J2? (85)
1

equivalent up to a scaling to the U(1) scalar product along
each edge. However, the reduced states |I", j., x/,) are not
anymore orthogonal respect to the intertwiner because

R<F’ jer xvlrly j/e) XL>R
= &rr8; 1 [T TG wlin x)Gn Xl @), (86)

vel e€l’

and we need to employ an orthonormalization procedure as
the Gram-Schmidt one.

It is interesting to note that using the resolution of the
identity in terms of coherent states:

1,=Yljim ',m|=d~[ dALj, DG, Al
j %J X i AL X

"y f dilj. i il (87)
82

where |j, A) are coherent states defined as |j, A) = Alj, j)
and |}, it), with i unit vectors on the sphere S2, are pro-
portional to |j, A) up to a phase that drops in the integral,
one finds

o = GralLliob) = d; [ diialj. ).l b). - (88)

Using the previous expression then a generic basis element
Diun(g) of JH " can be written as

D{nn = ngaD{;bébVl
ab
= > [ diimlj i, alj. D,
ab
x [ aadivlj .l m. (89)
S

This expression is now useful to infer the form of the
reduced states basis of 9 H K.

The quantum constraint y? in fact will act at the end
point (the conjugate condition will hold at the starting
point) of the holonomy as

X2DI(9)lj ity = D(g)(r* — (& - D)), D)
= DI+ 1) — (@€ -DIj @) (90)

and using the property of the coherent states ¥ - 7|j, U) =
jlj, ¥) we see that if and only if
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oD

e;=u
the basis elements will satisfy {*>D7(g)|j, ity = 0 in the
appropriate limit. Then looking at Eq. (89) we see that
the index m, n will be connected to the usual intertwiners at
the starting and end points of the holonomies for gauge
invariant states in ¢ H of the kind (75), but all the terms in
the two integrals for which the condition (91) does not
hold, are not solutions of the constraint j/z = 0. The re-
duced holonomies to be connected to the standard inter-
twiners are then

g = RD}u(g) = d3(j, mlj, é)(j, 1D (g)lj, €, &l m).
(92)

The previous expression gives a simple rule to build
states in 9 H R it is enough to connect expressions (92)
instead of the usual Dj,,(g) to the standard intertwiners.

These states, which are defined over cuboidal lattices
with six-valent intertwiners, are suitable to describe a
quantum universe in the case of the inhomogeneous ex-
tension of the Bianchi I model.

E. Intertwiners

In the previous section we determined the reduction
implied by the condition (50). This procedure is well
grounded because only interior edge points have been

PHYSICAL REVIEW D 87, 083521 (2013)

considered, while holonomies transform under gauge
transformations at boundary points only. Hence, the under-
lying SU(2) gauge structure becomes manifest at vertices.
We are going to evaluate the expression of intertwiners
adapted to the reduced holonomies Ee , which are the
quantum version of (46), i.e. Rp = h.

The basic scheme of recoupling theory is given by three-
valent intertwiners. Let us consider a three-valent vertex
with two edges e and e, incoming and e; outgoing, with
associated SU(2) irreps j;, j,, and jj, respectively. The
SU(2) intertwiner is given by the Clebsch-Gordan coeffi-
cients or equivalently by 3j symbols (equipped with the 1;
“metric tensor’’) [53], such that the full vertex reads

Djl

n'n

crr DE

(he )DT (ke )CPE, DT (), (93)

where the repeated magnetic indices are all summed
and taken in a fixed basis, for example the one that
diagonalizes 7.

In order to find out U(1) irreps out of SU(2) ones,
holonomies must be written in the basis that stabilizes
the direction e; and the restriction to the representations
with maximum magnetic numbers must be considered. In
particular, it is convenient to introduce a graphical repre-
sentation for the expression (92),

BDI(G)mn = dF < j,mlj,é1 >< j,é1|D?(9)|j, € >< j.éilj,n >

J J

J

— Rﬁ

—

R

-1
€l

-1
g

R -

€ R

—1

where the solid lines represent the identity in the base
|j, m) that diagonalizes 7,

6(1, b

5 (95)

the projection on the maximum magnetic number is given
by

<jjl= = and [jj>= — (96)
and the group elements are represented by boxes or
circles depending on whether they represent the Wigner
matrix of specific fixed rotation R(e;) that moves the e,

axis to the e; axis, selecting the desired U(1); subgroup, or

< J1, 72, J3, Tolj1, J2, J3, €1, €2, €3 >=

a generic SU(2) Wigner matrix D(g) in the |j, m) base,
respectively:

—

D(R(ei

)in = (97)

J
‘With this notation the three-valent intertwiner from which

any higher valence one (our theory for the Bianchi I model
prescribes nodes at most six-valent) can be represented as

DJ

mn

(9) (98)

(99)
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where the three-valent node is the usual 3j symbol con-
tracted with the SU(2) coherent states in the three direc-
tions ey, e,, e3. The explicit value of the function (99) can
then be computed using the values of the Wigner matrix for
a rotation parametrized for example by the Euler angles
(a, B, y) that brings the vector (0,0,1) to the vector ¢;. The
Wigner matrices are then given by

D{n m’(a’ B’ 7) = eimad;m/(ﬁ)eim"y’

where d’ (B) is the Wigner function given in
Appendix A. In particular, for the cubical lattice we are
interested in the vectors e; = e, = (0,0,1), e, = e, =
(0,1,0), and e; = e, = (1,0,0) and the rotation matrices
appearing in (99) are given by Dfn,m,(— .%.%) =R, and
D{n ,m,( ,5,0) := R,. In fact, the two matrices rotate the z
axis respectively into the y and the x direction.

This graphical machinery can now be used to introduce a
reduced recoupling theory (see Appendix B) out of the
SU(2) one and to compute the action of the scalar

constraint.

(100)

F. Geometric operators
In reduced Hilbert space 9 {®, the following relation
defining the action of fluxes on basis elements holds,
R<€[7 je, |Ei(Sk)|el: je[>R = <eb jellp/\/EA'i(Sk)P/\/lel: je,)
= —i8wyliol(e;, )64 811je,
(101)

where ¢; indicates the edge e in direction /.

Henceforth, geometric operators are developed starting
from the action of reduced fluxes PXE,»(S")PX = RE (5%
in reduced Hilbert space. Therefore, the area operator
along a surface S’ is given by

RA[ST] = f VREASRE(S ) dudv,

(102)
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J3
J2
Ja

J1
Js
Je

FIG. 4. Six-valent vertex.

u, v being a proper parametrization of the surface S’. The
expression above can be regularized as in the full theory
[8,54], and at the end its action is nonvanishing only on
le, j.,) for e; NS # @ giving
FALSNes jo) = 8mlayicles jo). (103)
In the same way, the action of the volume operator can
be defined from reduced fluxes and its expression gets an
enormous simplification with respect to the full theory
[8,9] thanks to the reduction of SU(2) group elements to
U(1); ones. Let us consider the volume of a region ()
containing only one vertex v (the extension to regions
containing more than one vertex is straightforward), the
operator V() reads

W) - 3 L e RERED

1
fd3x\/ '
a,b,c,ik,l 3

and the action on a trivalent node |e;, e,, e, Jeyr Jey Jey Xu)
can be regularized by introducing reduced fluxes over S
i=1,2,3with S'NnSZNS? = v as follows:

(104)

i,k,l,m,n,p

RV(Q)leI’ €7, €3, jey jez’ jey xv> = fd3x\]

1 SR A A .
Z 5emnpelklREi(Sm)REk(Sn)REl(Sp)

|elr €3, €3, jelr jez’ jey xv>

=/¢4

ikil>"

Z%(Gikl)ZREi(Si)REk(Sk)REl(Sl)

|elr €, €3, ./elr Jezr Jey xv>

= fd3xJ|RE1(Sl)REZ(SZ)REB(S3)||elx 82’ 63’ je]) jez’ j63’ xv>

= J|j€1j€2j83o(el’ 51)0(62) 52)0(83) S3)||e]) €, €3, jel’ jezy jeS’ xu);

where in the second and third lines we used the fact that
RE,(S™) is nonvanishing only if i = m and the commuta-
tivity of RE,(S?) and RE,(S"). Henceforth, the action of the
volume operator is diagonal in the basis (81). In the case of
a generic vertex, the expression above should be summed

(105)

over all the e}, e,, and e3 emanating from v, and it does not
depend explicitly on the intertwiner structure. For the six-
valent vertex in Fig. 4 by choosing the orientation of §', $2,
and S3 such that their normals are parallel to ey, e,, and e3,
respectively, the volume becomes

083521-14



QUANTUM-REDUCED LOOP GRAVITY: COSMOLOGY
RV (Q)ley, ey, €3, eq, €5, €6, j1. jor 30 Jar 50 Jor Xu)

= BmyBY2y(r + j)a + j5)Us + jo)
X ley, €3, €3, €4, €5, €6, j1, jor 3 Ja» J5: Jor Xp)- (106)

VII. HAMILTONIAN CONSTRAINT

The super-Hamiltonian operator can be consistently
regularized in the reduced Hilbert space, starting from
the expression of the full theory. In this respect, let us
restrict our attention to the Euclidean constraint (4) and
let us adapt Thiemann regularization procedure [6] to the
states of the reduced theory by considering only cubic
cells. Hence, let us develop a cubulation C of the mani-
fold X adapted to the graph I' underlying the cubical
lattices over which our reduced cylindrical functions are

defined. For each pair of links e¢; and e; incident at a
|

I IN) = N(n)C(m) €% Tr [Riﬁmwhg;y)*l [Fhm, RV]]

The lattice spacing of the cubulation C, that acts as a
regularization parameter, can be changed via a reduced
diffeomorphism. Hence, on reduced s-knot states there
exists a suitable operator topology in which the regulator
can be safely removed as in full LQG. Therefore, the action
of the super-Hamiltonian operator can be regularized in
the reduced Hilbert space. We proceed in the next section
to the explicit computation of the matrix elements of (107)
on three-valent nodes.

A. Reduced Hamiltonian on three-valent nodes

The reduced Hamiltonian “H % [N] acts on reduced

states as the operator (7) does on ordinary spin network
states. The difference is that now the holonomies are of the
kind (64) or equivalently of the kind (94) considering the
node structure and, consequently, one has to recouple them
using the rules contained in Appendix B. Here we study

izgin) lvs)r = izgin)
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node 1 of I' we choose semianalytic arcs a;; that respect
the lattice structure, i.e. such that the end points s,,, Se,
are interior points of e;, e;, respectively, and a; NI" =
{s¢, s¢,}. The arc s; is the segment of e;(e;) from n to
s;(s;), while s;, s;, and a;; generate a rectangle «;; :=
s;0a;o© sj_l. Three (nonplanar) links define a cube and
we get a complete cubulation C of the spatial manifold
by summing over all the incident edges at a given node
and over all nodes. Now we can decompose (4) obtain-
ing the expressions (5) and (6) adapted to C simply with
the replacement A — 3.

We are now interested in implementing the action of the
operator (7) via an operator *H defined on 9 H®: a con-
venient way of constructing it is to replace in the expres-
sion (7) quantum holonomies and fluxes with the ones
acting on the reduced space as follows:

(107)

Qij

rg % [N] acting on a three-valent node; in the following

we neglect the value of the lapse function and the constants
analyzing the operator
R ijk mv.[Rj (m)R7 (m)—1Ry,Rj

i = et Ty [RRG R (-1 Ry hg;?)] , (108)
because, as is the full theory, due to the presence of €'/ this
is the only nonvanishing term in the commutator. Choosing
a three-valent vertex state [v3)g = ey, ey, €., jo jyr Jor X )R

with outgoing edges e,, e,, e, the Hamiltonian

RH % [vg) is the sum of three terms

Rff% lvs)r = 22:1 Rff;n@ |vs)r, where k = 1, 2, 3 for

sk € ey, ey.e, respectively. H[[vs)r acts first by

y
multiplication with the holonomy on the right of (108)
producing

(109)
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—d; 4m (110)

Then the volume acts diagonally multiplying by ,[ JjxJy(j; + m) and the last operator Rﬁg:‘j)Rﬁg")_l attaches the inverse
holonomy and the loop a,,. We get

. . R — d; )2
Tr Rhgzlth((s-T)ileRhgT)} lvs)r = \/Ja Jy (J= + 1)M

djz +m

Reduced recoupling (see Appendix B) on the links gives
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T —————(4,.)?
[0 5 oy = ey e+ 0,

djz+m

Y Ry

The previous expression can then be simplified moving the box using the invariance of the intertwiners at the central node
and using SU(2) recoupling theory we get (see [43,55])

T [RRm) FRE R A0 fug)

L (d;.) Jatm y Jetm [ Getm Ju-m Js
=\/do dy (G + 1) 7=, o (1) T I

J=+m
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A similar calculation for the reversed loop a, leads to the final result:

: ' (d;.)? Bim g Gatm Jy Jetm ) [ Jetm Jy-m i
H;n@ |v3>R|v3>R =\ Iz Jy (‘]2 * 1)d ) dj“'erdjy*m(_l)dm{jJt i;; JjJ; } ! rTL ;;er iy}

J=+m

i |

¥

Jz

Jet+m y—m

, (114)
o .. ( . 1 (djz) d. d. 1 3m g Ja Jy+m Jz4m Je—m jyt+m j-
Jz Jy Uz + )dj o Jz—m jy-‘rm( ) {m Jz Jy }{jz+wrz mo je }
iz |

The total scalar constraint is then obtained by summing the contributions for k = 1, 2 obtained from the previous
expression by index permutations.
This result can now be used to construct explicit solutions or to test the semiclassical limit.

083521-18



QUANTUM-REDUCED LOOP GRAVITY: COSMOLOGY

VIII. CONCLUSIONS

We provided a new framework for the cosmological
implementation of LQG. This new formulation was aimed
to realize a quantum description for an inhomogeneous
extension of the Bianchi I model, in which a residual
diffeomorphism invariance held and there was space left
to regularize the scalar constraint as in full LQG [6]. We
outlined how the implementation of a quantization scheme
in reduced phase space was not fit for this purpose. This
fact was due to the presence of three independent U(1)
gauge symmetries [denoted by U(1),], each one acting on
the integral curves of fiducial vector fields w; = 9;. The
space of invariant states under U(1); transformations was
made by elements whose U(1); quantum numbers were
preserved along each curve. The issue of this approach was
that such a space is not closed under the action of the scalar
constraint, regularized as in [6].

Henceforth, our new framework has been defined by
reversing the order of ‘“‘reduction” and ‘‘quantization,”
which means that we projected the kinematical Hilbert
space of LQG down to a reduced Hilbert space which
captured the degrees of freedom of the extended Bianchi
I model. This was done by restricting admissible edges to
those parallel to fiducial vectors only and by implementing
a gauge-fixing procedure for the internal SU(2) symmetry.
The former implied that the full diffeomorphism group was
reduced to a proper subgroup, while the latter constituted
the most technical part of our analysis. We found the
solutions of the gauge-fixing condition by lifting U(1);
networks to SU(2) ones. This way, we could reconstruct
the quantum states describing the extended Bianchi I model
out of functions of SU(2) group elements. This feature
allowed us to investigate the implications of the original
SU(2) invariance, and some nontrivial intertwiners are
obtained. These intertwiners are able to map a U(1); rep-
resentation into a U(1), representation for k # i. This is the
paramount result of our analysis which marked the differ-
ence with the reduced quantization scheme. In fact, a true
three-dimensional vertex structure could be realized also in
the reduced model. The main consequence was that one
could implement the action of the scalar constraint in the
reduced model as in full LQG, the only difference being
that the triangulation of the spatial manifold had to be
replaced by a cubulation. At the same time, the presence
of reduced diffeomorphisms allowed one to develop certain
knot classes over which the scalar constraint could also be
consistently regularized. Furthermore, since the volume
operator was diagonal, the matrix elements of the scalar
constraint can be explicitly computed. For instance, we
presented the calculation for a three-valent vertex structure.

The analysis of the action of the scalar constraint on the
six-valence vertex and the dynamical implications of the
extended Bianchi I model will be the subject of forthcoming
investigations. These developments are expected to be
highly nontrivial, because the presence of the reduced

PHYSICAL REVIEW D 87, 083521 (2013)

intertwiners correlates the spin quantum number along
different directions already on a kinematical level. In this
respect, the construction of a proper semiclassical limit, in
which the classical Bianchi I model is inferred, constitutes a
tantalizing perspective for testing the proposed quantization
procedure. As limiting cases we can get both the locally
rotationally symmetric Bianchi I model and the flat FRW
space, by peaking around homogeneous configurations
having two or all three U(1); quantum numbers equal,
respectively. The success of this analysis would qualify
such a scheme as a well-defined quantum picture describing
the early Universe in terms of a discrete geometry, so
opening the way to several phenomenological applications.
Moreover, it is envisaged for the first time the possibility to
test the viability of the techniques developed in LQG
(implementation of the scalar constraint [7,56,57], develop-
ment of the semiclassical limit) in a simplified scenario in
which the obstructions of the full theory can be overcome.

This analysis constitutes the first realization of quantum-
reduced loop gravity. We applied this framework to the
inhomogeneous extension of the Bianchi I model, but
nothing seems to prevent us for considering other symmet-
ric sectors of the full theory, so increasing the relevance of
the proposed procedure and the amount of phenomenologi-
cal implications which can be extracted.
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APPENDIX A: SU(2) FORMULAS

The explicit expression of the Wigner function d{;m(,B)
[58] is

d’, (B) = + m)1( — m)I(j + m)I( — m)IY (— D
k

(COS g)2j—2k+m—m’(sin g)Zk—m+m’

KG+m— G —m —lm —m+ k)

(AD)

and the Wigner matrices for an angle 8 = 7 are given by
P (™ N = (rynnt gt
Dm,m’<a’ 2’ ,y) ( 1)m m o =iam=iym 2j

G+ m)G — m)!
G+ mG - m’)!g(_l)k

NGTo (L
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where the sum over k is such that the argument of the
factorials are always bigger than zero.

APPENDIX B: REDUCED RECOUPLING

The standard multiplication of SU(2) holonomies and
their recoupling, i.e.

Dﬁl"](g)Dﬁwz(g) Zcflnzﬂljzszl’{””(g)Cflnnljznz (BD)

using the graphical calculus, introduced in [43] and based
on 3 symbols related to Clebsch-Gordan coefficients by

jsm — (_1Vi—atm v J2 3
Climjym, = (111702 3\/dj3<ml o _m3)’ (B2)

J2 : J2 ]2
»— P> -
J1 J1 ]1

PHYSICAL REVIEW D 87, 083521 (2013)
can be written as
> J2 J J
=> dy A , (B3)
))—>—> k jl ]1
J1

where the triangle denotes a generic SU(2) group element
and the notation with the two kinds of arrows is used to
distinguish indices belonging to the vector space JH/ or the
dual vector space JH/*. The previous expression in the
quantum reduced case where we deal with holonomies of
the kind (94) becomes

Z dkldkzdkd é>—<t }—‘>—<t >—<
ki1kaks

= ditia 1+ J2 1+ J2 Ji+ 2> (B4)
jl Jl

where we used the property of the Clebsch-Gordan CX¥

/J J2J2

that is nonvanishing only if K = j; + j, and k = j; + j,

graphically given by (remember that in the graph notation we always use 3js)

-

The same result can be obtained remembering that

-

]i‘>z> )

J1
and the coherent state property |j, j) = I%%

271 j;_}
——— and =
J1 V 11 +J2 h k

(-1

272
(B5)

j
(B6)
PR

® 2 that graphically implies

i
=V dji+j JIES AN and
J1

(B7)

J
7 )1+ )2
J1 J1

In the case in which the two group elements go in opposite directions, we have instead

Ji J1

J2 J2 J2 (i, )3 J
_ %o — — —
(d y )2 J2—i1 J2—i1 Jj2—J1 Y
«— le—] - << J2 ; J1
J N

(B8)

because we can recouple the lines obtaining a sum over allowed spins, but in the reduced space 9H X the only
nonvanishing terms are produced by the Clebsch-Gordan (3) of the kind

J2 =

—1)251
»—< = (=1) and
/2 J1 V djz

J2—n

>_H (_1)211+212
J2 - V djz

J1
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