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We introduce a new framework for loop quantum gravity: mimicking the spin foam quantization

procedure we propose to study the symmetric sectors of the theory imposing the reduction weakly on the

full kinematical Hilbert space of the canonical theory. As a first application of quantum-reduced loop

gravity we study the inhomogeneous extension of the Bianchi I model. The emerging quantum

cosmological model represents a simplified arena on which the complete canonical quantization program

can be tested. The achievements of this analysis could elucidate the relationship between loop quantum

cosmology and the full theory.
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I. INTRODUCTION

The realization of a quantum theory for the gravitational
field must provide an explanation to the current puzzles of
general relativity (GR), i.e. the presence of mathematical
singularities. These singularities have been shown to be
unavoidable in some symmetry reduced models describing
relevant physical situations, such as the collapse of stan-
dard matter and the beginning (eventually also the end) of
the Universe evolution [1]. Hence, it is demanded to a
quantum formulation of gravity to answer to the questions
posed by the unpredictability of GR in these cases.

Loop quantum gravity (LQG) [2,3] constitutes the most
advanced model which pursues the quantization of geo-
metric degrees of freedom. It is based on a canonical
quantization à la Dirac of the holonomy-flux algebra
associated with Ashtekar-Barbero variables [4] in the
Hilbert space of distributional connections. One first de-
fines a kinematical Hilbert space in which the Gauss con-
straint is then solved. The resulting basis elements are the
so-called spin networks: these are labeled by graphs � and
belong to L2ðSUð2ÞE=SUð2ÞVÞ, E and V being the total
number of edges and vertices of �, respectively. The
invariance under diffeomorphisms is then implemented
by summing over the orbit of the associated operator,
which gives the so-called s-knots [5]: these are distribu-
tional states representing the equivalence class of spin
networks under diffeomorphisms. In the space of s-knots,
the super-Hamiltonian operator can be regularized [6,7]
and, thanks to diffeomorphisms invariance, the regulator
can be safely removed leading to an anomaly-free quanti-
zation of the Dirac algebra. However, particularly in view
of the presence of the volume operator [8,9], the explicit

analytical expression for the matrix elements of the super-
Hamiltonian and the properties of the physical Hilbert
space are still elusive. For these reasons other approaches
such as the master constraint program [10] or the more
recent deparametrized system in terms of matter fields [11]
have been introduced in the canonical framework.
Cosmology is a natural arena to test the theory and its

dynamics due to the high degree of symmetry of the
configuration space. The cosmological implementation of
LQG has been realized in the framework of loop quantum
cosmology (LQC) [12,13] (see [14–16] for alternative
proposals). This is based on the implementation of a min-
isuperspace quantization scheme, in which the phase space
is reduced on a classical level according to the symmetries
of the model. Because the Universe is described by a
homogeneous (and eventually isotropic) space-time mani-
fold, the resulting configuration space is parametrized by
three spatial-independent variables. These variables de-
scribe the connections and the momenta of the reduced
model after a gauge fixing of both the SUð2Þ gauge
symmetry and diffeomorphism invariance has been per-
formed. As a consequence, the regularization of the super-
Hamiltonian operator can be accomplished by fixing an
external parameter �� related with the existence of an
underlying quantum geometry [17] (see [18] for a critical
discussion on the regularization in LQC). The resulting
theory is a well established research field with several
remarkable features and physical consequences, the main
ones being a bounce replacing the initial singularity
[17,19–22], the generation of initial conditions for inflation
to start [23,24], and the prediction of peculiar effects on the
cosmic microwave background radiation spectrum [25–30]
(see also [31–33]).
However, LQC has not yet been shown to be the cos-

mological sector of LQG and, in order to solve the tension
between the regularization procedures of the two theories,
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new approaches have been recently envisaged in order to
provide an alternative definition of the super-Hamiltonian
operator in the full theory (see [34] that brings it closer to
the �� scheme of LQC). In this paper, we give a detailed
presentation of the procedure introduced in [35], in which
we adopt the opposite viewpoint assuming LQG as the
correct theory obtained by quantizing GR and then we
look for its cosmological sector imposing a symmetry
reduction at the quantum level. This way we construct a
theory in which we first quantize and then reduce instead of
first classically reducing and then quantizing as it is usually
done in LQC. This approach is not expected to work only
in cosmology, but it can be extended also to other sym-
metric sectors of the theory. This way, we define a new
framework for the analysis of the implications of LQG in
relevant (symmetry-reduced) physical cases (quantum-
reduced loop gravity). Our cosmological quantum model
will then be a proper truncation of the full kinematical
Hilbert space of LQG. The virtue of our approach mainly
consists in the possibility to realize a fundamental descrip-
tion of a cosmological space-time, which fills the gap with
the full theory and on which Thiemann’s regularization
procedure for the super-Hamiltonian [6] can be applied.

The paper is organized as follows: In Sec. II we quickly
review the main tools of the LQG quantization of GR,
while in Sec. III the homogeneous Bianchi models are
presented and the LQC framework is shortly discussed.
Then in Sec. IV we perform a classical analysis and we
outline how, by considering a proper inhomogeneous ex-
tension, it is possible to retain a certain dependence from
spatial coordinates into the reduced variables describing a
Bianchi I model. Within this scheme, we get the following
set of additional symmetries: (i) three independent Uð1Þ
gauge transformation, denoted by Uð1Þi (i ¼ 1, 2, 3),
defined in the one-dimensional space generated by fiducial
vectors !i ¼ @i, and (ii) reduced diffeomorphisms, which
act as one-dimensional diffeomorphisms along a given
fiducial direct i and rigid translations along the other
directions j � i. We also outline how a similar formulation
will be relevant within the Belinski-Khalatnikov-Lifshitz
(BKL) conjecture [36] scheme.

In Sec. V we discuss the implications of this formulation
in a reduced quantization scheme. The elements of the
associated Hilbert space are defined over reduced graphs,
whose edges are parallel to fiducial vectors and to each
edge ei==@i is associated a Uð1Þi group element. Within
this scheme, a proper quantum implementation can be
given to the algebra of reduced holonomy-flux variables.
The additional symmetries can then be implemented as in
full LQG and they imply the conservation of Uð1Þi quan-
tum numbers along the integral curves of fiducial vectors @i
and that states have to be defined over reduced s-knots.
However, we will note that no meaningful expression for
the super-Hamiltonian operator can be given.

The failure of reduced quantization to account for the
proper dynamics is the motivation for considering a

different approach, in which a truncation of full LQG is
performed. This is done in Sec. VI where the truncation is
realized such that
(1) the elements of the full Hilbert space are defined

over the reduced graph: this is implemented via a
projection and this implies the restriction of arbi-
trary diffeomorphisms to reduced ones.

(2) The SUð2Þ gauge group is broken to the Uð1Þi sub-
groups along each edge ei: this is realized by im-
posing weakly a gauge-fixing condition on each
group element over an edge ei.

A proper quantum-reduced kinematical Hilbert space is
found by mimicking the analogous procedure adopted in
spin foam models to solve the simplicity constraints [37].
In particular, we develop projected Uð1Þi networks [38] by
which we can embed functionals over the Uð1Þi group into
functionals over the SUð2Þ group. Hence, we impose
strongly a master constraint condition obtained by squaring
and summing all the gauge-fixing conditions. This require-
ment fixes the relation between SUð2Þ and Uð1Þi quantum
numbers and the resulting projected Uð1Þi networks solve
the gauge-fixing conditions weakly. At the end, the reduced
Uð1Þi elements are obtained from full SUð2Þ ones by
projecting over the states with maximummagnetic number
along the internal direction i. The projection to Uð1Þi
elements can then be applied directly to SUð2Þ-invariant
states. As a result some nontrivial intertwiners are induced
between Uð1Þi group elements for different values of the
index i. These intertwiners coincide with the projection of
the coherent Livine-Speziale intertwiners [39] on the usual
intertwiners base. Hence, theUð1Þi states are not kinemati-
cally independent, but they realize a true three-dimensional
vertex structure. This result allows us to implement the
super-Hamiltonian operator according with Thiemann
regularization scheme [6]. In fact, by defining states over
reduced s-knots it is possible to remove the regulator and
get a well-defined expression. Moreover, thanks to the
simplifications due to the reduced Hilbert space structure
(the volume operator is diagonal), we evaluate in Sec. VII
the explicit expression of the super-Hamiltonian matrix
elements in the case of a 3-valence vertex. Concluding
remarks follow in Sec. VIII.

II. LOOP QUANTUM GRAVITY

The kinematical Hilbert space of LQG H kin is devel-
oped by quantizing the holonomy-flux algebra of the cor-
responding classical model, whose phase space is
parametrized by Ashtekar-Barbero connections Ai

a and
densitized triads Ea

i . In particular, the space of all holon-
omies is embedded into the space of generic homomor-
phisms from the set of all piecewise analytical paths of the
spatial manifold into the topological SUð2Þ group �X [40].
On such a space a regular Borel probability measure is
induced from the SUð2Þ Haar one and the kinematical
Hilbert space for a graph � is the tensor product of
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L2ð �X; d�Þ for each edge e. A basis in this kinematical
Hilbert space can be obtained using the Peter-Weyl theo-
rem. Introducing an SUð2Þ matrix element in representa-

tion j, hgjj; �;�i ¼ Dj
��ðgÞ, the generic basis element of

Hkin
� for a given graph � with edges e will be of the form

hhej�; je; �e; �ei ¼
O
e2�

Dje
�e�e

ðheÞ; (1)

from which we can reconstruct the whole kinematical
Hilbert space as H kin ¼ L

� H
kin
� .

Fluxes EiðSÞ across a surface S are quantized such that a
faithful representation of the holonomy-flux algebra is
realized and they turn out to act as left(right)-invariant
vector fields of the SUð2Þ group. In particular, given a
surface S which intersects � in a single point P belonging
to an edge e such that e ¼ e1

S
e2 and e1 \ e2 ¼ P, the

action of ÊiðSÞ reads
ÊiðSÞDðjeÞðheÞ ¼ 8��l2Poðe; SÞDjeðhe1Þje�iDjeðhe2Þ; (2)

� and lP being the Immirzi parameter and the Planck
length, respectively, and the factor oðe; SÞ is equal to 0,
1, �1 according to the relative sign of e and the normal to
S, while je�i denotes the SUð2Þ generator in je-dimensional
representation.

The set of GR constraints in Ashtekar variables, i.e. the
Gauss constraintG, generating SUð2Þ gauge symmetry, the
vector constraint Va, generating 3-diffeomorphisms, and
the Hamiltonian constraint H, generating time reparamet-
rizations, are implemented in H kin according with the
Dirac prescription for the quantization of constrained sys-
tems [41], namely promoting the constraints to operators
acting on H kin and looking for the physical Hilbert space

H phys, where the operator equations Ĝ ¼ 0, V̂a ¼ 0,

Ĥ ¼ 0 hold. We quickly review how these constraints are
implemented in LQG:

(i) G maps he in h0e ¼ �sðeÞhe��1
tðeÞ, sðeÞ and tðeÞ being

the initial and final points of e, respectively, while �
denotes SUð2Þ group elements and the condition
G ¼ 0 is solved implementing a group averaging
procedure. To this aim, one introduces a projector

PG to the SUð2Þ-invariant Hilbert space GH kin, by

integrating over the SUð2Þ group elements �sðeÞ and
�tðeÞ for each edge. Basis elements of GH kin are then

the so-called spin networks:

hhj�; fjeg; fxvgi ¼
Y
v2�

Y
e2�

xv �DjeðheÞ; (3)

xv being the SUð2Þ invariant intertwiners at the
nodes v and they can be seen as maps between the
representations associated with the edges emanating
from v and � means index contraction.

(ii) The action of finite diffeomorphisms ’ maps the
original holonomy into the one evaluated on the
transformed path, he ! h’ðeÞ: states invariant under

this action can be found in the dual ofH kin and they
are the so-called s-knots [5], namely equivalence
class of spin networks under diffeomorphisms.

(iii) The Hamiltonian constraint Ĥ in the gauge and
diffeomorphism invariant Hilbert space can be
regularized by adopting the standard prescription
given by Thiemann [6] or an alternative recent
proposal [7], but at present only the first one has
been shown to reproduce the Dirac algebra without
anomalies. We resume Thiemann construction be-
cause it will be adapted to the cosmological model
of interest in this article.

We restrict our attention to the so-called Euclidean part
of the Hamiltonian constraint, which can be written as

H½N� ¼
Z
�
d3xNðxÞHðxÞ ¼ �2

Z
�
N TrðF ^ fA; VgÞ; (4)

V being the volume operator of the full space, while A and
F denote the connection 1-form and the curvature 2-form,
respectively. The regularization is based on defining a
triangulation T adapted to the graph � on which the
operator acts. In particular, for each pair of links ei and
ej incident at a node v of �, we choose semianalytic arcs

aij whose end points sei , sej are interior points of ei and

ej, respectively, and aij \ � ¼ fsei ; sejg. The arc si (sj) is

the segment of ei (ej) from v to sei (sej), while si, sj, and

aij generate a triangle �ij :¼ si � aij � s�1
j .

Three (nonplanar) links define a tetrahedra (see Fig. 1).
The full triangulation T contains the tetrahedra obtained by
considering all the incident links at a given node and all the
possible nodes of the graph �. Now we can decompose (4)
into the sum of the following term per each tetrahedra � of
the triangulation T:

H½N� ¼ X
�2T

� 2
Z
�
d3xN�abc TrðFabfAc; VgÞ: (5)

The connection A and the curvature F are regularized by

writing them in terms of holonomy hðmÞ
s :¼ h½s� 2 SUð2Þ

in a general representationm along the segments si and the
loop �ij, respectively. This yields

FIG. 1. An elementary tetrahedron � 2 T constructed by
adapting it to a graph � which underlies a cylindrical function.
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Hm
� ½N� :¼ NðnÞ

N2
m

�ijk Tr½hðmÞ
�ij

hðmÞ�1
sk fhðmÞ

sk ; Vg�; (6)

the trace being in an arbitrary irreducible representation

m: Trm½D� ¼ Tr½DðmÞðUÞ�, where DðmÞ is a matrix
representation of U2SUð2Þ, while N2

m¼Trm½�i�i�¼
�ð2mþ1Þmðmþ1Þ and hðmÞ ¼ DðmÞðhÞ. As shown in
[42], the right-hand side of Eq. (6) converges to the
Hamiltonian constraint (5) if the triangulation is suffi-
ciently fine. The expression (6) can finally be promoted
to a quantum operator, since the volume and the holono-
mies have corresponding well-defined operators in H kin

and replacing the Poisson brackets with the commutator
f; g ! � i

ℏ ½; � we get
Ĥ m

�½N� :¼ NðnÞCðmÞ�ijk Tr½ĥðmÞ
�ij

ĥðmÞ�1
sk ½ĥðmÞ

sk ; V̂��; (7)

where CðmÞ ¼ �i
8��l2pN

2
m
. The lattice spacing � of the

triangulation T acts as a regularization parameter and
it can be removed in a suitable operator topology in the space
of s-knots, see [6] for details. This is essentially due to the fact
that via a diffeomorphism it is possible to change �, thus the
result of the computation of Hm

� over diffeomorphism-

invariant states does not depend on such a regulator.
Remarkably it is possible to formally write solutions to

the quantum Hamiltonian constraint: these are linear com-
binations of spin networks based on graph with ‘‘dressed’’
nodes (see [3]) characterized by ‘‘extraordinary links,’’ i.e.
links with three-valent nodes as boundary attached to two
collinear links. Because of the particular nature of the
‘‘dressed’’ spin networks, the procedure described gives
an anomaly free quantization of the Dirac algebra.
However, these solutions are only formal because the ex-

plicit expression of the matrix elements of Ĥ is very
complicated [43] and it is unknown in a closed form
because of the presence of the volume operator (for which
only numerical calculations are available for arbitrary
valence and spins [44]). In the quantum-reduced model
that we are going to introduce, instead the volume operator
is diagonal and this will allow us to explicitly compute the

matrix element of Ĥ, opening the way to construct the
physical quantum states.

III. BIANCHI MODELS

The early phases of the Universe are described by skip-
ping the assumptions of the Friedmann-Robertson-Walker
(FRW) model, i.e. isotropy and homogeneity. The relaxing
of the former leads to the Bianchi models for the Universe
(see [45] for a recent review), which are described by the
following line element:

ds2 ¼ N2ðtÞdt2 � e2�ðtÞðe2�ðtÞÞij!i �!j; (8)

�, N, and �ab depending on time coordinates. � deter-
mines the total volume, while the matrix �ab describes
local anisotropies and it can be taken as diagonal and with a

vanishing trace, such that two independent components
remain. The fiducial 1-forms !i determine the fiducial
metric on the spatial manifold.
For a Bianchi model, the homogeneity of the fiducial

metric allows one to define some structure constant Ci
jk as

follows:

d!i ¼ Ci
jk!

j ^!k: (9)

Each model is determined by Ci
jk and the Bianchi types

I, II, and IX are characterized by Ci
jk ¼ f0; 	i

1�
1
jk; �

i
jkg,

respectively. In the following, we will restrict our attention
to the so-called class A models for which Ci

ij ¼ 0.

Densitized 3-bein vectors can be determined from the
expression of the spatial metric tensor in Eq. (8). However,
it is not possible to fix uniquely Ea

i because one is always
free to perform a rotation in the internal space which does
not modify the metric tensor. A useful choice is to set Ea

i

parallel to the vectors !i, defined as !ið!jÞ ¼ 	i
j, such

that it is possible to separate gauge and dynamical degrees
of freedom [46]. It is worth noting how this choice implies
a gauge fixing of the symmetry under internal rotations.
The associated gauge-fixing condition reads [47,48]


i ¼ �ij
kEa

k!
j
a: (10)

At the end, the following expression for densitized
3-bein vectors is inferred:

Ea
i ¼ piðtÞ!!a

i ; pi ¼ e2�e��ii ; (11)

! being the determinant of !j
b, while the index i is not

summed. In the following, repeated gauge indices will not
be summed while the Einstein convention will still be
applied to the indices in the tangent space. The associated
Ashtekar-Barbero-Immirzi connections can be inferred by
evaluating the extrinsic curvature Kab and the three-
dimensional spin connections!ija. The extrinsic curvature

involves time derivatives of the 3-metric and Ki
a ¼ Kabe

ib

reads

Ki
a ¼ 1

2N
@thab ¼ 1

2N
ð _�þ _�iiÞe�e�ii!i

a; (12)

while the expression of the spin connection!ija is given by

!ija¼1

2
a�1
k ðaia�1

j a�1
k Ci

jkþaja
�1
k a�1

i Cj
ki�aka

�1
i a�1

j Ck
ijÞ;

(13)

where ai ¼ e�þ�ii . The connection Ai
a is given by the sum

of �Ki
a and 1

2 �
ijl!jla, and it can be written as

Ai
a ¼ ciðtÞ!i

a; ci ¼
�
�

N
ð _�þ _�iiÞ þ �i

�
e�e�ii ; (14)

where �i depends on the kind of Bianchi model adopted
( 12

P
j;k�

ijk!jka ¼ �i!
i
a).
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A. Loop quantum cosmology

The LQC formulation of homogeneous Bianchi models
implements the quantization procedure in the reduced
phase space parametrized by fci; pjg [49].

The induced symplectic structure leads to the following
Poisson brackets:

fpiðtÞ; cjðtÞg ¼ 8�G

V0

�	i
j; (15)

the other vanishing, where V0 denotes the volume of the
fiducial cell on which the spatial integration occurs.

The Hilbert space is defined by addressing a polymerlike
quantization and it turns out to be the direct product of
three Bohr compactifications of the real line, H ¼
L2ðR3

Bohr; d ~�Þ, one for each fiducial direction. A generic

basis element is thus the direct product of three quasiperi-
odic functions, i.e.

c ~�ðc1; c2; c3Þ ¼ �ie
i�ici ; (16)

~� ¼ f�ig being real numbers. The operators associated
with momenta pi act as follows:

p̂ ic ~�ðc1; c2; c3Þ ¼ 8��l2P�ic ~�ðc1; c2; c3Þ: (17)

The scalar constraint is derived by rewriting the one of
LQG (6) in terms of the holonomies associated with the

connections (14) and of the reduced volume operator V ¼
V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
. However, the area of the additional plaquette

�ij cannot be sent to 0. The difference with respect to the

full theory can be traced back to the loss of diffeomorphism
symmetry, which was responsible for the restriction to
s-knots. This issue has been solved by evaluating the scalar
constraint at some fixed nonvanishing values ��i ��j for the

area of the plaquettes �ij. These values are related with the

scale at which the discretization of the geometry in LQG
occurs [17]. The resulting dynamics has been analyzed for
Bianchi I, II, and IXmodels [17,19–22] and the presence of
��’s provides a nontrivial evolution for the early phase of
the Universe, whose most impressive consequence is the
replacement of the initial singularity with a bounce.

Therefore, in LQC the �� parameters contain all the
information on the quantum geometry underlying the con-
tinuous spatial picture and, at the same time, they are
responsible for the departure from the standard big bang
paradigm.

However, this construction only mimics the original
LQG quantization and even if it is well defined on physical
ground there is still a gap between the full theory and this
scheme. The formalism that we are going to introduce is
instead obtained by a direct reduction from the full theory
at a quantum level and it could shed light on the �� scheme
at the base of LQC.

IV. INHOMOGENEOUS VARIABLES

Our aim is to consider a weaker classical reduction of
the full phase space with respect to the one used in LQC, in
such a way that a reduced diffeomorphism invariance is
retained and there is then more freedom in the regulariza-
tion of the super-Hamiltonian operator. In this respect, we
will consider an inhomogeneous extension of the Bianchi I
model.
The Bianchi I model describes a spatial manifold iso-

morphic to a three-dimensional hyperplane. The structure
constants Ci

jk vanish and the 1-forms !i can be taken as

!i ¼ 	i
adx

a. The metric of the Bianchi I model can be
written in Cartesian coordinates as follows:

ds2I ¼ N2dt2 � a21ðtÞdx1 � dx1 � a22ðtÞdx2 � dx2

� a23ðtÞdx3 � dx3; (18)

ai (i ¼ 1, 2, 3) being the three scale factors depending on
the time variable only.
Let us now consider the following inhomogeneous ex-

tension of the line element (18):

ds2I ¼ N2ðx; tÞdt2 � a21ðt; xÞdx1 � dx1 � a22ðt; xÞdx2 � dx2

� a23ðt; xÞdx3 � dx3; (19)

in which each scale factor ai is a function of time and of the
spatial coordinates. As soon as the gauge condition (10)
holds the densitized inverse 3-bein vectors read

Ea
i ¼ piðt; xÞ	a

i ; pi ¼ a1a2a3
ai

; (20)

i.e. they take the same expression as in the relation (11), the
only difference being that now reduced variables pi depend
also on spatial coordinates. A similar result is obtained for
the projected extrinsic curvature, i.e.

Ki
a ¼ 1

N
_aiðt; xÞ	i

a; (21)

while the spin connections !ija for the inhomogeneous

model are given by

!ija ¼ a�2
i a�1

j 	i
a	

b
j @bai � a�2

j a�1
i 	j

a	b
i @baj: (22)

At this point let us consider two different cases: (1) the
reparametrized Bianchi I model and (2) the generalized
Kasner solution within a fixed Kasner epoch.
In a reparametrized Bianchi I model we assume that

each scale factor is a function of time and of the corre-
sponding Cartesian coordinate xi only, i.e.

ai ¼ aiðt; xiÞ; (23)

such that @bai / 	i
b and the spin connections !ija vanish

identically. Obviously, the dependence on xi is fictitious
and it can always be avoided by a diffeomorphism, so
finding the homogeneous Bianchi I model. However, the
reparametrized model is endowed with an additional gauge
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symmetry, which will have a key role in the development
of the quantum theory.

The same result concerning the vanishing of spin
connections can also be obtained in the limit in which
the spatial gradients of the metric components can be
neglected with respect to the time derivatives. This ap-
proximation scheme corresponds to the notion of ‘‘local
homogeneity,’’ which is implemented when the BKL
mechanism is extended to the generic cosmological solu-
tion [36,45]. This is done by considering the generalized
Kasner model [50], which describes the behavior of the
generic cosmological solution during each Kasner epoch.
This model has been realized by considering an extension
of the Kasner solution, in which the Kasner exponents are
functions of spatial coordinates. Indeed, in general the
fiducial vectors do not coincide with the ones of the
homogeneous Bianchi I model and they are subjected
to a rotation signaling the transition to a new epoch.
Nevertheless, within each epoch, one can neglect the rota-
tion of Kasner axes and take at the leading order the
fiducial vectors !i

a ¼ 	i
a.

Therefore, in both cases (1) and (2) the connections
retain the same expression as in the homogeneous case,
but reduced variables depend on spatial coordinates as
follows:

Ai
aðt; xÞ ¼ ciðt; xÞ	i

a; ciðt; xÞ ¼ �

N
_ai: (24)

The Poisson brackets between Ai
a and Ea

i induce the
following Poisson algebra:

fpiðx; tÞ; cjðy; tÞg ¼ 8�G�	i
j	

3ðx� yÞ; (25)

the other vanishing.
Since we did not impose homogeneity, the SUð2Þ Gauss

constraint Gi and the super-momentum constraint Ha do
not vanish identically. In particular, Gi reads

Gi ¼ 	a
i @ap

i ¼ @ip
i; (26)

while the generator of 3-diffeomorphisms takes the follow-
ing expression:

D½ ~�� ¼
Z

�a½Ha � Ai
aGi�d3x

¼ X
i

Z
½�api@aci þ ð@i�iÞpici�d3x; (27)

�a being arbitrary parameters, while �i ¼ �a	i
a.

V. REDUCED QUANTIZATION FOR THE
INHOMOGENEOUS EXTENSION OF THE

BIANCHI I MODEL

Let us now discuss how the quantization of the inhomo-
geneous extension of the Bianchi I model can be performed
in reduced phase space.

In this case, one should define the Hilbert space for
functionals of reduced variables ci, whose conjugate var-
iables are pi, and consider the set of reduced constraints. In
particular, the SUð2Þ Gauss constraint is replaced by the
conditions (26), which for a given i can be regarded as a
Uð1Þ Gauss constraint along the one-dimensional space
generated by the vector dual to !i ¼ 	i

adx
a, i.e. @i ¼

	a
i @a. We denote the Uð1Þ group of transformations

generated by Gi as Uð1Þi. Since fGi;Gjg ¼ 0, the Uð1Þi
transformations are all independent from each other.
A convenient choice of variables for the loop quantiza-

tion is to consider the Uð1Þi holonomies for the connec-
tions ci along the edges ei parallel to @i, i.e.

redhei ¼ Pðei
R

ei
cidx

iÞ: (28)

Hence, we are not dealing with a Uð1Þ3 gauge theory on
a three-dimensional space, since holonomies associated
with different Uð1Þi have support on different edges ei.
What we have is the direct product of three one-
dimensional Uð1Þ gauge theories.
The Hilbert space can be labeled by reduced graphs �,

which are cuboidal lattices made by the union of (at most)
six-valent vertices with the ingoing and outgoing edges of
the kind ei, and it can be defined as the direct product of the
space of square integrable functionals over theUð1Þi group
elements associated with each ei, i.e.

redH ¼ O3
i¼1

O
ei2�

L2ðUð1Þi; d�iÞ; (29)

d�i being the Uð1Þi Haar measure.
A generic element is given by taking the direct product

of Uð1Þi networks over ei and they read

c � ¼ O3
i¼1

O
ei2�

c ei ; (30)

where c ei is a Uið1Þ function, which can be expanded in

Uð1Þi irreducible representations as follows:
c ei ¼

X
ni

eini�
i
c ni

ei ; (31)

�i being the parameter over the Uð1Þi group, while ni
denotes the Uð1Þi quantum number.
Momenta pi have to be smeared over the surfaces Si

dual to ei and the associated operators can be inferred by
quantizing the Poisson algebra (15), so finding

p̂ lðSiÞc ei ¼ 8��l2p	
l
i

X
ni

nie
ini�

i
c ni

ei : (32)

In order to develop the gauge-invariant Hilbert space
redH Gi in which the conditions (26) are solved, one must
insert the invariant intertwiners associated with the three
Uð1Þi groups. These intertwiners map Uð1Þi group ele-
ments into Uð1Þi group elements for a fixed value of i.

EMANUELE ALESCI AND FRANCESCO CIANFRANI PHYSICAL REVIEW D 87, 083521 (2013)

083521-6



This means that they do not provide us with a real three-
dimensional vertex structure, since they connect only
group elements defined over intersecting edges parallel to
the same vector field @i.

At a single vertex v, one can have at most two Uð1Þi
group elements for a given i: the ones associated with the
two edges ei and e0i emanating form v (see Fig. 2).

As soon as c ei and c e0i are expanded in irreducible

representations c ni
ei and c

n0i
e0i
(31), respectively, the invariant

intertwiner selects those representations for which ni ¼ n0i.
Therefore, the projection to redH Gi implies that the

Uð1Þi quantum numbers are preserved along each integral
curve of the vectors @i.

A. Diffeomorphisms

The conditions (20) and (24) imply a partial gauge fixing
of the diffeomorphism symmetry. In fact, under a generic
3-diffeomorphism connections and momenta transform as
follows:

	�A
i
a ¼ �b@bA

i
a þ @a�

bAi
b;

	�E
a
i ¼ �b@bE

a
i � @b�

aEb
i :

(33)

Starting from the expression (14), one gets

	�A
i
a ¼ �b@bci	

i
a þ �bci@b	

i
a þ @a�

b	i
bci

¼ �b@bci	
i
a þ @a�

ici: (34)

It is worth noting that for arbitrary �a the connection
cannot be written as in (14). This feature signals that by
choosing connections as in (24) we are actually performing
a partial gauge fixing of the diffeomorphism group. The
same result is obtained for Ea

i . However, there is a residual
set of admissible transformations which preserve the con-
ditions (14) and (11) and they are those for which

@a�
i / 	i

a ! �i ¼ �iðxiÞ: (35)

As soon as the condition above holds, each �i is the
infinitesimal parameter of an arbitrary translation along the
direction i and a rigid translation along other directions.
We denote this transformation as reduced diffeomorphisms
~’�. We are going to show how the constraint (27) implies

the invariance under reduced diffeomorphisms.
In reduced phase space, the constraint (27) acts on a

reduced holonomy (28) as follows:

D̂½ ~��redhei ¼ 8��l2P

Z
ei

redheið0;s0Þð�b@bci

þ ð@i�iÞciÞredheiðs0;1Þdxiðs0Þ; (36)

eið0; s0Þ and eiðs0; 1Þ being the edges from s ¼ 0 to s ¼ s0
and from s ¼ s0 to s ¼ 1, respectively.
The transformation (36) has to be compared with

the changing induced by a reduced diffeomorphism
~’�: x

aðsÞ ! x0aðsÞ ¼ xaðsÞ þ �a under the condition

(35). A diffeomorphism ’ maps an edge ei into one which
is generically not of the reduced class. In fact the tangent
vector at the leading order is given by the following
expression:

dx0a

ds
¼ dxa

ds
þ @b�

a dx
b

ds
/ 	a

i þ @b�
a	b

i

¼ 	a
i þ @b�

j	a
j	

b
i : (37)

The second term on the right side gets contributions
also from the fiducial vectors @j with j � i, such that the

tangent vector of ’ðeiÞ is not proportional to @i. However,
if one considers the reduced class of transformations (35),
these additional contributions vanish and the tangent vec-
tor of ~’ðeiÞ is parallel to @i. Hence, reduced diffeomor-
phism ~’ map reduced edges ei to each other.
The holonomy along ~’� is thus given by

h~’�ðeiÞ ¼ Pðe
R

ciðx0Þ	i
adx

0aÞ; (38)

and by computing the integrand one gets

ciðx0Þ	i
adx

0a ¼ ciðxÞ	i
adx

a þ �b@bci	
i
adx

a

þ ciðxÞ@a�idxa: (39)

From the expression above and by considering that
dxa ¼ 	a

i dx
iðsÞ, the following relation follows:

h~’�ðeiÞ � hei ¼ Pðe
R

ciðx0Þ	i
adx

0aÞ � Pðe
R

ciðxÞ	i
adx

aÞ
¼

Z
ei

redheið0;s0Þð�b@bci

þ ð@i�iÞciÞredheiðs0;1Þdxiðs0Þ; (40)

which coincides with the expression (36). Therefore, the
reduced diffeomorphism ~’ (35) map reduced holonomies
into reduced holonomies and they are associated with the
action of the relic diffeomorphism constraint (27) in

FIG. 2. The representation of a vertex in reduced quantization:
the quantum numbers n1, n2, n3 are conserved along the direc-
tions i ¼ 1, 2, 3, respectively.
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reduced phase space. This residual symmetry can be used
to define reduced knot classes as in the full theory.

B. Dynamics

The super-Hamiltonian operator in reduced-phase space
takes the following form:

H½N�¼
Z
d3xN

2
4 ffiffiffiffiffiffiffiffiffiffiffi

p1p2

p3

s
c1c2þ

ffiffiffiffiffiffiffiffiffiffiffi
p2p3

p1

s
c2c3þ

ffiffiffiffiffiffiffiffiffiffiffi
p3p1

p2

s
c3c1

3
5;

(41)

and the quantization of this expression requires to (i) give a

meaning to the operator 1=
ffiffiffiffiffi
pi

p
and (ii) replace ci with

some expression containing holonomies. These are the
standard issues one encounters in LQG, which are solved
by quantizing the expression (6). Therefore, the quantiza-
tion of the super-Hamiltonian operator in the reduced
model can be realized by implementing in the reduced
Hilbert space the procedure adopted in the full theory.
This can be done formally by replacing SUð2Þ group
elements with Uð1Þi ones and by defining a cubulation of
the spatial manifold, such that the loop �ij is a rectangle

with edges along fiducial vectors. Unfortunately, the re-
sulting expression for the super-Hamiltonian operator
regularized à la Thiemann is not defined in redH Gi . This
is due to the fact that the operator h�ij

increases (decreases)

the Uð1Þi [Uð1Þj] quantum number associated with the

segment si (sj). As a consequence, the Uð1Þi quantum

number is not conserved along the edge ei and the Uð1Þi
symmetry is broken (see Fig. 3).

Therefore, it cannot be given a proper definition of the
super-Hamiltonian operator in reduced quantization. This
is due to the lack of a real three-dimensional vertex struc-
ture, which instead can be inferred starting from the full
LQG theory.

VI. COSMOLOGICAL LQG

Let us now discuss how to realize in the SUð2Þ kine-
matical Hilbert space of LQGH kin the conditions (20) and
(24) via a reduction from SUð2Þ to Uð1Þ group elements.

At first, we impose the restriction to edges ei parallel to
fiducial vectors @i and we discuss the fate of diffeomor-
phism invariance. Then, we will deal with the restriction
from SUð2Þ to Uð1Þ group elements and with the relic
features of the original SUð2Þ invariance.

A. Quantum diff-constraint

The restriction to cylindrical functionals over edges ei
implies the kind of restriction on the diffeomorphism trans-
formations which we discussed in Sec. VA. We can imple-
ment this feature on a quantum level via the action of a
projector P onto the space H P made of holonomies along
reduced graphs (edges ei adapted to the!i). This projector
P acting on H kin is then nonvanishing only for holono-
mies along edges ei.
Let us consider a generic diffeomorphisms ’�, whose

associated operator Uð’�Þ in the space of cylindrical func-
tional acts on a generic holonomy he along an edge e as
follows:

Ûð’�Þhe ¼ h’�ðeÞ: (42)

The projection of Uð’�Þ in the graph-reduced Hilbert

space H P is given by

redÛð’�Þ ¼ PÛð’�ÞP; (43)

where Phe ¼ he if e ¼ ei for some i, otherwise it vanishes.
The action of redUð’Þ on a graph-reduced holonomy hei
reads then

redÛð’Þhei ¼PÛð’�ÞPhei ¼PÛð’�Þhei ¼Ph’�ðeiÞ: (44)

As we pointed out in Sec. VA, ’�ðeiÞ is parallel to !i if

’ is a reduced diffeomorphism ~’. Hence, the relation (44)
is nonvanishing only if ’ ¼ ~’ and one finds

redÛð’Þ ¼ Ûð~’Þ: (45)

Therefore, inH P the relic diffeomorphisms are reduced
ones. The development of knot classes with respect to
reduced diffeomorphisms will allow us to regularize the
expression of the super-Hamiltonian operator à la
Thiemann.

B. Classical holonomies and quantum reduction

On a classical level, the SUð2Þ holonomies Rhjei associ-
ated with connections (24) are given by

Rhjei ¼ P
�
e
i
R

ei
cidx

iðsÞ�i�; (46)

s being the arc length along ei.

Henceforth, Rhjei are SUð2Þ holonomies that belong
to the Uð1Þ subgroup generated by �i and they can be
written as

Rhjei ¼ exp ði�i�iÞ; (47)

FIG. 3. The action of the operator associated with the
curvature changes Uð1Þi quantum numbers such that it maps
the state out of the gauge-invariant Hilbert space (we did not
draw the edges along the third direction).
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where �i is a real number and the gauge indices are not
summed as usual.

These holonomies in the base jj; mii that diagonalize �i
take the form

hj;mijRhjei jj; nii ¼ ei�
imi	mini : (48)

Similarly, we evaluate fluxes only across the surfaces Si

dual to ei and the associated fluxes in a cosmological
space-time read from Eq. (11):

EiðSkÞ ¼
Z

Ea
i 	

k
adudv ¼ 	k

i

Z
pidudv: (49)

It is worth noting how only the diagonal components of
EiðSjÞ are nonvanishing. Now our task is to find a quantum
symmetry reduction implementing consistently on the
kinematical Hilbert space of LQG H kin the classical con-
ditions (47) and (49) representing the holonomized version
of the variables (24) and (20) with Poisson brackets (25).

How can we proceed?
First, we observe that the skew-symmetric part of the

matrix EiðSjÞ can be avoided by imposing the following
conditions:


i ¼
X
l;k

�il
kEkðSlÞ ¼ 0: (50)

The relation above together with the SUð2Þ Gauss con-
straint constitutes a second-class system of constraints,
thus it is actually a gauge fixing. As a consequence, the
condition (50) cannot be implemented on a SUð2Þ invariant
quantum space according with the Dirac prescription. One
possibility is to retain the full unconstrained set of con-
figuration variables and to define the action of quantum
operators starting from Dirac brackets instead of Poisson
brackets. This way however, the connections become non-
commutative [47,48] and it is difficult to envisage how to
carry on the quantization procedure in the full kinematical
Hilbert space.

Henceforth, mimicking the procedure adopted in spin
foam models to impose the simplicity constraints [37], we
consider the master constraint condition, that arises ex-
tracting the gauge invariant part of 
i,


2¼X
i


i
i

¼ X
i;m;k;l

½	im	klEiðSkÞEmðSlÞ�EiðSkÞEkðSiÞ�¼0: (51)

By imposing the condition (51) strongly on HP , it will
turn out that Eq. (50) holds weakly and the classical
relation (49) can be implemented in a proper subspace of
HP , as soon as pi are identified with the left invariant
vector fields of the Uð1Þi groups generated by �i.

If 
̂2 is applied to a SUð2Þ holonomy hjei and ei \ Si ¼
bðeiÞ, bðeiÞ being the beginning point of ei, one finds


̂ 2hjei ¼ ð8��l2PÞ2ð�2 � �i�iÞhjei ; (52)

thus an appropriate solution to 
2 ¼ 0 is given by

�khjei ¼ 0; 8 k � i: (53)

To find the quantum states that implement 
2 ¼ 0
strongly and Eq. (53) weakly, we will use projected spin
networks [38,51].

C. Projected Uð1Þ
We now introduce the projected spin network formal-

ism, in which we define functions over SUð2Þ starting from
their restriction over the Uð1Þi subgroups generated by �i.
This way, we lift the Uð1Þi group elements associated

with reduced holonomies (47) to the SUð2Þ elements of the
full theory. This lifting will help us later in embedding
reduced elements in the SUð2Þ-invariant Hilbert space.
Let us consider the Dupuis-Livine map [38] f: Uð1Þ !

SUð2Þ from functions on Uð1Þ to functions on SUð2Þ:
~c ðgÞ ¼

Z
Uð1Þ

dhKðg; hÞc ðhÞ; g 2 SUð2Þ; (54)

with Kernel given by

Kðg; hÞ ¼ X
n

Z
Uð1Þ

dk
jðnÞðgkÞ
nðkhÞ; (55)

where 
jðnÞðgÞ are the SUð2Þ characters in the jðnÞ repre-
sentations and 
nðhÞ are the Uð1Þ ones, while jðnÞ denotes
a half integer depending on an integer n. It is true that
~c ðgÞjUð1Þ ¼ c and this implies that the image of f is a

subspace of the space of functions on SUð2Þ such that

~c ðgÞ ¼
Z
Uð1Þ

dhKðg; hÞ ~c ðhÞ; g 2 SUð2Þ; (56)

i.e. the function ~c ðgÞ is entirely determined by its restric-
tion to a Uð1Þ subgroup. If we expand c using the Peter-
Weyl theorem we get

c ðhÞ ¼ X
n


nðhÞc n; (57)

and the coefficients c n are given by

c n ¼
Z
Uð1Þ

dh
nðhÞc ðhÞ: (58)

Equation (54) is then

~c ðgÞ ¼ X
n

Z
Uð1Þ

dkDjðnÞ
mr ðgÞDjðnÞ

rm ðkÞ
nðkÞc n; (59)

where DjðnÞ
mr are the Wigner matrices in a generic spin base

jj; mi. Now let us consider projected functions defined over
the edge ei and let us choose the Uð1Þi subgroup of SUð2Þ
in the definition (54) as the one generated by �i, calling its
elements ki and the quantum numbers ni. The previous
expression becomes
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~c ðgÞei¼
X
ni

Z
Uð1Þi

dki
XjðniÞ

m;r¼�jðniÞ
iDjðniÞ

mr ðgÞiDjðniÞ
rm ðkiÞ
niðkiÞc ni

ei

¼X
ni

Z
S1
d�i

XjðniÞ
mr¼�jðniÞ

iDjðniÞ
mr ðgÞeim�i	mr


nið�iÞc ni
ei

¼X
ni

iDjðniÞ
m¼nir¼niðgÞc ni

ei ; (60)

iDjðniÞ
mr being the Wigner matrices in the spin base jj;mii

that diagonalize the operators J2 and Ji and �i are the
coordinates on the Uð1Þi groups. Note that the matrices
iDj

mrðgÞ are obtained by the SUð2Þ transformation Djð ~uiÞ
which acts on the vector ~ez sending it to the vector ~ui ¼
R~ez as

iDj
mnðgÞ ¼ Dj�1

mrð ~uiÞDj
rsðgÞDj

snð ~uiÞ: (61)

This is valid for an arbitrary degree jðniÞ. Now we have
to select a condition ensuring the vanishing of Eq. (52) on a
quantum level. The condition on basis element of

L2ðSUð2ÞÞ iDj
mrðgÞ ¼ ihj; mjgjj; rii reads

ihj; mj
2gjj; rii ¼ ihj; mjgjj; riiðjðjþ 1Þ �m2Þ: (62)

This relation implies that if we apply 
2 to our projected
spin networks, whose basis elements are of the form
iDjðniÞ

nini ðgÞ, by fixing jnij ¼ jðnÞ an approximate solution
to 
2 ¼ 0 is given as j ! þ1. In the following we will
consider only the plus sign [52], since the opposite one can
be obtained by reversing the orientation of the associated
edge ei.

It is worth noting that introducing coherent states for
SUð2Þ, defined by

jj; ~ui ¼ Djð ~uÞjj; ji ¼ X
m

jj;miDjð ~uÞmj; (63)

the basis elements which are solutions of the constraint are

iDj
jjðgÞ ¼ hj; ~uijDjðgÞjj; ~uii (64)

for i ¼ 1, 2, 3.

Henceforth, we find

~c ðgÞei ¼
X
j

iDjjj
jj ðgÞc j

ei : (65)

Basis states of this form also satisfy the condition (53)
weakly in fact

h ~c 0
ijÊkðSlÞj ~c ii
¼8��l2P

X
j;j0

c j0
ei

Z
dgiDj0

j0j0 ðgÞ�kiDj
jjðgÞc j

ei ¼0; k� i:

(66)

In this way the resulting quantum states associated with
an edge ei are entirely determined by their projection into
the subspace with maximum magnetic numbers along the
internal direction i. We call the projected SUð2Þ states of
the form (65) quantum-reduced states and they define a
subspace of H P that will be denoted H R. The restriction

of states ~c ðgÞ 2 H R to their Uð1Þi subgroup reads

c ei ¼ ~c ðgÞei jUð1Þi ¼
X
j

ei�
ijc j

ei : (67)

Therefore, the restriction to theUð1Þi subgroup gives the
element of H red (31).

Moreover, the action of fluxes ElðSkÞ on ~c ei is non-

vanishing only for l ¼ k ¼ i and each EiðSiÞ behaves as
follows [we are assuming Si \ ei ¼ bðeÞ]:

Ê iðSlÞ ~c ei ¼ 8��l2P	
l
i

X
j

jDj
jjc

j
ei : (68)

By restricting the expression (68) to the Uð1Þ subgroup,
one gets

ÊiðSlÞ ~c ei jUð1Þi ¼ EiðSiÞc ei ¼ 8��l2P	
l
i

X
j

jei�
ijc j

ei ; (69)

thus ÊiðSiÞc ei behaves as the left-invariant vector field of

the Uð1Þi subgroup and its action on c ei reproduces the

action of momenta in reduced quantization (32). Therefore,
the restriction to the Uð1Þi subgroup maps the quantum-
reduced states, elements ofH R, to the Hilbert spaceH red

obtained when quantizing in reduced phase space:

fAi
aðx; tÞ; Eb

kðy; tÞg / 	i
k	

b
a	

3ðx; yÞ !reduced phase space fciðx; tÞ; pkðy; tÞg / 	k
i 	

3ðx� yÞ
# quantization # quantization

hei 2 SUð2Þ; ÊkðSlÞhei / 	l
i�khei !


2¼0 
i�0;

jUð1Þi
c ei 2 Uð1Þi; p̂kc ni

ei / 	i
knic

ni
ei :

(70)

Despite the possibility to project the Hilbert space of
quantum reduced holonomies into the one of reduced
quantization, there is a substantial difference between
these two kinds of reductions. The Uð1Þ representations
we get are obtained by stabilizing the SUð2Þ group along

different internal directions and the Uð1Þi transformations
associated with different i are not independent at all
(they are rotations along the i axis). As we will see in the
next section, for this reason some nonvanishing inter-
twiners exist among them.
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D. Gauge invariant states

The original SUð2Þ gauge invariant Hilbert space
L2ðSUð2ÞL=SUð2ÞNÞ is made of spin networks of the
form (3). These are invariant under the action of gauge

transformations on the holonomies. If we define as ÛGð�Þ
the operator that generates local SUð2Þ gauge transforma-
tions �ðxÞ, its action on basis elements ofH kin is given by

ÛGð�ÞDj
mnðheÞ ¼ Dj

mnð�sðeÞhe��1
tðeÞÞ; (71)

and by group averaging we get the projector

P̂G ¼
Z

d�ÛGð�Þ; (72)

acting on the source and target link and producing the
intertwiners at the nodes thanks to the formula

Z
d�

YO
o¼1

Djo
monoð�Þ

YI
i¼1

D�ji
n0im

0
i
ð�Þ

¼ X
x

x�m1...mO;n
0
1
...n0I

xn1...nO;m0
1
...m0

I
; (73)

where xn1...nO;m0
1...m

0
I
are the SUð2Þ intertwiners between I

incoming and O outgoing representations, respectively.
The projector (72) restricts the SUð2Þ functionals to be
gauge invariant with coefficients

h�; fjeg; fxvgjc i ¼ c je;xv ¼
Y
v2�

xv �
Y
e2�

c je
mn; (74)

where the gauge invariant basis elements are of the form

hhj�; fjeg; fxvgi ¼
Y
v2�

xv �
Y
e2�

DjeðheÞmn: (75)

As we have seen in the previous section the imposition of
the quantum constraint 
2 ¼ 0 reduces the allowed SUð2Þ
representations on the links to be of the kindDj

jjðhÞ. Let us
focus on a single vertex v with I ingoing links ei and O
outgoing links eo, respectively, such that sðeoÞ ¼ tðeiÞ ¼
v8 i, o: if we apply the projector (72) acting on v to the
quantum reduced basis elements (64) we get

PG

YO
o¼1

oDjo
jojo

ðheoÞ
YI
i¼1

iDji
jiji

ðheiÞ ¼
Z

d�v

YO
o¼1

oDjo
jo�o

ð�sðeoÞÞoDjo
�o�o

ðheoÞrest�ojorest
0
jo�

0
i

YI
i¼1

iDji
�0
i�

0
i
ðheiÞiDji

�0
iji
ð��1

tðeiÞÞ

¼
Z

d�v

YO
o¼1

Dj�1

jo�o
ð ~uoÞDj

�o	o
ð�vÞDj

	o�o
ð ~uoÞoDjo

�o�o
ðheoÞrest�ojo

� rest0ji�0
i

YI
i¼1

iDji
�0
i�

0
i
ðheiÞDj�1

�0
i	

0
i
ð ~uiÞDj

	0
i�

0
i
ð��1

v ÞDj
�0
iji
ð ~uiÞ

¼ X
xv

x�vs;�1...�O;�
0
1
...�0

I
xvs;	1:::	O;	

0
1
:::	0

I

YO
o¼1

Dj�1

jo�o
ð ~uoÞDj

	o�o
ð ~uoÞoDjo

�o�o
ðheoÞrest�ojo

�YI
i¼1

rest0ji�0
i
Dj�1

�0
i	

0
i
ð ~uiÞDj

�0
iji
ð ~uiÞiDji

�0
i�

0
i
ðheiÞ; (76)

where rest (rest0) indicates the part of the holonomy whose final (initial) index transforms under gauge transformation with
a group element ~� � �v and in the second and third equality we used the equations (61) and (73), respectively. The
previous expression can be reformulated introducing a Livine-Speziale coherent intertwiner [39] jjO; ~uO; jI; ~uIi 2Q

O
o Hjo �Q

I
i H

�ji adapted to incoming and outgoing edges:

jjO; ~uO; jI; ~uIi ¼ jjO; ~uOi � hjI; ~uIj ¼
Z

d�
YO
o¼1

��1jjo; ~uoi �
YI
i¼1

hji; ~uij�; (77)

and noting that its projection on the usual intertwiner base jjO; jI;xi ¼ x�vs;m1...mO;m
0
1
...m0

I

Q
O
o jjo; moi �Q

I
i hji; m0

ij withjjO; jI;xi 2 Q
O
o Hjo �Q

I
i H

�ji is exactly the coefficient appearing in (76):

hjO; ~uO; jI; ~uIjjO; jI;xvi ¼ x�vs;�1...�O;�
0
1...�

0
I

YO
o¼1

Dj�1

jo�o
ð ~uoÞ

YI
i¼1

Dj
�0
iji
ð ~uiÞ; (78)

or equivalently
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PG

YO
o¼1

oDjo
jojo

ðheoÞ
YI
i¼1

iDji
jiji

ðheiÞ

¼ X
xv

hjO; ~uO; jI; ~uIjjO; jI;xvixvs;	1:::	O;	
0
1
:::	0

I

� YO
o¼1

Dj
	o�o

ð ~uoÞoDjo
�o�o

ðheoÞ rest�ojo

�YI
i¼1

Dj�1

�0
i	

0
i
ð ~uiÞ rest0 ji�0

i

iDji
�0
i�

0
i
ðheiÞ; (79)

thus we see that the gauge invariant projector brings us out
of the space of reduced holonomies. This was expected
since the Gauss constraint G that generates the SUð2Þ
transformations does not commute with the second class
constraint 
 ¼ 0 imposed weakly. Our class of states can
then be selected asking that the states averaged overG now
also satisfy the constraint 
 ¼ 0; to ensure this condition it
is enough to select the maximum weight spin in the sum
over �o and �0

i inside the expression (79),

�
PG

YO
o¼1

oDjo
jojo

ðheoÞ
YI
i¼1

iDji
jiji

ðheiÞ
�
R

¼X
x

hjO; ~uO;jI; ~uIjjO;jI;xvihjO;jI;xvjjO; ~uO;jI; ~uIi

�YO
o¼1

oDjo
jo�o

ðheoÞ rest�ojo

YI
i¼1

rest
0
ji�

0
i

iDji
�0
iji
ðheiÞ: (80)

The previous equation can then be seen as the replace-
ment of the usual projector on the gauge invariant states of

the full theory PG: H kin ! GH kin with its reduced ver-

sion PG;
: H kin ! GH R, where PG;
¼Py

PGP
 is given

by the composition of the Gauss projector with the projec-
tor on the quantum reduced space with P
: H kin ! H R.

The reduced basis states will then be of the form

hhj�; je; xviR ¼ Y
v2�

hjl;xvjjl; ~uli �
Y
e2�

lD
jel
jel jel

ðhelÞ; (81)

l denoting ingoing and outgoing directions of the links el
with tangent vectors ul in v, while hjl;xvjjl; ~uli a short
hand notation for the generic reduced intertwiner of the
kind (78). The contraction now is just standard multiplica-
tion according to the orientation and connectivity of the
holonomies.

The expansion of the projected spin network (65) on this
base is then

Rh�; je; xvjc i ¼ Y
v2�

h ~ul; jl; jjl;xvi �
Y
e2�

lc
jel
el ; (82)

with lc
jel
el ¼ hj; ~uljc jjj; ~uli.

What about the scalar product? This is induced from the
one of the full theory i.e.

h�; je; xvj�0; j0e; x0vi ¼ 	�;�0	je;j
0
e
	xv;x

0
v
: (83)

In fact, looking at a single edge we see that (83) is based on
the orthogonality relation

Z
d�D�j1

ab ð�ÞDj2
cdð�Þ ¼

1

dj1
	j1;j2	ac	bd; (84)

which naturally induces on the reduced basis elements:

Z
d�D�j1

j1j1
ð�ÞDj2

j2j2
ð�Þ ¼ 1

dj1
	j1;j2 ; (85)

equivalent up to a scaling to the Uð1Þ scalar product along
each edge. However, the reduced states j�0; j0e; x0vi are not
anymore orthogonal respect to the intertwiner because

Rh�; je; xvj�0; j0e; x0viR
¼ 	�;�0	je;j

0
e

Y
v2�

Y
e2�

hjl; ~uljjl;xvihjl;x0
vjjl; ~uli; (86)

and we need to employ an orthonormalization procedure as
the Gram-Schmidt one.
It is interesting to note that using the resolution of the

identity in terms of coherent states:

I j ¼
X
m

jj; mihj;mj ¼ dj
Z
SUð2Þ

d�jj; �ihj; �j

¼ dj
Z
S2
d ~ujj; ~uihj; ~uj; (87)

where jj; �i are coherent states defined as jj; �i ¼ �jj; ji
and jj; ~ui, with ~u unit vectors on the sphere S2, are pro-
portional to jj; �i up to a phase that drops in the integral,
one finds

	ab ¼ hj; ajI jjj; bi ¼ dj
Z
S2
d ~uhj; ajj; ~uihj; ~ujj; bi: (88)

Using the previous expression then a generic basis element

Dj
mnðgÞ of H kin can be written as

Dj
mn ¼ X

ab

	maD
j
ab	bn

¼ X
ab

d2j

Z
S2
d ~uhj; mjj; ~uihj; ~ujj; aiDj

ab

�
Z
S2
d ~u0hj; bjj; ~u0ihj; ~u0jj; ni: (89)

This expression is now useful to infer the form of the

reduced states basis of GH R.
The quantum constraint 
2 in fact will act at the end

point (the conjugate condition will hold at the starting
point) of the holonomy as


̂ 2DjðgÞjj; ~ui ¼ DjðgÞð�2 � ð ~el � ~�Þ2Þjj; ~ui
¼ DjðgÞðjðjþ 1Þ � ð ~el � ~�Þ2Þjj; ~ui (90)

and using the property of the coherent states ~v � ~�jj; ~vi ¼
jjj; ~vi we see that if and only if
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~e l ¼ ~u (91)

the basis elements will satisfy 
̂2DjðgÞjj; ~ui ¼ 0 in the
appropriate limit. Then looking at Eq. (89) we see that
the indexm, nwill be connected to the usual intertwiners at
the starting and end points of the holonomies for gauge

invariant states in GH of the kind (75), but all the terms in
the two integrals for which the condition (91) does not
hold, are not solutions of the constraint 
̂2 ¼ 0. The re-
duced holonomies to be connected to the standard inter-
twiners are then

~g ¼ RDj
mnðgÞ ¼ d2j hj; mjj; ~elihj; ~eljDjðgÞjj; ~elihj; ~eljj; ni:

(92)

The previous expression gives a simple rule to build

states in GH R: it is enough to connect expressions (92)

instead of the usual Dj
mnðgÞ to the standard intertwiners.

These states, which are defined over cuboidal lattices
with six-valent intertwiners, are suitable to describe a
quantum universe in the case of the inhomogeneous ex-
tension of the Bianchi I model.

E. Intertwiners

In the previous section we determined the reduction
implied by the condition (50). This procedure is well
grounded because only interior edge points have been

considered, while holonomies transform under gauge
transformations at boundary points only. Hence, the under-
lying SUð2Þ gauge structure becomes manifest at vertices.
We are going to evaluate the expression of intertwiners

adapted to the reduced holonomies ~hel which are the

quantum version of (46), i.e. Rĥ ¼ ~h.
The basic scheme of recoupling theory is given by three-

valent intertwiners. Let us consider a three-valent vertex
with two edges e1 and e2 incoming and e3 outgoing, with
associated SUð2Þ irreps j1, j2, and j3, respectively. The
SUð2Þ intertwiner is given by the Clebsch-Gordan coeffi-
cients or equivalently by 3j symbols (equipped with the 1j
‘‘metric tensor’’) [53], such that the full vertex reads

Dj1
n0nðhe1ÞDj2

p0pðhe2ÞCj3m
j1j2np

D
j3
mm0 ðhe3Þ; (93)

where the repeated magnetic indices are all summed
and taken in a fixed basis, for example the one that
diagonalizes �3.
In order to find out Uð1Þ irreps out of SUð2Þ ones,

holonomies must be written in the basis that stabilizes
the direction el and the restriction to the representations
with maximum magnetic numbers must be considered. In
particular, it is convenient to introduce a graphical repre-
sentation for the expression (92),

where the solid lines represent the identity in the base
jj; mi that diagonalizes �3,

the projection on the maximum magnetic number is given
by

and the group elements are represented by boxes or
circles depending on whether they represent the Wigner
matrix of specific fixed rotation RðelÞ that moves the ez
axis to the el axis, selecting the desired Uð1Þl subgroup, or

a generic SUð2Þ Wigner matrix DðgÞ in the jj; mi base,
respectively:

With this notation the three-valent intertwiner fromwhich
any higher valence one (our theory for the Bianchi I model
prescribes nodes at most six-valent) can be represented as
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where the three-valent node is the usual 3j symbol con-
tracted with the SUð2Þ coherent states in the three direc-
tions e1, e2, e3. The explicit value of the function (99) can
then be computed using the values of the Wigner matrix for
a rotation parametrized for example by the Euler angles
ð�;�; �Þ that brings the vector (0,0,1) to the vector el. The
Wigner matrices are then given by

Dj
m;m0 ð�;�; �Þ ¼ eim�dj

mm0 ð�Þeim0�; (100)

where dj
mm0 ð�Þ is the Wigner function given in

Appendix A. In particular, for the cubical lattice we are
interested in the vectors e3 ¼ ez ¼ ð0; 0; 1Þ, e2 ¼ ey ¼
ð0; 1; 0Þ, and e1 ¼ ex ¼ ð1; 0; 0Þ and the rotation matrices
appearing in (99) are given by Dj

m;m0 ð� �
2 ;

�
2 ;

�
2Þ :¼ Ry and

Dj
m;m0 ð0; �2 ; 0Þ :¼ Rx. In fact, the two matrices rotate the z

axis respectively into the y and the x direction.
This graphical machinery can now be used to introduce a

reduced recoupling theory (see Appendix B) out of the
SUð2Þ one and to compute the action of the scalar
constraint.

F. Geometric operators

In reduced Hilbert space GH R, the following relation
defining the action of fluxes on basis elements holds,

Rhel; jel jÊiðSkÞjel; jeliR ¼ hel; jel jP
ÊiðSkÞP
jel; jeli
¼ �i8��l2Poðei; SiÞ	ik	kljel ;

(101)

where el indicates the edge e in direction l.
Henceforth, geometric operators are developed starting

from the action of reduced fluxes P
ÊiðSkÞP
 ¼ RÊiðSkÞ
in reduced Hilbert space. Therefore, the area operator
along a surface Si is given by

RÂ½Si� ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RÊiðSiÞRÊiðSiÞ
q

dudv; (102)

u, v being a proper parametrization of the surface Si. The
expression above can be regularized as in the full theory
[8,54], and at the end its action is nonvanishing only on
jei; jeii for ei \ S � ; giving

RÂ½Si�jei; jeii ¼ 8�l2P�jei jei; jeii: (103)

In the same way, the action of the volume operator can
be defined from reduced fluxes and its expression gets an
enormous simplification with respect to the full theory
[8,9] thanks to the reduction of SUð2Þ group elements to
Uð1Þi ones. Let us consider the volume of a region �
containing only one vertex v (the extension to regions
containing more than one vertex is straightforward), the
operator Vð�Þ reads

RV̂ð�Þ ¼ X
a;b;c;i;k;l

Z
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� 1

3!
�abc�

ikl RÊa
i
RÊb

k
RÊc

l

��������
s

;

(104)

and the action on a trivalent node je1; e2; e3; je1 ; je2 ; je3 ; xvi
can be regularized by introducing reduced fluxes over Si

i ¼ 1, 2, 3 with S1 \ S2 \ S3 ¼ v as follows:

RV̂ð�Þje1; e2; e3; je1 ; je2 ; je3 ; xvi ¼
Z

d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
X

i;k;l;m;n;p

1

3!
�mnp�

ikl RÊiðSmÞRÊkðSnÞRÊlðSpÞ
��������

vuut je1; e2; e3; je1 ; je2 ; je3 ; xvi

¼
Z

d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
X
i;k;l

1

3!
ð�iklÞ2RÊiðSiÞRÊkðSkÞRÊlðSlÞ

��������
vuut je1; e2; e3; je1 ; je2 ; je3 ; xvi

¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRÊ1ðS1ÞRÊ2ðS2ÞRÊ3ðS3Þj

q
je1; e2; e3; je1 ; je2 ; je3 ; xvi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jje1je2je3oðe1; S1Þoðe2; S2Þoðe3; S3Þj

q
je1; e2; e3; je1 ; je2 ; je3 ; xvi; (105)

where in the second and third lines we used the fact that
RÊiðSmÞ is nonvanishing only if i ¼ m and the commuta-
tivity of RÊiðSiÞ and RÊlðSlÞ. Henceforth, the action of the
volume operator is diagonal in the basis (81). In the case of
a generic vertex, the expression above should be summed

over all the e1, e2, and e3 emanating from v, and it does not
depend explicitly on the intertwiner structure. For the six-
valent vertex in Fig. 4 by choosing the orientation of S1, S2,
and S3 such that their normals are parallel to e1, e2, and e3,
respectively, the volume becomes

FIG. 4. Six-valent vertex.
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RV̂ð�Þje1; e2; e3; e4; e5; e6; j1; j2; j3; j4; j5; j6; xvi
¼ ð8��l2PÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj1 þ j4Þðj2 þ j5Þðj3 þ j6Þ

q
� je1; e2; e3; e4; e5; e6; j1; j2; j3; j4; j5; j6; xvi: (106)

VII. HAMILTONIAN CONSTRAINT

The super-Hamiltonian operator can be consistently
regularized in the reduced Hilbert space, starting from
the expression of the full theory. In this respect, let us
restrict our attention to the Euclidean constraint (4) and
let us adapt Thiemann regularization procedure [6] to the
states of the reduced theory by considering only cubic
cells. Hence, let us develop a cubulation C of the mani-
fold � adapted to the graph � underlying the cubical
lattices over which our reduced cylindrical functions are
defined. For each pair of links ei and ej incident at a

node n of � we choose semianalytic arcs aij that respect

the lattice structure, i.e. such that the end points sei , sej
are interior points of ei, ej, respectively, and aij \ � ¼
fsei ; sejg. The arc si is the segment of eiðejÞ from n to

siðsjÞ, while si, sj, and aij generate a rectangle �ij :¼
si � aij � s�1

j . Three (nonplanar) links define a cube and

we get a complete cubulation C of the spatial manifold
by summing over all the incident edges at a given node
and over all nodes. Now we can decompose (4) obtain-
ing the expressions (5) and (6) adapted to C simply with
the replacement

We are now interested in implementing the action of the

operator (7) via an operator RĤ defined on GH R: a con-
venient way of constructing it is to replace in the expres-
sion (7) quantum holonomies and fluxes with the ones
acting on the reduced space as follows:

The lattice spacing of the cubulation C, that acts as a
regularization parameter, can be changed via a reduced
diffeomorphism. Hence, on reduced s-knot states there
exists a suitable operator topology in which the regulator
can be safely removed as in full LQG. Therefore, the action
of the super-Hamiltonian operator can be regularized in
the reduced Hilbert space. We proceed in the next section
to the explicit computation of the matrix elements of (107)
on three-valent nodes.

A. Reduced Hamiltonian on three-valent nodes

The reduced Hamiltonian acts on reduced

states as the operator (7) does on ordinary spin network
states. The difference is that now the holonomies are of the
kind (64) or equivalently of the kind (94) considering the
node structure and, consequently, one has to recouple them
using the rules contained in Appendix B. Here we study

acting on a three-valent node; in the following

we neglect the value of the lapse function and the constants
analyzing the operator

because, as is the full theory, due to the presence of �ijk this
is the only nonvanishing term in the commutator. Choosing
a three-valent vertex state jv3iR ¼ jex; ey; ez; jx; jy; jz; xviR
with outgoing edges ex, ey, ez, the Hamiltonian

is the sum of three terms

where k ¼ 1, 2, 3 for

sk 2 ex, ey:ez, respectively. acts first by

multiplication with the holonomy on the right of (108)
producing
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Then the volume acts diagonally multiplying by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxjyðjz þmÞ

q
and the last operator RĥðmÞ

�ij

RĥðmÞ�1
sk attaches the inverse

holonomy and the loop �xy. We get

Reduced recoupling (see Appendix B) on the links gives
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The previous expression can then be simplified moving the box using the invariance of the intertwiners at the central node
and using SUð2Þ recoupling theory we get (see [43,55])

QUANTUM-REDUCED LOOP GRAVITY: COSMOLOGY PHYSICAL REVIEW D 87, 083521 (2013)

083521-17



A similar calculation for the reversed loop �yx leads to the final result:

The total scalar constraint is then obtained by summing the contributions for k ¼ 1, 2 obtained from the previous
expression by index permutations.

This result can now be used to construct explicit solutions or to test the semiclassical limit.

EMANUELE ALESCI AND FRANCESCO CIANFRANI PHYSICAL REVIEW D 87, 083521 (2013)

083521-18



VIII. CONCLUSIONS

We provided a new framework for the cosmological
implementation of LQG. This new formulation was aimed
to realize a quantum description for an inhomogeneous
extension of the Bianchi I model, in which a residual
diffeomorphism invariance held and there was space left
to regularize the scalar constraint as in full LQG [6]. We
outlined how the implementation of a quantization scheme
in reduced phase space was not fit for this purpose. This
fact was due to the presence of three independent Uð1Þ
gauge symmetries [denoted by Uð1Þi], each one acting on
the integral curves of fiducial vector fields !i ¼ @i. The
space of invariant states under Uð1Þi transformations was
made by elements whose Uð1Þi quantum numbers were
preserved along each curve. The issue of this approach was
that such a space is not closed under the action of the scalar
constraint, regularized as in [6].

Henceforth, our new framework has been defined by
reversing the order of ‘‘reduction’’ and ‘‘quantization,’’
which means that we projected the kinematical Hilbert
space of LQG down to a reduced Hilbert space which
captured the degrees of freedom of the extended Bianchi
I model. This was done by restricting admissible edges to
those parallel to fiducial vectors only and by implementing
a gauge-fixing procedure for the internal SUð2Þ symmetry.
The former implied that the full diffeomorphism group was
reduced to a proper subgroup, while the latter constituted
the most technical part of our analysis. We found the
solutions of the gauge-fixing condition by lifting Uð1Þi
networks to SUð2Þ ones. This way, we could reconstruct
the quantum states describing the extended Bianchi I model
out of functions of SUð2Þ group elements. This feature
allowed us to investigate the implications of the original
SUð2Þ invariance, and some nontrivial intertwiners are
obtained. These intertwiners are able to map a Uð1Þi rep-
resentation into aUð1Þk representation for k � i. This is the
paramount result of our analysis which marked the differ-
ence with the reduced quantization scheme. In fact, a true
three-dimensional vertex structure could be realized also in
the reduced model. The main consequence was that one
could implement the action of the scalar constraint in the
reduced model as in full LQG, the only difference being
that the triangulation of the spatial manifold had to be
replaced by a cubulation. At the same time, the presence
of reduced diffeomorphisms allowed one to develop certain
knot classes over which the scalar constraint could also be
consistently regularized. Furthermore, since the volume
operator was diagonal, the matrix elements of the scalar
constraint can be explicitly computed. For instance, we
presented the calculation for a three-valent vertex structure.

The analysis of the action of the scalar constraint on the
six-valence vertex and the dynamical implications of the
extended Bianchi I model will be the subject of forthcoming
investigations. These developments are expected to be
highly nontrivial, because the presence of the reduced

intertwiners correlates the spin quantum number along
different directions already on a kinematical level. In this
respect, the construction of a proper semiclassical limit, in
which the classical Bianchi I model is inferred, constitutes a
tantalizing perspective for testing the proposed quantization
procedure. As limiting cases we can get both the locally
rotationally symmetric Bianchi I model and the flat FRW
space, by peaking around homogeneous configurations
having two or all three Uð1Þi quantum numbers equal,
respectively. The success of this analysis would qualify
such a scheme as a well-defined quantum picture describing
the early Universe in terms of a discrete geometry, so
opening the way to several phenomenological applications.
Moreover, it is envisaged for the first time the possibility to
test the viability of the techniques developed in LQG
(implementation of the scalar constraint [7,56,57], develop-
ment of the semiclassical limit) in a simplified scenario in
which the obstructions of the full theory can be overcome.
This analysis constitutes the first realization of quantum-

reduced loop gravity. We applied this framework to the
inhomogeneous extension of the Bianchi I model, but
nothing seems to prevent us for considering other symmet-
ric sectors of the full theory, so increasing the relevance of
the proposed procedure and the amount of phenomenologi-
cal implications which can be extracted.
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APPENDIX A: SUð2Þ FORMULAS

The explicit expression of the Wigner function djmnð�Þ
[58] is

dj
mm0 ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞ!ðj�mÞ!ðjþm0Þ!ðj�m0Þ!

q X
k

ð�1Þk

� ðcos �2Þ2j�2kþm�m0 ðsin �
2Þ2k�mþm0

k!ðjþm� kÞ!ðj�m0 � kÞ!ðm0 �mþ kÞ! ;
(A1)

and the Wigner matrices for an angle � ¼ �
2 are given by

Dj
m;m0

�
�;

�

2
; �

�
¼ ð�1Þm�m0

e�i�m�i�m0 1

2j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞ!ðj�mÞ!
ðjþm0Þ!ðj�m0Þ!

s X
k

ð�1Þk

� jþm0
k

� �
j�m0

kþm�m0
� �

; (A2)
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where the sum over k is such that the argument of the
factorials are always bigger than zero.

APPENDIX B: REDUCED RECOUPLING

The standard multiplication of SUð2Þ holonomies and
their recoupling, i.e.

Dj1
m1n1ðgÞDj2

m2n2ðgÞ ¼
X
k

Ckm
j1m1j2m2

Dk
mnðgÞCkn

j1n1j2n2
; (B1)

using the graphical calculus, introduced in [43] and based
on 3j symbols related to Clebsch-Gordan coefficients by

C
j3m3

j1m1j2m2
¼ ð�1Þj1�j2þm3

ffiffiffiffiffiffiffi
dj3

q j1 j2 j3
m1 m2 �m3

� �
; (B2)

can be written as

where the triangle denotes a generic SUð2Þ group element
and the notation with the two kinds of arrows is used to
distinguish indices belonging to the vector spaceH j or the
dual vector space H j�. The previous expression in the
quantum reduced case where we deal with holonomies of
the kind (94) becomes

where we used the property of the Clebsch-Gordan CKk
j1j1;j2j2

that is nonvanishing only if K ¼ j1 þ j2 and k ¼ j1 þ j2
graphically given by (remember that in the graph notation we always use 3js)

The same result can be obtained remembering that

and the coherent state property jj; ji ¼ j 12 ; 12i
N

2j that graphically implies

In the case in which the two group elements go in opposite directions, we have instead

because we can recouple the lines obtaining a sum over allowed spins, but in the reduced space GH R the only
nonvanishing terms are produced by the Clebsch-Gordan (3j) of the kind
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