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The matching of our epoch of existence with the approximate equality of the dark energy and dark

matter densities is an apparent further fine-tuning, beyond the already troubling 120 orders of magnitude

that separate dark energy from the Planck scale. In this paper I will argue that this coincidence is not a

fine-tuning problem, but instead an artifact of anthropic selection. Rather than assuming observations are

equally likely in all epochs, one should insist that measurements of a quantity be typical amongst all such

measurements. As a consequence, particular observations will reflect the epoch in which they are most

easily made. In the specific case of cosmology, most measurements of dark energy and dark matter will be

done during an epoch when large numbers of linear modes are available to observers, so we should not be

surprised to be living at such a time. This idea is made precise in a particular model for the probability

distribution for r � min ð�m

��
;��

�m
Þ, where it is shown that if pðrÞ � ½NðrÞ�b [where NðrÞ is the number of

linear modes, and b is some arbitrary positive power], the probability that r is greater than its observed

value of 0.4 is close to 1. Thus the cosmological coincidence is no longer problematic.
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I. INTRODUCTION

A. The coincidence problem

We live during a particularly interesting cosmological
epoch; not only are our skies filled with the riches of the
early universe, we are also fortunate enough to be living
just as the era of matter gives way to that of dark energy.
Somewhat more prosaically, we observe that the fractional
densities of matter and dark energy are about the same:
�m ��� (the �i are defined as �i ¼ �i=�crit, where i
denotes the particular component of the universe and �crit

is the time-dependent critical density). This ‘‘coincidence
problem’’ is often viewed as a challenge for models of dark
energy, and even if not quite as troubling as the problem of
the magnitude of dark energy, explaining the coincidence
in question is far from straightforward [1–3].

The apparent problem is starkly evident in Fig. 1, which
shows the evolutions of the fractional densities of the
various components of the cosmological fluid as functions
of the logarithm of the scale factor a. Notice that only in an
uncomfortably narrow band of log a are �m and ��

comparable. To make this discomfiture more precise I am
going to follow Lineweaver and Egan in Ref. [4] and define
the useful parameter, r,

r ¼ min

�
��

�m

;
�m

��

�
: (1)

The current value of r is around 0.4, and the coincidence
problem can be rephrased as a question about the proba-
bility of finding r * 0:4. As Lineweaver and Egan point
out, the expected value of r depends on one’s prior for
pðaÞ, the probability distribution for when one expects to

live. Figure 2 (where I have replicated similar plots from
Ref. [4]) provides a stark visual representation of this prior
dependence. The miracle of ‘‘Why now?’’ is rather less
dramatic if the prior probability of our existence is flat
in linear rather than log time, although the problem is
still significant if we speculate on why we are not living
in the far future. Regardless of the choice of prior, an
examination of the shape of the plots makes it clear that
the coincidence problem results from the fact that r
approaches zero at large and small a, and it is at one or
both of these values that most of the probability lies,
assuming that one takes a flat prior for the x-axis position
at which we happen to live. If one assumes that pðln aÞ or
pðaÞ is flat, the probability of measuring r� 1 depends on
time cutoffs (the details of these calculations can be found
in Appendix A),
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FIG. 1. The evolution of the different components of the
universe, as a function of log a. The dashed line denotes �r,
the dotted line �m, and the solid line ��. The shaded grey
region covers the short epoch (that we happen to live in) where
�� and �m are comparable in magnitude.*navin.sivanandam@gmail.com
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Pðr � 0:4Þ � e�Htf ; pðaÞ � 1;

Pðr � 0:4Þ � 1

Htf � 2
3 ln

ti
t1

; pðln aÞ � 1:

As tf ! 1 both of the above probabilities approach 0, and

in the the case of pðlnaÞ � 1 the same is true as ti ! 0.
As with many other deep issues in cosmology there is no

shortage of possible solutions to the coincidence problem.
These solutions can be usefully divided into two catego-
ries: those which change the dynamics of the universe and
those which change our prior for pðaÞ. For the former class
we have a host of dynamical dark energy models (for a
review of the taxonomy of such models see Ref. [5]), some
of which purport to solve the coincidence problem, e.g.,
Refs. [6–10]. Solutions that change the prior for pðaÞ
are ‘‘selection effect’’ or ‘‘anthropic’’ explanations, e.g.,
Refs. [3,4,11–14], and will be the focus of this paper.

B. Selection effects and anthropics

While the search for solutions to fine-tuning/
coincidence problems has been a powerful heuristic in
the progress of physics, one should remember that
apparently unlikely events are often not explained by

new dynamics. As Weinberg notes in Ref. [3] one striking
historical example of this is the distances of the planets
from the sun; these follow no particular pattern1 and the
fine-tuning of the environment on Earth for life is readily
explained by conditioning on the existence of life. Similar
anthropic arguments have proved fruitful in many cosmo-
logical settings, most notably with regards to the value of
the cosmological constant [15,16].
The term ‘‘the anthropic principle’’ [17] has come to

encompass a large number of related concepts, all of which
share the notion that observations necessarily require
observers. The refinement of anthropic notions most used
by cosmologists is Vilenkin’s ‘‘principle of mediocrity’’
[18,19], which can be readily phrased as a statement about
typicality:

‘‘We should observe a universe that is typical

amongst those containing observers.’’

As noted above, anthropic arguments have been applied
to the coincidence problem by a number of authors. For
example, in Ref. [11] Garriga et al. point out that the
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FIG. 2. The four plots (following those in Ref. [4]) show the the ratio r ¼ min ½��

�m
;�m

��
� as a function of time. In each case the vertical

line denotes today and the shaded grey area marks the region where r * 0:05. Clockwise from the upper left the x axis shows
logarithmic scale factor, logarithmic time, linear time up to today, and linear time until 100 Gyr. Note that one’s impression of a
coincidence depends strongly on the choice of time coordinate and one’s cutoffs.

1Bode’s Law excepted.
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coincidence between t0 (today) and t� (the time of dark
energy dominance) can be explained by assuming that the
number of observers is proportional to the amount of
carbon, so that most observations of the universe should
take place at the time of peak carbon production,
t0 � tcarbon.

2 Noting that carbon peaks with star formation
(tSFR � tcarbon), the authors find

t� � tG � tSFR � tcarbon � t0: (2)

tG is the time of galaxy formation, and the first two
approximate equalities follow from anthropic (and other)
details of structure formation. Thus the coincidence
t� � t0 is explained.

A complementary analysis has been carried by
Lineweaver and Egan [4]. Here the authors consider the
age distribution of terrestrial planets in the universe,
imposing an additional offset (�tobs ¼ 4 Gyr) to account
for the delay between forming a planet and life evolving.
Within this framework they find that 68% of observers
emerge earlier than us, while 32% emerge later. Thus we
are typical amongst observers on terrestrial planets who
take around 4 billion years to evolve (the result is shown to
be robust for �tobs � 10 Gyr). The argument is extended
in Ref. [14] to apply to dynamical dark energy models,
with similar conclusions.

Although the arguments above are perfectly satisfactory
anthropic explanations for the coincidence problem, they
are not without problems:

(a) Carbon bias. Carbon-based, planet-bound life may
be only a small (atypical) subset of potential
observers.

(b) Sensitivity to late-time observers. If the typical
timescale for intelligent life to form is much greater
than that of carbon production or of terrestrial planet
formation, then the above methods are both missing
the majority of observers.

(c) What about the multiverse? If we take the multiverse
seriously, we should really be analyzing all parts of
it with a suitably small dark energy component, and
not fixing the detailed astrophysics.

One way to assuage these concerns is to be more general
in imposing selection effects. This can be done by focus-
sing on the particular observation being made. To rephrase
the ‘‘principle of mediocrity’’:

‘‘A measurement of a quantity should be typical of

all possible measurements of that quantity.’’

To unpack that a little, consider the ratio r defined
above; when we ask that r not be finely tuned, we are
really asking that the value of r that we measure be typical

amongst all possible values that could be measured. Now,
if the number of measurements is independent of time, we
end up with the coincidence problem outlined above. If,
however, measurements are easier in some epoch and
harder in another and impossible in a third, we have to
take that into account when asking what a typical
measurement of r is.
Measuring r requires measuring both �m and ��, so

our distribution for typical values of r should account for
how easy it is to measure these quantities. As I shall argue
below, this amounts to relating the prior distribution of r to
the ease of measuring the expansion of the universe.
Essentially, in a universe with an accelerating component
and with a decoupling scale (below which matter no longer
follows the Hubble flow), there is a finite time when modes
are available to do cosmology, and the number of modes
available is peaked near the epoch of matter-� equality. As
a result the probability of �� ��m is close to 1.

C. The measure problem

I have so far left unmentioned the measure problem
(see Ref. [20] for an up-to-date overview of measures).
This oversight will be extended throughout most of the
paper, but it would be remiss of me not to spend a little time
on the issue.
Themeasure problem arises in eternal inflation because of

the sensitivity of predictions to the choice of measure on the
populated landscape of possible vacua. This sensitivity can
have profound consequences for one’s choice of prior for
where and when observers should expect to find themselves
in the multiverse. Examples of measure-based solutions to
the coincidence problem can be found in Refs. [21,22].
While in this paper I am focussing on an anthropic

approach, it is important to note that (as with all discus-
sions of fine-tuning in cosmology) considerations of the
measure may also be relevant and could affect my
conclusions. That said, a measure-blind approach to issues
of selection and fine-tuning in cosmology has not been
without its successes in the past [15], and the present work
hopes to follow in those footsteps.

D. Organization

I shall provide the details of my argument that the
number of linear modes provides a good proxy for pðrÞ
in Sec. II, following this with a derivation of the appro-
priate probability distribution and a calculation of
Pðr � 0:4Þ under various different assumptions. After
this, in Sec. III, I will discuss the conclusions one might
draw from this sort of reasoning, along with a myriad of
caveats and qualifications.

II. MEASURING r

To make the above discussion on measuring r more
precise, let us begin by considering how a general observer

2This, of course, makes the reasonable assumption that on
cosmological scales the timescale of intelligent life evolving
from the available carbon can be ignored.
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may go about measuring �� and �m. Because matter
clumps, its presence can be detected through the motions
of luminous test particles moving in the potential well of a
particular clump of matter. As such, sufficiently clever
cosmologists armed with sufficiently advanced instru-
ments and sufficiently generous funding grants can locate
and ‘‘weigh’’ clumps of matter. Then, by adding the masses
of these clumps together the aforementioned cosmologists
can make reasonable estimates of �m during almost all
cosmological epochs (with the obvious caveat that this
argument requires luminous matter to roughly track dark
matter).

Measuring ��, however, is a different story. Assuming
there are no significant spatial variations in the dark energy
density,�� can only be detected through measurements of
the Hubble expansion. This expansion is detected through
observations of the redshifts and distances of ‘‘objects’’
that are not gravitationally bound to the observer. The
greater the number of such objects, the easier it is to
measure the expansion. Although ‘‘number of objects’’ is
inherently a notion that depends on the cosmological and
astrophysical details of the particular universe we find
ourselves in, one has a reasonable proxy in the number
of linear modes in the observer’s Hubble radius that are
larger than the largest gravitationally bound structure.

There are several reasons why the use of N (the number
of linear modes) is a good proxy for the number of objects.
Firstly, it bounds the maximum number of independent
(in the sense of the motion with the Hubble flow) objects.
As well as the number of modes, N also counts the number
of volumes within a Hubble radius that can contain a single
(at most) maximally sized bound structure; thus N bounds
the maximum number of such independent objects. Of
course, a) ‘‘maximum’’ is not the same as ‘‘number of’’
and b) each of these independent volumes may contain
many objects (for example, type Ia supernovae) which can
be used to measure distance. That said, so long as the
universe is isotropic it is reasonable to assume that the
number of objects should scale as N.

In addition to the above line of reasoning, we should also
note that N directly characterizes our ability to measure
cosmological parameters when we use the linear modes
themselves as probes, as with the cosmic microwave back-
ground (and, in the future, with 21-cm observations).
Although such measurements usually cannot constrain
dark energy by themselves (see Ref. [23] for an example
of a cosmic microwave background-only constraint
on dark energy), they are an important factor in our
ability to accurately determine cosmological parameters,
including r.

Finally, assuming an approximately scale-invariant
spectrum (as one has in our Hubble volume and would
have in other Hubble volumes with an inflationary period
in their past) implies a correlation between the number of
linear modes and the number of objects. This follows since

with a scale-invariant spectrum the initial amount of power
at each scale is constant. Consequently, the number of
small objects useful for probing cosmology should scale
with N.
There are, of course, many other factors that will affect

the ease of measuring r. However, on the grounds of
maintaining generality, I am going to ignore most of
them. One that might have a general applicability, though,
is the ability to discriminate between different cosmolo-
gies. In particular, the ability to tell an accelerating from a
nonaccelerating universe seems a prerequisite for measur-
ing r, and this is not independent of the value of r. This will
be discussed in more detail below.
In order to encompass a wider class of models than

simply vacuum energy, I shall present results for a cosmol-
ogy consisting of matter with the equation of state p ¼ 0,
and dark energy with the equation of state p ¼ w�, where
�1 � w<�1=3. Then

H2 ¼ 1

3

�
�m0

�
a0
a

�
3 þ ��0

�
a0
a

�
3þ3w

�
: (3)

Here, as below, the reduced Planck mass ð8�GÞ�1=2 has
been set equal to 1 and the subscript 0 denotes the time
when the largest bound structure for a given observer
enters the Hubble radius. I have also assumed that we are
in a flat universe with �rad � 1.3

I should emphasize that while the rest of this section is
littered with details of calculations, multiple plots, and
several actual numbers, these are somewhat incidental to
the larger argument. The purpose of this paper is not to
claim that the probability of measuring r has some value
that can be calculated given a suitably detailed model of
physicists and their methods of observation. Rather, I wish
to point out that the apparent fine-tuning of the coincidence
problem is an artifact of an error in the typical choice of
prior for the epoch in which cosmological observers live.
Once this error is corrected, by choosing an appropriate
prior for the epoch of measurement, one finds that the fine-
tuning has vanished. The particular analysis and numerical
results that follow should thus be considered as evidence
for this point of view, and a representative (rather than
faithful) model of reality.

A. Number of measurements

The number of independent measurements that can be
made of the expansion of the universe depends on the
number of modes within a Hubble radius that are not
decoupled from the Hubble flow. In a universe of matter
and dark energy, modes enter the Hubble volume of an
observer during the epoch of matter domination and exit
during the epoch of dark energy domination. Thus there is

3It would take a particularly delicate fine-tuning to arrange a
period of radiation domination close to the time of matter/dark
energy domination.
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only a finite period during which cosmological measure-
ments can be made.

Because the definition of r varies with time it is useful to
work with the quantities rm ¼ ��=�m and r� ¼ �m=��,

which are equal to r ¼ min ½��

�m
;�m

��
� when �� <�m and

�m <��, respectively. With these definitions, we have

H2 ¼ ��

3

�
1

rm
þ 1

�
; �� ¼ ��0

�
a0
a

�
3þ3w

;

rm ¼ r0

�
a0
a

�
3w
:

(4)

Let k� be the comoving wavenumber corresponding to the
largest bound structure seen by a given observer, and
consider the quantity k�=aH,

k�
aH

¼ k�
a0H0

0
@1þ r0

r
� 1

3w

0

1
A1

2� r
� 1

3w
m

1þ rm

�1
2
: (5)

If we set subscript-0 quantities to be at the initial timewhen
the mode corresponding to the largest bound structure is
equal in size to the Hubble radius, then we have

k�
aH

¼
0
@1þ r0

r
� 1

3w

0

1
A1

2� r
� 1

3w
m

1þ rm

�1
2
: (6)

Cosmology is possible when the above quantity is larger
than 1. This is true, in the case of w ¼ �1, when

r0 < rm <
ðr0 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 4r0

q
� r20 � 3r0

2r0
: (7)

This range is somewhat larger for larger values ofw, as can
be seen in Fig. 3. The number of modes available for
cosmology scales like the cube of Eq. (6),

Nm �
0
@1þ r0

r
� 1

3w

0

1
A3

2� r
� 1

3w
m

1þ rm

�3
2
: (8)

Figure 3 shows the number of modes available to an
observer as a function of rm and of a. Note that while
changing w affects the length of the period during which
cosmology can be done, the shape of the distribution of
modes as a function of r or a is always strongly peaked and
broadly unchanged for different values of w.
In order to calculate the probability Pðr � 0:4Þ, we will

also need the number of modes in terms of r� when
�� >�m. This is given by

N� �
0
@1þ r0

r
� 1

3w

0

1
A3

2� r
1þ 1

3w

�

1þ r�

�3
2
: (9)

B. Probability distribution for r

To calculate the probability distribution function pðrÞ,
we begin by constructing pðrjr � rmÞ and pðrjr � r�Þ.
The probabilities should be proportional to a function of
the number modes available,

pðrjr � rmÞ � fmðNmðrÞÞ; pðrjr � r�Þ � f�ðN�ðrÞÞ:
(10)

There are several reasonable choices for the form of the
function fi, depending on one’s model of measurement. On
general grounds, one should expect the fi to be monotonic
(measurement is clearly easier when more modes are
available), but beyond that it is hard to justify a particular
choice of fi.
Since the number of modes is maximized when r ¼ 1

(i.e., at the time of maximum coincidence), any pðrÞ
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FIG. 3. These two plots illustrate how the number of modes available to an observer changes as a function of rm and of a. In each
case r0 ¼ 10�12 (which is approximately the value for our universe, if we assume dark energy is a pure cosmological constant).
w ¼ �1 for the most finely dashed line and then�0:9,�0:8,�0:7, and�0:6 as the dashing increases in width. Note the increasing w
increases the amount of time available for cosmology but has little effect on the shape (and importantly the peakedness) of NðrmÞ.
In each case the vertical line indicates the value of rm or a for current observers in our universe.
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constructed with monotonic fi will be peaked at r ¼ 1.
The strength of this peaking will depend on the functional
form of the fi—the more strongly dependent the fi are on
the number of modes, the sharper the peak in probability at
r ¼ 1. The degree to which the coincidence problem is
alleviated depends on how sharply peaked the distribution
pðrÞ is at r ¼ 1—a very sharp peak implies there is no
coincidence problem, whereas no peak at all would suggest
that the argument has failed to explain why we observe
r 	 1. Thus the more sensitively the fi depend on the
number of modes, the easier it is to solve the coincidence
problem.

In the body of the next section I am going to analyze
the coincidence with the fi as functions of powers of Ni;
this seems to me to be a reasonable model of how an
observer’s awareness of the value of r scales with the
number of data points available. The most pessimistic
assumption (in terms of explaining the coincidence) is to
model the observation process by assuming that mea-
surements are impossible below some threshold in N, but
equally likely above said threshold4; I cover this choice
in Appendix B, where I find that even in this case the
coincidence problem is alleviated. Another reasonable
choice for the fi such as an exponential dependence
on Ni will have pðrÞ more strongly peaked at r ¼ 1
than the threshold case. For completeness, numerical
results in the exponential case are also reported in
Appendix B.

1. Measurements sensitive to powers of Ni

In the case when the fi are powers of N,

pðrjr � rmÞ ¼ Am½NmðrÞ�bm;
pðrjr � r�Þ ¼ A�½N�ðrÞ�b� :

(11)

The quantities Am, A� are given by the requirements that

Z 1

0
pðrjr � rmÞdr ¼

Z 1

0
pðrjr � r�Þdr ¼ 1: (12)

One then obtains the following expressions for the condi-
tional probabilities:

pðrjr � rmÞ ¼ Am

�
r
� 1

3w
m

1þ rm

�3bm
2
;

pðrjr � r�Þ ¼ A�

�
r
1þ 1

3w

�

1þ r�

�3b�
2
:

(13)

The prefactors depending on r0 have been reabsorbed into
the Ai, which are now given by

Am ¼ 2� bm
w

22F1

�
3bm
2 ;

�
1� bm

2w

�
;
�
2� bm

2w

�
;�1

� ;

A� ¼ 2þ 3b� þ b�
w

22F1

�
3b�
2 ; ð1þ b�

2 ð3þ 1
wÞÞ; ð2þ b�

2 ð3þ 1
wÞÞ;�1

� :
(14)

2F1 is a hypergeometric function.
To calculate pðrÞ from the conditional probabilities now

just requires an application of Bayes’ theorem,

pðrÞ ¼ pðrjr � rmÞPðr � rmÞ þ pðrjr � r�ÞPðr � r�Þ
¼ qpðrjr � rmÞ þ ð1� qÞpðrjr � r�Þ: (15)

In the second line I’ve set q as the probability that we live
in an epoch of matter domination. If we further assume
bm ¼ b� ¼ b (which is equivalent to making the natural
assumption that observing the coincidence during matter
domination is equally sensitive to the number of modes as
during dark energy domination, i.e., we do not prefer the
abilities of observers of one epoch over the other), the
complete (and unwieldy) expression for pðrÞ is then

pðrÞ ¼ qð2� b
wÞ

22F1ð3b2 ; ð1� b
2wÞ; ð2� b

2wÞ;�1Þ
�
r� 1

3w

1þ r

�3b
2

þ ð1� qÞð2þ 3bþ b
wÞ

22F1ð3b2 ; ð1þ b
2 ð3þ 1

wÞÞ; ð2þ b
2 ð3þ 1

wÞÞ;�1Þ



�
r1þ 1

3w

1þ r

�3b
2

(16)

pðrÞ is plotted in Fig. 4 for various values of q, b, and w.
The probability that observers measure r at its present

value or larger is then given by

Pðr � 0:4Þ ¼
Z 1

0:4
pðrÞdr: (17)

In the case that q ¼ 1=2, b ¼ 1, and w ¼ �1, this eval-
uates to the far-from-fine-tuned Pðr � 0:4Þ ¼ 0:71. This
result is relatively insensitive to the particular values of b,
q, and w. Plots of Pðr � 0:4Þ as a function of b, q, and w
are given in Fig. 5, where it can clearly be seen that for all
plotted values the probability remains between 0.4 and 1,
and so the absence of fine-tuning is robust to varying these
parameters.
Before moving on to a discussion of the above results,

I would like to briefly return to an observation from the
beginning of this section. So far only the number of modes
has been considered as constraining the ability of an ob-
server to do cosmology. However, as well as the number of
measurements, one might also consider the ease of making
those measurements. The latter quantity is not as easy to
find a suitable proxy for, but one possibility could be the
ability of cosmologists to distinguish between accelerating
and nonaccelerating cosmologies. This could entail, for4I am grateful to Mike Salem for raising this issue.
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example, finding an expression for how the difference in
the luminosity-redshift relation between an accelerating
and decelerating cosmology varies as a function of r. If
one did this, one would find a slightly greater pressure
towards large r when�m >�� and towards small r when
�m <��. However, numerical investigations suggest that
the probabilities are altered by around 10%, which would
have no effect on the above conclusions. Moreover, in the
absence of a compelling reason to do so, it is better to
model selection effects with as little sensitivity to detailed
physics as possible.

III. CAVEATS AND CONCLUSIONS

The strengths and weaknesses of the above argument are
reviewed below, but before we get to those, there are a
couple of as yet undiscussed caveats that should be

mentioned. The first is that the reasoning used herein
does not apply to dynamical dark energy models, where

the period of acceleration is temporary. Of course, this

simply means that the ‘‘Why now?’’ problem must be

added to the list of challenges such models face

(see Refs. [6–10] for examples of dynamical dark energy

models that attempt to explain the coincidence dynami-

cally). In addition, by not including�r in mymodel, I have

implicitly ignored the (possible) coincidence of our epoch

of existence and that of matter-radiation equality. Such a

coincidence is considerably milder in magnitude than that

of the dark energy and matter coincidence, with�r=�m �
10�4. However, the naive expectation should be that this

ratio is close to its lowest possible value. There may well

be an anthropic explanation for this fine(ish)-tuning, but in

this paper it remains a mystery.
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The calculations in the previous section demonstrate that
the coincidence problem is an artifact of selection bias.
This demonstration required the following assumptions:

(a) Selection effects are a sufficient explanation of
fine-tuning.

(b) An expectation that we are more likely to find
ourselves measuring r where most of the measure-
ments of r are possible is a sensible selection effect.

(c) The frequency of measurements of r is correlated
with the number of cosmological modes within a
single Hubble radius, NðrÞ.

(d) There are no other factors that have a significant
effect on the frequency of measurements of r.

With these assumptions the argument follows straight-
forwardly: observers are more likely to measure r when it
is easy to measure; r is easy to measure when there are lots
of modes available to the observer; there are lots of modes
available to the observer when r is close to 1, Q.E.D. Of
course, there still remains the justification of the above
assumptions. While the above points have been defended at
the relevant points in the body of the text, it is useful to
review the arguments before we finish.

Defenses of the anthropic principle are numerous, and
there is little I can offer that will persuade the unpersuaded
reader. That said, I suppose it behoves one to try. Fine-
tuning problems can, for the most part, be viewed as state-
ments about selection effects, if not in real space then at
least in the space of possible worlds. This is especially true
with regards to the cosmological coincidence, where the
problem can be rephrased as, ‘‘If our epoch of existence is
selected (log) uniformly in time, why are we so fortunate as
to live in the epoch of matter and dark energy equality?’’
All the principle of mediocrity states is that existence is
not selected from a uniform distribution and that we can
make reasonable deductions about what that distribution
should be.

Of course, making ‘‘reasonable’’ deductions is far from

straightforward. In this paper I have argued that cosmolo-

gists should expect to find themselves living in the epoch

when most cosmology can be done, and that furthermore,

this epoch is the one in which there are the greatest

number of visible modes. This argument for the correlation

between the number of modes and the number of measure-

ments contains an implicit assumption that there is bound

structure (which seems a reasonable requirement for

observers). I should also note that there are methods

(though somewhat constrained ones) to continue cosmol-

ogy after all else but the local structure has exited the

horizon; one such method is the measurement of cosmo-

logical parameters using hyper-velocity stars, discussed by

Loeb in Ref. [24]—in this paper I have ignored this pos-

sibility. With that said, precision cosmology will certainly

be harder in the future, even if it is not impossible.
The use of only NðrÞ to construct pðrÞ can be defended

on several grounds. Firstly, incorporating an additional

dependence on the ease of discriminating between cos-
mologies did not substantially change my conclusions.
Secondly, the peakedness of NðrÞ suggests that it would
take a substantial anthropic counterweight to restore a
pressure to small values of r, and one has trouble conceiv-
ing of what such an effect could be. Finally, the calculat-
ion of NðrÞ requires little additional physics and is
mostly insensitive to additional cosmological parameters
(in particular, details of the spectrum, of structure forma-
tion, of the physics of radiation, and so on); this suggests
that marginalizing over additional parameters would not
effect the form of NðrÞ.
The alert reader will have realized that I glossed over a

key point in my defense of the assumptions of this paper:
why should cosmologists expect to live when cosmology is
easiest? Is not my whole argument trivial? Really all that
has been done is to show that we live in the era of engaging
cosmology, without answering the question of why we live
in interesting times.
Well, in much the same way as students of climate

change were unlikely to be found before the climate started
changing, so it is with cosmologists. In epochs where
cosmology is verging on the impossible, the questions
about the apparent interestingness (or otherwise) of cos-
mology are unlikely to be asked.
We are fortunate enough to live in interesting times, but

if we did not, we would be blissfully unaware of that fact.
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APPENDIX A: pðrÞ WITHOUT
SELECTION EFFECTS

Let us begin by considering pðrÞ when pðaÞ � 1,

pðrÞ ¼ da

dr
pðaÞ � da

dr
: (A1)

Noting that r� a3 when �m >�� and r� a�3 when
�� >�m, this gives

pðrj�m >��Þ � r�2=3; pðrj�� >�mÞ � r�4=3:

(A2)

To calculate pðrÞ we also need Pð�m >��Þ and
Pð�� >�mÞ,

Pð�m >��Þ ¼
R
a1
ai
daRaf

ai da
¼ a1 � ai

af � ai
� 0; (A3)

Pð�� >�mÞ ¼
Raf
a1 daRaf
ai da

¼ af � a1
af � ai

� 1: (A4)
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a1 is the value of a when r ¼ 1. The last approximate
equality in each line corresponds to taking the limit
ai � a1 � af. Thus

Pðr � 0:4Þ ¼
R
1
0:4 r

�4=3drR
1
rf
r�4=3dr

¼ 1:07

r�1=3
f � 1

� a1
af

� e�Htf :

(A5)

H is the asymptotic value of the Hubble constant for a
cosmological-constant-dominated universe, H2 ¼ �=3.
A cutoff (rf, tf, af) is introduced in the normalization of

the probability to keep everything finite. As a result, one
finds that, because of the large future volume, the proba-
bility of measuring r � 0:4 is exponentially small as a
function of the cutoff time.

Now let us consider pðrÞ when pðln aÞ � 1. With the
dependence of r on a as before, this gives

pðrj�m >��Þ � r�1; pðrj�� >�mÞ � r�1: (A6)

Since pðaÞ � a�1, Pð�m >��Þ and Pð�� >�mÞ are
given by

Pð�m >��Þ �
ln a1

ai

ln
af
ai

; Pð�� >�mÞ �
ln

af
a1

ln
af
ai

:

Then for the probability that r � 0:4, one has

Pðr � 0:4Þ ¼ 1

ln
af
ai

�Z 1

0:4
r�1dr

� ln a1
ai

� ln ri
� ln

af
a1

ln rf

!

� 1

ln
af
ai

0
@ ln a1

ai

�3 ln ai
a1

� ln
af
a1

�3 ln
af
a1

1
A

� 1

ln
af
ai

� 1

Htf � 2
3 ln

ti
t1

: (A7)

Once again the probability of measuring r�Oð1Þ is
determined by the cutoffs. In this case both early- and
late-time cutoffs are important, though the sensitivity is
somewhat less.

APPENDIX B: A DIFFERENT CHOICE FOR fi

1. Threshold

Instead of taking a power-law relationship between pðrÞ
and NðrÞ, one can take a threshold approach, where all
measurements are considered equal when the number of
modes available to the observer is greater than some mini-
mum value.

To calculate the value of Pðr � 0:4Þ in such a model of
measurement requires more than just specifying a mini-
mum number of modes; one also needs to define ‘‘equally
likely.’’ There are a number of different interpretations of

the assumption that measurements are equally probable
after the threshold number of modes has been exceeded.
Three reasonable possibilities are pðrÞ ¼ const, pðaÞ ¼
const, and pðln aÞ ¼ const. These will give different values
of the amount (or otherwise) of fine-tuning inherent in our
measurements of r.
Considering the w ¼ �1 case and setting the minimum

number of modes needed to observe r as n, one finds

pðrÞ ¼ const; Pðr � 0:4Þ � 0:6

1� r0n
2
;

pðaÞ ¼ const; Pðr � 0:4Þ � ðr1=20 nÞ1=3;
pðln aÞ ¼ const; Pðr � 0:4Þ � 1

� ln ½r1=20 n� :

(B1)

The quantity r�1=2
0 is approximately equal to the maximum

number of modes that will ever be available to an observer,

so r1=20 n is the fraction of the maximal data available that is

needed to make an observation. In the first case above,
Pðr � 0:4Þ is not finely tuned at all. In the second and third
cases the tuning is worst if we assume n ¼ 1. For our
universe, where r0 � 10�12, this is a fine-tuning of
�1=100 for pðaÞ ¼ const and �1=10 for pðlnaÞ ¼ const.

2. Exponential

pðrÞ can be readily constructed for an exponential
dependence of ease of measurement on the number of
linear modes, in the same fashion as for the power law
discussed in the main body of the paper. One obtains

pðrÞ ¼ Amq exp

�
b

�
r� 1

3w

1þ r

�3
2

�

þ A�ð1� qÞ exp
�
b

�
r1þ 1

3w

1þ r

�3
2

�
: (B2)

Am and A� are normalizations as before, chosen so thatR
1
0 pðrjr � rmdrÞ ¼

R
1
0 pðrjr � r�Þdr ¼ 1. b parame-

trizes that exponential—a larger b would imply observers
whose ability to measure expansion is more sensitive to the
number of linear modes (as in the power-law case, I have
assumed that observers during matter and dark energy
domination are similar in there ability to measure
expansion).
Figure 6 contains plots of pðrÞ for various values of the

parameters. As with the power-law case much of the
probability lies close to r ¼ 1.
Integrating the probability density from r ¼ 0:4 to r ¼ 1

will give Pðr � 0:4Þ, the probability that we live in a
universe at least as coincidental as ours. Figure 7 shows
Pðr � 0:4Þ for various parameter values. Note that for the
parameters explored, Pðr � 0:4Þ is between around 0.5 and
1, i.e., there is no coincidence problem.
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