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We study the evolution of turbulence in the early Universe at the QCD epoch using a state-of-the-art

equation of state derived from lattice QCD simulations. Since the transition is a crossover we assume that

temperature and velocity fluctuations were generated by some event in the previous history of the

Universe and survive until the QCD epoch due to the extremely large Reynolds number of the primordial

fluid. The fluid at the QCD epoch is assumed to be nonviscous, based on the fact that the viscosity per

entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the

Relativistic Heavy Ion Collider and the LHC is extremely small. Our hydrodynamic simulations show

that the velocity spectrum is very different from the Kolmogorov power law considered in studies of

primordial turbulence that focus on first order phase transitions. This is due to the fact that there is no

continuous injection of energy into the system and the viscosity of the fluid is negligible. Thus, as kinetic

energy cascades from the larger to the smaller scales, a large amount of kinetic energy is accumulated at

the smallest scales due to the lack of dissipation. We have obtained the spectrum of the gravitational

radiation emitted by the motion of the fluid finding that, if typical velocity and temperature fluctuations

have an amplitude ð�vÞ=c * 10�2 and/or �T=Tc * 10�3, they would be detected by eLISA at

frequencies larger than �10�4 Hz.
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I. INTRODUCTION

During its evolution the Universe passed through several
phase transitions. The theory of quantum chromodynamics
(QCD) predicts a phase transition in which a hot quark-
gluon unconfined phase is converted, as the Universe ex-
pands and cools, into a confined hadronic phase. The best
quantitative evidence for such transition is found in the
lattice gauge theory of QCD, which shows that this tran-
sition occurred at temperatures around 150–200 MeV
[1,2]. According to recent results, the phase transition for
small chemical potentials (condition expected at this epoch
for standard cosmology and particle models) is merely an
analytic transition (or crossover) [3].

Since the QCD transition occurred before the radiation-
matter decoupling, the only way to obtain information
about it is possibly through gravitational waves created at
this epoch. With the eLISA/NGO (New Gravitational wave
Observatory) [4] launch planned for the next years and new
detectors being projected, e.g. the Big Bang Observatory
(BBO) and TOBA [5], we expect gravitational radiation to
be a new source of information about the QCD transition.

Most previous studies on this topic have focused on the
effects of a first order transition. In 1984, Witten [6]
considered the possibility that the QCD phase transition
may have produced a detectable gravitational wave signal
if the transition is first order and leads to violent bubble
collisions. Later, Applegate and Hogan [7] made a detailed
study of the influence of the QCD transition in the standard

cosmological model and studied the relics produced at that
period. Polnarev [8] demonstrated that polarization and
anisotropy in the cosmic background radiation can be
induced by gravitational waves depending on their charac-
teristic length (see also [9]). The study of gravitational
waves in cosmological phase transitions had a peak in
the early 1990s. Based on the assumption of a first order
transition, several studies were carried out about the nu-
cleation, growth and collision of bubbles and their relation
to the generation of gravitational waves (see e.g. [10–12]).
A decade later, works on primordial turbulence continued
to be conducted. For example, Kosowsky, Mack and
Kahniashvili [13] calculated the stochastic background of
gravitational radiation arising from a period of cosmologi-
cal turbulence, using a simple model of isotropic
Kolmogorov turbulence produced in a cosmological phase
transition. Also, Dolgov and Grasso [14] showed that an
inhomogeneous cosmological lepton number may have
produced turbulence in the primordial plasma when neu-
trinos entered the (almost) free-streaming regime. This
effect may be responsible for the origin of cosmic magnetic
fields and give rise to a detectable background of gravita-
tional waves.
More recent works have addressed various possibilities

for early-Universe physics leading to detectable cosmo-
logical gravitational wave backgrounds and have analyzed
in more detail the turbulent spectrum as well as the spec-
trum of the gravitational wave signal [15–21]. However, to
the best of our knowledge, there are no studies of turbu-
lence at the QCD epoch assuming a crossover transition
and employing a realistic lattice QCD equation of state
(EOS) for the primordial fluid. In the present work, we

*victor.roque@ufabc.edu.br
†german.lugones@ufabc.edu.br

PHYSICAL REVIEW D 87, 083516 (2013)

1550-7998=2013=87(8)=083516(9) 083516-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.083516


consider an EOS obtained from recent lattice QCD simu-
lations by the Wuppertal-Budapest collaboration [3] and
perform hydrodynamic numerical simulations in order to
obtain the turbulent spectrum [22] as well as the gravita-
tional radiation generated by the motion of the fluid. The
detectability of the inferred background is discussed in the
light of the recently published eLISA/NGO’s sensitivity
curve [26].

This article is organized as follows: we present firstly the
relativistic hydrodynamic equations for a perfect fluid in
one dimension and the EOS used here (Sec. II) and we then
describe the numerical method employed for the solution
of these equations (Sec. III). In Sec. IV, we present the
formalism to obtain the spectrum of gravitational waves
from the hydrodynamic evolution of the fluid based on
Ref. [27]. Finally, we present our results (Sec. VI) and
conclusions (Sec. VII).

II. BASIC EQUATIONS

A. Hydrodynamics

To investigate the dynamics and evolution of the pri-
mordial fluid, we should solve the equations of hydrody-
namics in the context of general relativity. However, as in
previous work [28] we shall assume a flat space metric
filled with a perfect fluid whose stress-energy tensor is
defined by

T�� ¼ �hu�u� þ p���; (1)

where p is the pressure, h is the specific enthalpy defined as
h ¼ 1þ �þ p

� , � is the specific internal energy and � is

the mass density in the rest frame.
In the one-dimensional case adopted here, the hydro-

dynamic equations written in covariant form consist of
three local conservation laws for the above stress-energy
tensor T�� and the baryon density flow J� ¼ �u�:

r�T
�� ¼ 0; r�J

� ¼ 0; (2)

where we used units in which the speed of light is c ¼ 1.
The system must be complemented with an equation of
state having the functional form p ¼ pð�; �Þ.

B. Equation of State

In order to construct the EOS for a crossover transition
we considered the most recent results of lattice QCD
simulations obtained by the Wuppertal-Budapest collabo-
ration (see Ref. [3]), with Nf ¼ 2þ 1, i.e. two light (up

and down) quarks and one heavy (strange) quark. To adapt
such EOS to the conditions prevailing at the QCD epoch in
the early Universe we added the contribution of a gas of
noninteracting neutrinos ð��; ��; �eÞ, muons, electrons,

photons and their antiparticles, all of them described by
an EOS of the form E0 ¼ p0=3 ¼ g�2T4=90 with g ¼
7=8� 14þ 2 ¼ 14:24. As showed in Ref. [3] the addition
of the charm or heavier quarks does not introduce any

substantial modification in the temperature regime relevant
for this work. Such data generate smooth curves for several
observables which are typical of a crossover transition. In
Fig. 1 we show the behavior of the pressure p and the
energy density E ¼ �ð1þ �Þ for a large range of tempera-
tures as well as the Stefan-Boltzmann limit.

III. NUMERICAL APPROACH

The hydrodynamic equations presented in Eq. (2) can be
recast as a hyperbolic system of first order, flux-
conservative equations of the form [29]

@UðwÞ
@x0

þ @F iðwÞ
@xi

¼ 0; (3)

where in the laboratory frame the state vector U contains
the conserved variables ðD; Si; �Þ written in terms of primi-
tive variables w ¼ ð�; vi; pÞ

UðwÞ ¼
D

Sj

�

2
664

3
775 ¼

W�

�hW2vj

�hW2 � p�W�

2
664

3
775; (4)

and the flux vector F iðwÞ is given by

F iðwÞ ¼
Dvi

Sjv
i þ p�i

j

�vi þ pvi

2
664

3
775; (5)

with W ¼ ð1� vivjÞ�1=2 being the Lorentz factor. The
elements of the flux matrix are the mass flux Dvi, the
momentum flux plus pressure force Sjv

i þ p�i
j, and

the energy flux plus pressure work �vi þ pvi. Note that
the flux vector is written in terms of the conserved varia-
bles of the state vector.
The conservation laws written in the form of Eq. (3)

allow us to solve the problem numerically through a wealth
of methods. In the present work we shall employ a
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FIG. 1 (color online). EOS describing a crossover obtained
using data from lattice QCD [3] plus the contribution of leptons
and photons. The horizontal lines represent the Stefan-
Boltzmann limit for a relativistic ideal gas of the same particles
(pSB � 6:77T4 and ESB � 3pSB).
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high-resolution shock-capturing scheme (HRSC) which is
recognized as a very efficient scheme for dealing with
complex flows, especially when discontinuities are present
(see e.g. [30] and references therein). These methods use
the equations in conservative form together with approxi-
mate or exact Riemann solvers to calculate the numerical
fluxes between neighboring computational cells. This fact
guarantees the capture of all discontinuities (e.g., shock
waves) which naturally appear in spatial solutions of the
nonlinear hyperbolic equations and allows high accuracy
in regions where the fluid flow is smooth. These schemes
depend on the spectral decomposition of the Jacobian
matrix @F i=@U which has a complete set of linearly
independent eigenvectors (characteristic fields) ri, and cor-
responding eigenvalues (characteristic velocities) such that

�
@F i

@U

�
½ri� ¼ 	i½ri�; i ¼ 0;þ;�: (6)

In the one-dimensional case and in a flat universe the
eigenvalues are given by [31,32]

	0 ¼ vx; 	� ¼ vx � cs
1� vcs

; (7)

that correspond to the slopes of three families of curves,
known as material (	0) and acoustic (	�) waves. The
relativistic speed of sound cs for an EOS in which the
pressure p is a function of � and � is given by

c2s ¼ @p

@E

��������S
¼ 


h
þ p

�2

�

h

where 
 ¼ @p
@� j�, � ¼ @p

@� j�, S is the entropy per particle,

and E ¼ �ð1þ �Þ the total energy density.
The linearly independent eigenvectors corresponding to

each eigenvalue are

r0 ¼
�

�

hWð�� �c2sÞ
; vx; 1� �

hWð�� �c2sÞ
�
T
; (8)

r� ¼
�
1; hW	�

1� v2

1� v	�
; hW

1� v2

1� v	�
� 1

�
T
: (9)

Our numerical code is based on the Godunov method
[33] and the numerical fluxes are obtained using the well
known Riemann solver of Roe [34,35]:

f iþ1=2 ¼ 1

2
ðfr þ flÞ � 1

2

X
k¼0;�

~rkj~	kj�~!k; (10)

which has the advantage that it can be straightforwardly
implemented for an arbitrary EOS. The numerical fluxes fl
and fr are computed using respectively the primitive
variables to the left and right of the iþ 1

2 interface. Both
~	i and ~ri are computed by Eqs. (7)–(9) using the following
weighted quantities:

~� ¼ ffiffiffiffiffiffiffiffiffiffi
�l�r

p
; (11)

~v ¼
ffiffiffiffiffi
�l

p
vl þ ffiffiffiffiffi

�r
p

vrffiffiffiffiffi
�l

p þ ffiffiffiffiffi
�r

p ; (12)

~h ¼
ffiffiffiffiffi
�l

p
hl þ ffiffiffiffiffi

�r
p

hrffiffiffiffiffi
�l

p þ ffiffiffiffiffi
�r

p : (13)

The quantities f�~!kg represent the jumps of the character-
istic variables across each characteristic field and are
obtained from the inversion of

�U ¼ Ur �Ul ¼
X3
k¼1

� ~!k~rk: (14)

In order to avoid spurious oscillations we use a monotone
upstream centered scheme for conservation laws
(MUSCL), with a standard ‘‘minmod’’ sloper limit [36]
for the reconstruction of the cell centered quantities before
the computation of the numerical fluxes. The integration in
time is performed by using a third order strong-stability-
preserving Runge-Kutta scheme with five stages [37].

IV. GRAVITATIONAL RADIATION SPECTRA

To determine the gravitational signal emitted by the
motion of the primordial fluid, we adopt the formalism
presented in Ref. [27], which has also been used in
Refs. [11,12], among others. All the information needed
to calculate the gravitational wave spectrum is contained in
purely spatial components of the stress-energy tensor
T��ðx; tÞ that, in our case, is obtained from the hydro-
dynamic simulation. Following this treatment, the gravita-
tional energy radiated per solid angle is given by

dE

d�
¼ 2G�ij;lmðk̂Þ

Z 1

0
!2Tij�ðk; !ÞTlmðk; !Þd!; (15)

where

�ij;lmðk̂Þ ¼ �il�jm � 2k̂jk̂m�il þ 1

2
k̂ik̂jk̂lk̂m � 1

2
�ij�lm

þ 1

2
�ijk̂lk̂m þ 1

2
�lmk̂ik̂j;

is known as the projection tensor. The stress-energy tensor
Tijðk; !Þ is obtained by a fast Fourier transform (FFT)
defined as [12,27]

Tijðk; !Þ ¼ 1

2�

ZZ
d3xdtTijðx; tÞe�iðk�x�!tÞ: (16)

Since our hydrodynamic simulations are performed in
one spatial dimension, our problem is axially symmetric
about the z axis. Thus, we can take without loss of
generality [38]

k̂ x ¼ sin �; k̂y ¼ 0; k̂z ¼ cos�: (17)

Therefore, the projector tensor reads
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�ij;lm¼�lm;ij; (18a)

�ij;lm�ij¼0; (18b)

�ij;lmk̂ik̂j¼0; (18c)

�ij;lm�iz�jz�lz�mz¼�zz;zz¼1

2
ð1� k̂2zÞ2¼1

2
sin4�: (18d)

Finally, the total energy per unit frequency interval
emitted as gravitational radiation is given by (cf. [38])

dE

d!
¼ G!2

Z
jTzzðk; !Þsin 2�þ Txxðk; !Þcos 2�

� Tyyðk; !Þj2d�; (19)

where Tzzðk; !Þ, Txxðk; !Þ and Tyyðk; !Þ are the Fourier
transforms of

Tzzðx; tÞ ¼ h�v2
z � p; (20)

Txxðx; tÞ ¼ Tyyðx; tÞ ¼ p: (21)

Integrating Eq. (19) over the solid angle, the same expres-
sion as in Eq. (23) of Ref. [11] is obtained [39]

dE

d!
¼ 32�

15
G!2jTzzðk; !Þ � Txxðk; !Þj2: (22)

In order to compare our results with eLISA/NGO, we
describe the spectrum in terms of a characteristic ampli-
tude of the stochastic background defined as [40]

hcðfÞ 	 1:3� 10�18½�GWðfÞh20�1=2
�
1 Hz

f

�
; (23)

where f ¼ !=ð2�Þ, h0 	 H0=ð100 kms�1 Mpc�1Þ with
H0 as the Hubble constant, and �GW is the energy density
of the gravitational waves,

�GW ¼ 1

�c

�
f
dE

df

�
; (24)

�c ¼ 3H2
0=8�G being the critical density. Finally, we have

to consider the redshift suffered by the waves in their way
to the present Universe [40]:

f0 ¼ 8� 10�14f�
�
100

g�

�
1=3

�
1 GeV

T�

�
Hz; (25)

�GW ¼ 1:67� 10�5h�2
0

�
100

g�

�
1=3

�GW�; (26)

where the subscript 0 corresponds to present values and the
subscript � to the values at the epoch of the transition.

V. TURBULENCE IN THE CROSSOVER
QCD TRANSITION

Since we are considering a crossover transition at the
QCD epoch, we do not expect large perturbations near the
critical temperature as would be the case for a first order

transition. Thus, we assume that fluctuations present at the
QCD epoch were generated by some event in the previous
history of the Universe, e.g. at the electroweak phase
transition that occurred at t� 10�12–10�10 s. Hence, one
may consider that the size of the larger fluctuations at the
QCD era are of the order of the size of the horizon at

the electroweak era; i.e. we have aEW ¼ aQCD � t1=2EW �
t�1=2
QCD � 1 m. In other words, the injection of energy hap-

pens at the electroweak scale (� 1 m) or at an even smaller
scale related to inflation [41], cosmic strings, etc. [4].
These fluctuations are conjectured to survive until
the beginning of the QCD phase transition due to the
extremely large Reynolds number of the primordial
fluid [45].
In turbulent fluids, we usually have a large stirring

length scale L at which turbulent eddies are injected in
the fluid. As said above, we are assuming that large fluc-
tuations occur at (or before) the electroweak era and there-
fore, the stirring scale is L & 1 m. As the larger eddies
break down to smaller ones, there is a cascade of kinetic
energy from large to small scales. This cascade effect will
stop at a small damping length scale lD determined by the
viscosity of the fluid. Roughly, the damping scale is de-
termined by a Reynolds number close to 1, Re� 1. Thus
we can estimate the order of magnitude of the damping
scale as lD � Re�=v, where � is the kinematic viscosity of
the fluid and v its typical velocity.
The shear viscosity � ¼ �ðEþ pÞ of matter at the QCD

epoch can be derived from heavy-ion collision experiments
at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC). In fact, these experiments
show that the quark-gluon plasma at temperatures Tc <
T & 2Tc behaves as a nearly perfect quark-gluon liquid
with a viscosity per entropy density in the range 1<
4�ð�=sÞQGP < 2:5 [46,47], i.e. approaching the Kovtun-

Policastro-Son-Starinets lower bound �=s 
 1=ð4�Þ [48].
Since the baryon chemical potential and temperature of the
RHIC/LHC fluid are not exceedingly different to what is
expected at the early Universe we may assume that the
primordial fluid at the QCD transition behaves as a perfect
fluid as well. According to this, we would have lD �
0:1 fm which is 14 orders of magnitude smaller than the
size of the cell in our numerical simulations, which is
�x ¼ 0:02 m. However, the contribution of leptons and
photons to the viscosity may be significant. In fact, theo-
retical estimations [49] of the viscosity of the quark-gluon
plasma (QGP) in the early Universe give values that are
roughly 1 order of magnitude larger than the experimental
values obtained at RHIC and LHC. The viscosity may be
up to 3 orders of magnitude larger if electrons, muons and
photons are included in the QGP, and even 8 orders of
magnitude larger if neutrinos are considered [49]. In spite
of this, the viscosity is still very small and the Reynolds
number very large, as generally considered in the litera-
ture. Actually, when the most viscous composition is
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considered, the damping length scale is lD < 10�7 m,
which is still orders of magnitude smaller than the size of
the cell in our numerical simulations. Therefore, the use of
the ideal hydrodynamic equations presented in Sec. II is
fully justified.

Up to now, most works studying the QCD transition have
considered that the distribution of turbulent kinetic energy
density has a stationary spectrum consistent with the
Kolmogorov phenomenology [12,13,50], i.e. scaling as

�k�2=3 or variations of this [14,51]. This spectrum is very
frequent in astrophysical environments, like the interplane-
tary, interstellar or intergalactic medium, which have a sig-
nificant viscosity and a constant injection of energy at the
large scales (induced e.g. by solar flares, supernovae, etc.).
This energy is transferred to small scales through a cascading
effect until�lD, where kinetic energy is dissipated into heat
due to the fluid viscosity, resulting in a spectrum with a
negative slope. In the cosmological case, the assumption of
a Kolmogorov-like spectrum may be acceptable when there
is a continuous injection of energy, as in the case of a first
order phase transition, for which bubble collisions introduce
a continuous stirring.However, this stirring is not present in a
crossover transition, and therefore the assumption of a
Kolmogorov spectrum is unjustified. Moreover, since the
viscosity of the primordial fluid is tiny, dissipation at small
scales does not occur at the same rate as the energy is
accumulated by cascading. Therefore, a very different turbu-
lent spectrum is to be expected.

VI. RESULTS

We have carried out relativistic one-dimensional hydro-
dynamic simulations for an ideal nonviscous fluid employ-
ing the fluid equations and EOS of Sec. II. We consider a
computational domain with a length of 100 m, with 16.384
spatial cells (214) and evolve the system for times larger
than 1�s. The choice of these intervals is related to
the band of the spectrum of gravitational waves that we
want to obtain from the numerical simulations, i.e.
�10�5–10�3 Hz according to the eLISA’s sensitivity
curve (see below). We consider reflective boundary con-
ditions, so that we may see the Universe as a set of various
contiguous domains of 100 m. Due to choice of the bound-
ary conditions, disturbances are reflected several times
during the simulation, representing the fluid interaction
with neighboring regions having similar profiles. In agree-
ment with the above discussion, turbulence is included
only through inhomogeneities in the initial condition. We
have considered three different kinds of random initial
profiles: (a) random temperature inhomogeneities in a fluid
at rest, (b) random velocity fluctuations within a fluid
with an initial uniform temperature, and (c) random
temperature and velocity fluctuations. Since the size of
possible disturbances at the time of the transition is un-
known we consider fluctuations of maximum amplitude
�T=Tc � 10�2, 10�3, 10�4 around Tc ¼ 170 MeV and/or

�v=c� 10�1, 10�2, 10�3 in the initial profile. Our goal is
to determine the smallest fluctuation amplitude that would
be detected by eLISA, considering the motion of the fluid
induced by the initial condition as a source of gravitational
radiation. The hydrodynamic simulations provide the ten-
sor Tðx; tÞ from which we obtain Tðk; !Þ through a FFT.
This allows the calculation of the spectrum of the gravita-
tional radiation emitted by the fluid through Eq. (24).
In Fig. 2 we consider random temperature inhomogene-

ities with a maximum amplitude of 10�2 in a fluid that is
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FIG. 2. Top: Initial temperature profile with random tempera-
ture fluctuations of maximum amplitude ð�TÞ=Tc ¼ 10�2. The
fluid is considered at rest at t ¼ 0. Center: Temperature profile
after 1 �s of evolution. Temperature inhomogeneities are
smoothed and the fluid develops a turbulent motion. Bottom:
Velocity spectrum hv2ðkÞi of the turbulent motion of the fluid at
t ¼ 1 �s. There is an energy cascading from the larger to the
smaller scales. Energy is not dissipated at the smallest scale
because of the negligible viscosity of the primordial fluid.
We have considered several different random initial conditions
for the temperature profile, all with maximum amplitude
ð�TÞ=Tc ¼ 10�2. All of them present the same behavior as
presented in this figure.
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initially at rest. The initial temperature profile (top panel)
presents peaks and valleys of different sizes. As the fluid
evolves, these temperature gradients induce the motion of
the fluid, temperature inhomogeneities are smoothed (see
central panel of Fig. 2), and the fluid develops a turbulent
motion with velocities up to �0:02c. As discussed before,
there is a cascading that transports kinetic energy to the
smallest scales where there is no dissipation due to
the absence of viscosity. This behavior is apparent in the
bottom panel of Fig. 2, which shows that a large amount of
kinetic energy is accumulated at the smallest scales (large
k) at the end of the simulation. We performed similar
simulations with random temperature inhomogeneities
with maximum amplitudes of 10�3 and 10�4. The hydro-
dynamic evolution is not shown here because the behavior
is qualitatively the same.

In Fig. 3 we can see a comparison between the
gravitational wave spectra arising from the three initial
temperature gradients considered here. In the case with
�T=Tc & 10�2 the signal would be detected by eLISA
for a wide range of frequencies. For the simulation with
�T=Tc & 10�3 the signal is entirely below but not too far
from the eLISA’s threshold. In fact, we can show that
the signal for fluctuations of about �T=Tc & 3� 10�3 is
partially overlapping the eLISA’s sensitivity curve.
Fluctuations with �T=Tc & 10�4 do not lead to enough
motion in the fluid to emit a significant amount of gravi-
tational radiation.

We also considered an initial condition with constant
temperature T ¼ 170 MeV and a random velocity
distribution. For an initial maximum amplitude of
ð�vÞ=c ¼ 0:01 (see top panel of Fig. 4) the turbulent
motion creates temperature gradients of the order of
�T=Tc � 3� 10�3 which at the end of simulation fall to

about �T=Tc � 1:5� 10�3 with maximum velocities
roughly half of the initial (see central panel of Fig. 4).
On the bottom panel of Fig. 4, we show the initial and final
velocity spectra, which present the same behavior as in the
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trum hv2ðkÞi at t ¼ 0 and t ¼ 1 �s. The final spectrum is steeper
due to the energy cascading from the large to the small scales.

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

10-5 10-4 10-3 10-2

Ω
gw

h 0
2

f  [Hz]

eLISA/NGO
∆v = 10-3 c
∆v = 10-2 c
∆v = 10-1 c

FIG. 5 (color online). Spectrum of gravitational waves for simu-
lations with initial random velocities ð�vÞ=c¼10�3, 10�2, 10�1.
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previous simulations, confirming the expectation that the
spectra must be very different to the Kolmogorov power
law. For maximum initial velocities of ð�vÞ=c� 0:1, the
induced temperature gradients are an order of magnitude
larger than in the previous case and the strong motion of
the fluid leads to a large amount of gravitational radia-
tion (Fig. 5). Notice that the spectrum with ð�vÞ=c &
10�2 is almost overlapping the eLISA sensitivity curve
for frequencies larger that 10�4 Hz as in the simulation
with initial condition �T=Tc < 3� 10�2, ð�vÞ=c ¼ 0.
In spite of these initial conditions being very different,
the system evolves in both cases to similar temperature
and velocity profiles in a time scale considerably smaller
than the total time of the simulation. In fact, simulations
with concomitant velocity and temperature gradients in

the initial condition give essentially the same results as
before, i.e. a progressive homogenization of both the
temperature and velocity profiles, an energy cascade to
the smaller scales, and a gravitational wave spectrum
with a peak around 10�4 Hz (see Figs. 6–8). This peak
in the spectrum is due to an exponential decay of the
fluid velocity. Actually, we verified that jvj � exp ð�t=�Þ
with �� 10�8 s for most values of the wave number k,
showing that most of the fluid motion happens within
this time interval. Since gravitational wave emission is
associated with the level of turbulent motion in the fluid,
we expect a maximum in the spectrum at a frequency
���1, which from Eq. (25) turns out to be �10�4 Hz;
i.e. it is consistent with the maximums in the spectra of
Figs. 3, 5, and 8.
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VII. SUMMARYAND CONCLUSIONS

In this paper, we have studied the evolution of primor-
dial turbulence in the Universe at the QCD epoch using a
state-of-the-art equation of state derived from lattice QCD
simulations [3]. Since the transition is a crossover, we do
not expect large perturbations near the critical temperature
as would be the case for a first order transition. Thus, we
assume that temperature and velocity fluctuations were
generated by some event in the previous history of the
Universe (e.g. a first order transition at the electroweak
scale or at an even smaller scale related to inflation, cosmic
strings, etc.) with typical sizes smaller than the size of the
horizon at the electroweak era, L & 1 m. Due to the ex-
tremely large Reynolds number of the primordial fluid we
consider that these inhomogeneities are able to survive
until the QCD epoch.

The primordial fluid at the QCD epoch is assumed to
be nonviscous, based on the fact that the viscosity per
entropy density of the quark gluon plasma obtained
from heavy-ion collision experiments at the RHIC and
the LHC is extremely small, more specifically, in the range
1< 4�ð�=sÞQGP < 2:5 at temperatures Tc < T & 2Tc

[46,47]. For the hydrodynamic simulations, we considered
a one-dimensional computational domain with a length of

100 m divided into 214 cells, injected random temperature
and velocity fluctuations in the initial conditions, and
evolved the system for times larger than 1 �s. Our results
show that the velocity spectrum is very different from the
Kolmogorov power law considered in most studies of
primordial turbulence that focus on first order transitions.
This is due to the fact that there is no continuous injection
of energy into the system and the viscosity of the fluid is
negligible. Thus, as kinetic energy cascades from the larger
to the smaller scales, a large amount of kinetic energy is
accumulated at the smallest scales due to the lack of
dissipation (see bottom panels of Figs. 2, 4, and 7).
We have obtained the spectrum of the gravitational

radiation emitted by the motion of the fluid for different
initial profiles that include random temperature and veloc-
ity fluctuations of different maximum amplitudes. We find
that if typical fluctuations have an amplitude ð�vÞ=c *
10�2 and/or �T=Tc * 10�3, they would be detected by
eLISA at frequencies larger than �10�4 Hz.
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