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We investigate the dynamics of a closed Friedmann-Robertson-Walker universe and anisotropic

Bianchi type-IX universe characterized by two scale factors in a gravity theory including a higher

curvature (Gauss-Bonnet) term. The presence of the cosmological constant creates a critical point of

saddle type in the phase space of the system. An orbit starting from a neighborhood of the separatrix will

evolve toward the critical point, and it eventually either expands to the de Sitter space or collapses to the

big crunch. In the closed Friedmann-Robertson-Walker model, the dynamics is reduced to hyperbolic

motions in the two-dimensional center manifold, and the system is not chaotic. In the anisotropic model,

anisotropy introduces the rotational mode, which interacts with the hyperbolic mode to present a

cylindrical structure of unstable periodic orbits in the neighborhood of the critical point. Due to the

nonintegrability of the system, the interaction of rotational and hyperbolic modes makes the system

chaotic, making it impossible for us to predict the final fate of the universe. We find that the chaotic

dynamics arises from the fact that orbits with even small perturbations around the separatrix oscillate in

the neighborhood of the critical point before finally expanding or collapsing. The chaotic character is also

evidenced by the fractal structures in the basins of attraction.
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I. INTRODUCTION

The pioneering work of Belinskii et al. [1] has shown
that anisotropic Bianchi type-IX universes could exhibit
chaotic dynamics as they approach the cosmological sin-
gularity (t ! 0). The anisotropic Bianchi IX universe, as
it approaches the singularity, exhibits an oscillatory mode
consisting of an infinite sequence of Kasner eras, during
which two scale factors oscillate and the remaining scale
factor decreases monotonically. Independently, Misner [2]
also suggested a chaotic approach to initial singularity
in his Mixmaster universe (vacuum Bianchi IX universe
characterized by three scale factors).

While the aspect of chaotic dynamics helped deepen our
understanding of singularities in general relativity, there
have been significant challenges in finding an invariant
measure of chaos. A standard measure of chaos is the
Lyapunov exponent, and a debate started on whether or
not the Mixmaster universe is chaotic, when some studies
found a zero Lyapunov exponent for the Mixmaster uni-
verse, while others found a positive Lyapunov exponent
[3–5]. The conflict was resolved when it was realized [6]
that a Lyapunov exponent is coordinate dependent and
therefore is not a reliable measure of chaos in general
relativity.

Cornish and Levin [7] demonstrated the appearance of
chaos in the dynamics of the Friedmann-Robertson-Walker
(FRW) models with a cosmological constant and scalar
fields conformally coupled to the geometry. The presence
of the cosmological constant creates a saddle point in the

phase space, and the separatrix connects this saddle point
to other critical points. When there are interactions be-
tween the geometry and the scalar fields, the separatrix
breaks up and becomes fractal. The work by de Oliveira
et al. [8] emphasized that even small perturbations induce
the breaking of a highly unstable separatrix. The presence
of a positive cosmological constant and a perfect fluid
creates a saddle center in the phase space, and the non-
integrability of the system induces distortion and twisting
of the topology of homoclinic cylinders in the neighbor-
hood of the critical point. The fractal and topological
structures are coordinate independent and thus provide
invariant characterization of chaos in relativistic theories.
Regarding such a system as a model of the early

Universe, a natural question that arises is whether the
Einstein gravity is reliable or not. It has been pointed out
[9] that we might have the trans-Planckian issue; at early
stages of inflation, the quantum gravity effects are not
necessarily negligible. Previous works on chaotic dynamics
in the preinflationary era focused on Einstein gravity, but as
we approach the Planck scale, it is reasonable to expect
higher order corrections to the Einstein-Hilbert action.
Superstring theory is the leading candidate for a description
of physics at such scale. Our goal in this paper is to use an
invariant characterization of chaos and investigate the ex-
istence of chaotic dynamics in ‘‘string-inspired’’ modified
gravity. Our model takes into account the effects of the
higher curvature terms that typically arise in the one-loop
low-energy effective superstring action. For simplicity we
focus on a model in which a scalar field representing the
stringmoduli is nonminimally coupled to theGauss-Bonnet
curvature. For a related work on chaotic dynamics of higher
curvature modified gravity, see e.g., Ref. [10].

*edward@skku.edu
†kawai@skku.edu

PHYSICAL REVIEW D 87, 083517 (2013)

1550-7998=2013=87(8)=083517(9) 083517-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.083517


The Bianchi type-IX models with a scalar field coupled
to the Gauss-Bonnet term are studied in the somewhat
different context of singularity avoidance in Ref. [11].
The new features introduced by our model are a positive
cosmological constant and a perfect fluid, which create
saddle points in the phase space of the system. Because
this method does not work for the case of a zero cosmo-
logical constant, our work implies that in order for the
universe to inflate we need to include a positive cosmo-
logical constant in the low-energy effective action. We
introduce this modified action in Sec. II. We first consider
the closed FRW universe in Sec. III, where the degrees of
freedom are the scale factor and a scalar field, and discuss
the basic characteristics of the closed FRW model. We
introduce anisotropy in the metric in Sec. IV and discuss
how anisotropy creates a topological structure of cylinders
near the critical point. In Sec. V we present numerical
evidence of cylindrical topology, oscillatory behavior
around the critical point, and fractal structures in the basins
of attraction when small perturbations are introduced in the
metric and/or the scalar field. The fractal structures in the
basins of attraction, as well as the topology of cylinders,
constitute invariant characterization of chaos, and we con-
clude that chaotic dynamics can arise in our string-inspired
model.

II. ONE-LOOP EFFECTIVE ACTION

We start with the action in the Einstein frame given by
[11–16]

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2
R���1

2
ðr�Þ2� �

16
�ð�ÞR2

GB

�
þSmatter;

(1)

where R and � are the Ricci scalar curvature and a scalar
field, respectively. In our units, the gravitational constant
corresponds to G ¼ 1=8�. A positive cosmological con-
stant is necessary for the existence of a saddle point in
phase space and the universe to inflate. The Gauss-Bonnet
curvature is given by

R2
GB ¼ R2 � 4R��R�� þ R����R���� (2)

and the function �ð�Þ depends on details of string theory
compactified geometry [17]. For example, when � is the
dilaton, we have

�ð�Þ ¼ e�: (3)

In type II superstring, � can be regarded as the modulus of
compactified dimensions. The form of �ð�Þ in a particular
compactification can be found in Refs. [12,17]. The func-
tion �ð�Þ determines the coupling of � and the geometry,
and it is expressed with the Dedekind 	 function as

�ð�Þ ¼ � ln ½2e�	4ðie�Þ�: (4)

Due to the modular property

	

�
� 1




�
¼ ffiffiffiffiffiffiffiffiffi�i


p
	ð
Þ; (5)

the function �ð�Þ is even in �, has a global minimum at
� ¼ 0, and increases exponentially as � ! �1. We will
be interested in the small � behavior in the following
sections. We assume for simplicity that �ð�Þ can be ap-
proximated as

�ð�Þ ¼ 1

2
�2: (6)

III. CLOSED FRIEDMANN-ROBERTSON-WALKER
UNIVERSE

We first consider a cosmological model characterized by
the scale factor aðtÞ with the line element given by

d s2 ¼ �dt2 þ a2ðtÞ½ð!1Þ2 þ ð!2Þ2 þ ð!3Þ2�: (7)

The Bianchi type-IX invariant 1-forms !i are given by

!1 ¼ sin c d�� sin � cos c d�

!2 ¼ cos c d�þ sin � sin c d�

!3 ¼ cos�d�þ dc ;

(8)

which are chosen to satisfy d!i ¼ � 1
2 


i
jk!

j ^!k, and


ijk is the completely antisymmetric tensor (
123 ¼ 1).

This represents the closed FRW universe with positive
curvature k ¼ þ1. We assume that the matter content is
a perfect fluid. The energy-momentum tensor of the perfect
fluid can be written in the form

T�� ¼ ð�þ pÞ��
0 �

�
0 þ pg��; (9)

where � and p are energy density and pressure, respec-
tively. For simplicity, we assume that the perfect fluid may
be represented by ‘‘dust,’’ that is, � ¼ 0 in the equation of
state p ¼ ��. However, even for general perfect fluids, we
can expect similar features [18].
For the action (1) the Lagrangian is given by

L¼3

4
a��a3�3a _a2þ1

2
a3 _�2þ�

8
� _�ð3 _aþ4 _a3Þ; (10)

where the overdot denotes differentiation with respect to
time t. The equations of motion are

� 1

4
þ�a2 � _a2 � 1

2
a2 _�2 � 2a €a

þ 1

8
�ð _�2 þ 4 _a2 _�2 þ 8� _� _a €aþ� €�þ 4� €� _a2Þ ¼ 0

3a2 _a _�þa3 €�þ 3

8
�� €að1þ 4 _a2Þ ¼ 0; (11)

with the Hamiltonian constraint given by

H ¼ �3a _a2 � 3

4
aþ a3�þ 3

8
�� _� _að1þ 4 _a2Þ

þ 1

2
a3 _�2 þ E0 ¼ 0; (12)
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where E0 ¼ �a3 corresponds to the total matter content of
the model.

We can always decompose a set of second-order
differential equations into a set of first-order differential
equations by redefining variables. Thus, we get a set of four
coupled first-order ordinary differential equations

d

dt
a ¼ _a;

d

dt
� ¼ _�

d

dt
_a ¼ 8a2½�3�� _� _að1þ 4 _a2Þ þ a3ð8�� 4 _�2Þ

þ að1þ 4 _a2Þð�2þ � _�2Þ��
d

dt
_� ¼ f�384a3 _a _�þ3��ð�ð1þ 4 _a2Þ2ð�2þ � _�2Þ

þ 4a2½�2�þ _�2 þ 4 _a2ð�2�þ 5 _�2Þ�Þg�; (13)

where � is given by

� ¼ 1

64a3ð2a� � _a� _�Þ þ 3�2�2ð1þ 4 _a2Þ2 : (14)

The dynamical system (13) admits the static Einstein uni-
verse as a solution, which is just the critical point P. Its
coordinates are given by

P: a¼a0� 1

2
ffiffiffiffi
�

p ; �¼�0; _a¼0; _�¼0; (15)

where �0 is a constant. The critical energy is given by

Ecrit ¼ 1

4
ffiffiffiffi
�

p : (16)

When the scalar field is absent and does not interact with
the curvature, the equations of motion can be integrated
exactly, and the dynamical system admits an invariant
manifold M. The invariant manifold M is defined by

M : � ¼ 0; _� ¼ 0; (17)

and the dynamical system simplifies to an exactly inte-
grable two-dimensional system

d

dt
a ¼ _a;

d

dt
_a ¼ � 1

8a
� _a2

2a
þ 1

2
�a: (18)

In Fig. 1 we display the phase space portrait of the
invariant manifold M in the ða; _aÞ plane. We introduce
the conformal time d	 ¼ dt=a so that the dynamical sys-
tem (18) becomes regular at a ¼ 0. The phase space is
divided by a separatrix into two types of orbits: those that
collapse into the big crunch and those that expand into the
de Sitter space. The critical point P intersects the invariant
manifold M at �0 ¼ 0. Furthermore, there are attractors
corresponding to stable and unstable de Sitter spaces.
When the dynamics is dominated by the cosmological
constant �, it can be shown that the scale factor aðtÞ
expands exponentially and approaches the stable de Sitter

attractor as aðtÞ � e
ffiffiffiffiffiffiffi
�=3

p
t.

Let us now linearize the dynamical equations (13) about
the critical point P. We move the critical point to the origin
by redefining

a!aþa0; �!�þ0; _a! _aþ0; _�! _�þ0; (19)

and then we obtain

d

dt

a

�

_a

_�

0
BBBBB@

1
CCCCCA ¼ A0

a

�

_a

_�

0
BBBBB@

1
CCCCCAþ ðhigher order termsÞ; (20)

where the constant matrix associated with linearizing the
system (13) about the critical point P is given by

A0 ¼

0 0 1 0

0 0 0 1

� 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA: (21)

The matrix (21) has four eigenvalues:

�1;2 ¼ �
ffiffiffiffi
�

p
; �3;4 ¼ 02: (22)

According to the center manifold theorem [19], the
study of the dynamics near the critical point can be reduced
to the study of the dynamics restricted to the associated
two-dimensional invariant manifolds Wcð0Þ near the criti-
cal point. Without actually calculating the center manifold,
we argue as follows. Under the coordinate transformation

S

P

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

a

a

FIG. 1. Phase space portrait of the invariant manifold M in
conformal time d	 ¼ dt=a. The orbit S is the separatrix and the
point P is the critical point.
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a

�

_a

_�

0
BBBBB@

1
CCCCCA ¼

0 0 � 1ffiffiffi
�

p 1ffiffiffi
�

p

1 0 0 0

0 0 1 1

0 1 0 0

0
BBBBB@

1
CCCCCA

u1

u2

u3

u4

0
BBBBB@

1
CCCCCA; (23)

the matrix (21) assumes the Jordan canonical form

J ¼

0 1 0 0

0 0 0 0

0 0 � ffiffiffiffi
�

p
0

0 0 0
ffiffiffiffi
�

p

0
BBBBB@

1
CCCCCA: (24)

Thus the four-dimensional system (13) restricted on the
center manifold Wcð0Þ is a two-dimensional vector field
whose linear part is given by

0 1

0 0

 !
: (25)

Bogdanov [20] has shown that the system which has a
linear part (25) is locally topologically equivalent near
the critical point to the normal form

_v 1 ¼ v2; _v2 ¼ �1 þ �2v2 þ v2
1 þ �v1v2; (26)

where � ¼ �1. The dynamics of (26) is not qualitatively
changed by the higher order terms in the normal form. The
normal form (26) has no homoclinic or periodic solutions
for �1 > 0. If we rescale the variables and parameters as

v1¼
2q1; v2¼
3p1; �1¼
4�; �2¼
2; (27)

where 
 > 0 and rescale the time as

t ! t



; (28)

then the system becomes

_q 1 ¼ p1; _p1 ¼ �þ q21 þ 
ðp1 þ �q1p1Þ: (29)

For 
 ¼ 0, the rescaled equations become an exactly inte-
grable Hamiltonian system with the Hamiltonian given by

Hðq1; p1Þ ¼ p2
1

2
þ q31

3
þ�q1; (30)

where � is a parameter with �> 0 corresponding to the
near-zero eigenvalues being real. For �< 0 there exist
homoclinic solutions. However, we restrict our attention
to only the hyperbolic motions and do not consider the
homoclinic orbits, because homoclinic orbits extend to the
a < 0 region of the phase space, which does not have a
physical meaning.

In the parlance of nonlinear dynamical systems theory,
this is the Bogdanov-Takens bifurcation. To perform a
global analysis that includes the effect of the Oð
Þ part of
(29) on this integrable structure, Melinkov’s method [19]
can be used. A detailed description of bifurcation diagrams

and phase portraits of the Bogdanov-Takens bifurcation
can be found elsewhere (cf. Ref. [21]) and need not be
repeated here.
What the above linear analysis shows is that although we

could expect simple hyperbolic motion of the planar
Bogdanov-Takens bifurcation, we do not expect chaotic
dynamics in our closed FRW model. As we will see in
Sec. IV, the chaotic dynamics, especially the rotational
mode of the oscillatory Mixmaster dynamics, arises from
the presence of imaginary eigenvalues of the linearized
matrix.

IV. AXISYMMETRIC BIANCHI IX UNIVERSE

Chaos is expected to come from the anisotropy of the
universe. For simplicity, we restrict our attention to
two distinct scale factors aðtÞ and bðtÞ and consider an
axisymmetric Bianchi IX cosmological model with the line
element

ds2 ¼ �dt2 þ a2ðtÞ½ð!1Þ2 þ ð!2Þ2� þ b2ðtÞð!3Þ2: (31)

For the action (1) the Lagrangian is given by

L ¼ b��a2b� b3

4a2
� b _a2 � 2a _a _bþ 1

2
a2b _�2

þ �

8
� _�

�
2
b3 _a

a3
þ 4 _b� 3

b2 _b

a2
þ 4 _a2 _b

�
; (32)

and the equations of motion are

2�ab� b3

2a3
� 2 _a _b�ab _�2 � 2 €ab� 2a €b

þ �

��
b3

4a3
þ _a _b

�
ð _�2 þ � €�Þ þ � _�ð _a €bþ €a _bÞ

�
¼ 0

�1þ�a2 þ 3b2

4a2
� _a2 � 1

2
a2 _�2 � 2a €a

þ �

��
1

2
þ _a2

2
� 3b2

8a2

�
ð _�2 þ � €�Þ þ _a €a� _�

�
¼ 0

2ab _a _�þa2 _b _�þa2b €�

þ �

8
�

�
�6

b3 _a2

a4
þ 12

b2 _a _b

a3
� 6

b _b2

a2

þ 2
b3 €a

a3
þ 8 _a _b €aþ4 €b� 3

b2 €b

a2
þ 4 _a2 €b

�
¼ 0; (33)

with the Hamiltonian constraint given by

H ¼ � _a2b� 2a _a _b�bþ b3

4a2
þ a2b�þ 1

2
a2b _�2

þ �

8
� _�

�
2
_ab3

a3
þ 4 _b� 3

b2 _b

a2
þ 12 _a2 _b

�
þ E0 ¼ 0;

(34)

where E0 ¼ �a2b corresponds to the total matter content
of the model.
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We can always decompose a set of second-order differ-
ential equations into a set of first-order differential equa-
tions by redefining variables. Thus, we get a set of six
coupled first-order differential equations in the variables

ða; b; �; _a; _b; _�Þ. The dynamical system (33) admits the
static Einstein universe as a solution, which is just the
critical point P. Its coordinates are given by

P:a¼b¼a0� 1

2
ffiffiffiffi
�

p ; �¼�0; _a¼ _b¼ _�¼0; (35)

where �0 is a constant. The critical energy is given by

Ecrit ¼ 1

4
ffiffiffiffi
�

p : (36)

When the scalar field is absent and the isotropy is
restored, the equations of motion are exactly integrable
and the dynamical system admits the same invariant mani-
fold M of Fig. 1. As before, the critical point P intersects
the invariant manifold M at �0 ¼ 0.

The constant matrix associated with linearizing the
system (33) about the critical point P is given by

A0 ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�2� 3� 0 0 0 0

6� �5� 0 0 0 0

0 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (37)

The matrix (37) has six eigenvalues:

�1;2 ¼ �
ffiffiffiffi
�

p
; �3;4 ¼ 02; �5;6 ¼ �2i

ffiffiffiffiffiffiffi
2�

p
: (38)

Compared to the four eigenvalues (22) in the isotropic
case, the anisotropy in the metric has produced an addi-
tional pair of imaginary eigenvalues. Without loss of gen-
erality, we fix � ¼ 1=4 so that a0 ¼ 1. Under the
transformation

a

b

�

_a

_b

_�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

0 0 �2 2 1
2
ffiffi
2

p � 1
2
ffiffi
2

p

0 0 �2 2 � 1ffiffi
2

p 1ffiffi
2

p

1 0 0 0 0 0

0 0 1 1 � 1
2 � 1

2

0 0 1 1 1 1

0 1 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

q1

p1

q2

p2

q3

p3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (39)

the matrix (37) assumes the Jordan canonical form

J ¼

0 1 0 0 0 0

0 0 0 0 0 0

0 0 � 1
2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 0 � ffiffiffi
2

p

0 0 0 0
ffiffiffi
2

p
0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (40)

Thus, with canonical transformation, the Hamiltonian to
the quadratic order can be expressed as

H �� 1

4
ðp2

2 � q22Þ þ p2
1 þ

1ffiffiffi
2

p ðp2
3 þ q23Þ

þ E0 � Ecrit þOð3Þ ¼ 0: (41)

In a small neighborhood of the critical point, the higher
order terms in the expansion Oð3Þ are negligible and we
may assume that the energy E0 � Ecrit is small. Then the
Hamiltonian may be approximated as

H �� 1

4
ðp2

2 � q22Þ þ p2
1 þ

1ffiffiffi
2

p ðp2
3 þ q23Þ

þ E0 � Ecrit ¼ 0: (42)

In this linear regime, the Hamiltonian (42) is separable. If
we define the partial energies as

E1 ¼ p2
1 (43)

Ehyp ¼ 1

4
ðp2

2 � q22Þ (44)

Erot ¼ 1ffiffiffi
2

p ðp2
3 þ q23Þ; (45)

they are approximately conserved separately,

�Ehyp þ Erot þ E1 ¼ Ecrit � E0: (46)

The topological structure near the critical point created
by these separable partial energies in the case of general
relativity was first described by de Oliveira et al. in
Ref. [8]. Compared to their model, we have an additional
partial energy E1. Ignoring the energy E1 for the moment,
let us concentrate on the hyperbolic motion energy Ehyp

and the rotational motion energy Erot. If Ehyp ¼ 0, we have

either p2 ¼ q2 ¼ 0 or p2 ¼ �q2. When p2 ¼ q2 ¼ 0, we
have p2

3 þ q23 ¼ constant and the motion will be described

by periodic orbits 
E0
in the ðp3; q3Þ plane. These periodic

orbits depend on the parameter E0. When p2 ¼ �q2, the
motion will be described by linear stable Vs and unstable
Vu one-dimensional manifolds in the ðp2; q2Þ plane. In
addition, we have E1 ¼ p2

1 ¼ constant, which generates a
linear one-dimensional manifold �E0

. The direct product of


E0
with Vs, Vu, and �E0

generates the topological structure

of stable cylinders 
E0
� �E0

� Vs and unstable cylinders


E0
� �E0

� Vu. Thus, the flow in the phase space will be

R2 � S1.
The center manifold is the nonlinear extension of the

linear regime that corresponds to Ehyp ¼ 0. The intersec-

tion of this center manifold with the energy surface E0 ¼
Ecrit corresponds to p1 ¼ p2 ¼ q2 ¼ 0, which is just the
critical point P. Since Erot and E1 is always positive, for
E0 > Ecrit the center manifold does not intersect the energy
surface in the linear regime. However, when we include
nonlinear terms, the Gauss-Bonnet term may have positive
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as well as negative energy. Therefore, contrary to the
general relativity case, the center manifold can intersect
the energy surface even if E0 > Ecrit, and we may have a
saddle structure for E0 >Ecrit.

In general, an orbit that approaches the neighborhood
of the critical point P will have E1 � 0, Ehyp � 0, and

Erot � 0. As this orbit with energy Ecrit � E0 approaches
the critical point, the nonintegrability of the system (33)
makes it impossible to predict the amount of energy that
will be partitioned into each mode E1, Ehyp, or Erot. Since

we cannot predict how much energy will be transformed
into which mode, we cannot predict whether the orbit will
collapse into the big crunch or escape to inflation. The
rotational mode arising from anisotropy corresponds to the
oscillatory mode of the Mixmaster dynamics and is crucial
in this nonpredictability.

In the parlance of nonlinear dynamical systems theory,
the double zero eigenvalues lead to Bogdanov-Takens
bifurcation and a pair of purely complex eigenvalues lead
to Andronov-Hopf bifurcation [19] in the four-dimensional
center manifold. We have new possibilities in our system
due to the interaction of the Bogdanov-Takens bifurcation
with the Andronov-Hopf bifurcation. The simple hyper-
bolic motion of the planar Bogdanov-Takens bifurcation
transversally intersects two-dimensional stable and un-
stable manifolds of periodic orbits, and this interaction
leads to chaotic dynamics.

V. NUMERICAL RESULTS

In our numerical experiments, we closely follow the
approach of de Oliveira et al. [8]. We fix � ¼ 0:25 so
that the coordinates of the critical point P are given by a ¼
b ¼ 1:0, � ¼ 0, _a ¼ _b ¼ _� ¼ 0, and Ecrit ¼ 0:5. Let S0
be a point on the separatrix S in the invariant manifold M
(� ¼ _� ¼ 0). For the results presented in this paper, we

choose the coordinates a0 ¼ b0 ¼ 0:9 and _a0 ¼ _b0 ¼
0:051 818 772 5, but any point near the separatrix would
yield similar results. Around S0, we perturb the separatrix
in five variables (three in the closed FRW case) by an
arbitrarily small amount �¼10�4 and use the Hamiltonian
constraint to fix the remaining variable. The energy of the
orbit E0 is chosen to be very close to the energy of
the separatrix so that the difference in energy �E0 ¼
Ecrit � E0 is much smaller than the perturbation �. This
mimics the uncertainty in the initial conditions. In physical
terms, these initial conditions represent small perturba-
tions in the scale factor and/or the scalar field in the
preinflationary era.

When the orbits are evolved starting from the point S0,
the orbits evolve toward the critical point since the initial
conditions were chosen near the separatrix. After passing
through the critical point, we expect the orbits to either
collapse into the big crunch or expand to de Sitter space.
The two possible outcomes for 100 orbits with � ¼ 10�4

are shown for the inflation in Fig. 2 and for the collapse in

Fig. 3. The final fate of the orbits depends on the energy E0,
and there exists an upper bound on E0 for which all orbits
collapse and a lower bound on E0 for which all orbits
escape to inflation. For an energy between this interval,
some orbits collapse and other orbits inflate, resulting in an
indeterminate outcome.
In Fig. 4 we display a magnified view of the region

around the critical point in the ða; _aÞ plane. Note that the
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FIG. 2. Escape to inflation of 100 orbits around a point on the
separatrix with coordinates a¼b¼0:9, _a¼ _b¼0:0518187725,
and � ¼ _� ¼ 0. The coupling constant is � ¼ 16. The energy
surface is given by E0 ¼ 0:499 999 999 9 and the radius of the
sphere of initial conditions is � ¼ 10�4.
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FIG. 3. Collapse of 100 orbits around the same point in Fig. 2
with � ¼ 16, E0 ¼ 0:499 999 980 2, and � ¼ 10�4.
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orbits oscillate around the separatrix as well as the critical
point. This oscillatory mode is crucial in the mixing of the
boundaries and the existence of chaotic dynamics. As this
orbit with energy Ecrit � E0 approaches the critical point,
the nonintegrability of the system makes it impossible to
predict the amount of energy that will be partitioned into
each mode E1, Ehyp, or Erot. Thus, the outcome has a

sensitive dependence on initial conditions.
We now proceed to find a set of initial values that lead to

an orbit approaching the de Sitter attractor. Such a set is
called a basin of attraction. Here we use the standard
method and do a pixel-by-pixel computation of a
400� 400 grid. Since we are dealing with basins

embedded in a six-dimensional phase space, we are forced
to consider lower dimensional slices, and here we choose
the ð�; _�Þ plane although similar fractal basins of attrac-
tion can be obtained for other slices in the phase space. As
shown in Fig. 5, in the closed FRW universe, we have a
sharply divided separatrix even if we have a contribution
from the Gauss-Bonnet term. When the metric becomes
anisotropic, the basins of attraction become highly fractal
as shown in Fig. 6. A magnification of the inner region is
shown in Fig. 7 and reveals self-similar fractal structure.
Note that the black regions correspond to orbits that col-
lapse to the big crunch and the white regions to orbits that
expand to the de Sitter space.
The existence of fractal structures is not restricted to one

particular plane and can be seen in other slices in the six-
dimensional phase space. Figure 8 shows that similar
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FIG. 4. A magnified view of 100 orbits around the critical
point in the ða; _aÞ plane for � ¼ 10�4 and E0 ¼ 0:499 999 997 5.
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FIG. 5. The basins of attraction in the ð�; _�Þ plane for the
closed FRW model. The slice is through a ¼ 0:9 and _a is fixed
by the Hamiltonian constraint. We chose the parameters � ¼ 16
and E0 ¼ 0:499 999 997 5. The black regions correspond to
collapse and the white regions inflation.
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FIG. 6. The basins of attraction in the ð�; _�Þ plane for the
axisymmetric Bianchi IX model. The slice is through a ¼ b ¼
0:9, _a ¼ 0:051 818 772 5, and _b is fixed by the Hamiltonian
constraint. The other parameters are the same as in Fig. 5.
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FIG. 7. A magnified view of Fig. 6.
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fractal structures can also be seen in the ða; _aÞ plane for
universes with parameters and conditions identical to those
used in Fig. 6. These fractal structures in the phase space
cannot be removed by coordinate transformation and thus
provide invariant characterization of chaos in our model.

VI. FINAL REMARKS

In this paper, we have studied the dynamics of the closed
FRW models and Bianchi type-IX models in a string-
inspired modified gravity, which may provide a description
of preinflationary stages of the Universe after the Planck
era. Higher curvature terms arise as the next-to-leading
terms in the superstring effective action, or from the renor-
malization of the stress tensor. We have included such
effects in the form of a Gauss-Bonnet curvature term non-
minimally coupled to a scalar field. The main features of
our model are a positive cosmological constant and a
perfect fluid, which produce a saddle point in the phase
space. Due to the presence of the saddle point, an orbit
starting in the neighborhood of the separatrix has two
asymptotic possibilities, the de Sitter inflation and the big

crunch collapse. In the closed FRW model, the dynamics
near this critical point is reduced to simple two-
dimensional hyperbolic motion of the Bogdanov-Takens
bifurcation. Consequently, the closed FRW model is not
chaotic. In the anisotropic Bianchi type-IX model, we
restricted our attention to the axisymmetric case. The
introduction of anisotropy produces unstable periodic or-
bits, which interact with simple hyperbolic motion of the
planar Bogdanov-Takens bifurcation to produce chaotic
dynamics.
Our results extend the work of de Oliveira et al. in

Ref. [8], who describe chaotic exit to inflation for the
axisymmetric Bianchi IX universe in general relativity. In
subsequent papers [18,22,23], the authors discuss the ex-
istence of ‘‘homoclinic chaos’’ in general relativity. Our
model does not have such homoclinic orbits because of
nonlinearity due to the coupling of Gauss-Bonnet curva-
ture and the scalar field. Furthermore, extending a cosmo-
logical model to the a < 0 region of the phase space is
physically unreasonable as pointed out in Ref. [24].
In the model considered in Ref. [8], it is possible to find

an energy E0 such that a small perturbation to a point on
the separatrix is a chaotic set. As we have shown in this
paper, this is also true when we include a stringy correction
to the Einstein-Hilbert action. We have shown that a small
fluctuation in initial conditions leads to indeterminate out-
come between collapse or inflation. Furthermore, we found
some numerical evidence of fractal structures in the basins
of attraction. The fractal basins of attraction, together with
the topology of cylinders near the critical point, are an
invariant characterization of chaos in our model.
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