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The evolution of the curvature perturbation after multifield inflation is studied in the light of the

curvaton mechanism. Past numerical studies show that many-field inflation causes significant evolution of

the curvature perturbation after inflation, which generates significant non-Gaussianity at the same time.

We reveal the underlying mechanism of the evolution and show that the evolution is possible in a typical

two-field inflation model.
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I. INTRODUCTION

The primordial curvature perturbation �ðkÞ is strongly
constrained by observation and provides a unique window
on the very early universe [1]. It is known to have the
spectrum P � ðkÞ ’ ð5� 10�5Þ2 with spectral tilt n� 1 �
d lnP �=d ln k ’ �0:04, and in the future one could detect

the running dn=d ln k as well as non-Gaussianity signaled
by the bispectrum and trispectrum.

The process of generating � begins presumably during
inflation, when the vacuum fluctuations of one or more bo-
sonic fields are converted to classical perturbations. Within
this general framework, there exist many proposals [1].

One proposal is to use two or more inflaton fields, which
drive inflation in the multifield model. That paradigm has
been widely investigated, but it has usually been supposed
that �ðx; tÞ evaluated at an epoch tend just before (or some-
times just after) the end of inflation is to be identified with
the observed quantities in the spectrum. For this reason, a
great deal of effort has gone into the calculation of the
spectrum, bispectrum, and trispectrum of � at the end of
inflation [2–9].

The evolution after many-field inflation has been studied
numerically in Ref. [10] using the statistical distribution of
the parameters [11,12]. Later in Ref. [13] the evolution of
the non-Gaussianity has been investigated. In these studies
it has been found that there is a minimal number of the
inflaton field Nf � 103, which is needed to realize the

late-time creation and the domination of the curvature
perturbation. Also, the number Nf has been related to the

creation of the non-Gaussianity. On the other hand, the
calculation is not analytic and it is not clear if the evolution
is possible in a two (or a few)-field model.

In this paper, we point out that the actual calculation of
the curvature perturbation might well depend on the evo-
lution after multifield inflation, even if the number Nf is

not large. We show that the minimum number is Nf ¼ 2,

simply because the mechanism requires isocurvature
perturbation.
Just for simplicity, consider Nf ¼ 2 with the light scalar

fields ð�;�Þ during inflation. The adiabatic and the entropy
directions of multifield inflation are defined using those
fields. Basically, the ‘‘inflaton’’ (the adiabatic field) is not
identical to�, even if � plays the role of the curvaton. The
mixing is negligible when � is much lighter than �; that
is the limit where the usual curvaton scenario applies.
Alternatively, it is possible to consider the opposite

limit, where the fields have nearly equal mass.1 Can the
curvaton mechanism work in that limit? A naive specula-
tion is that the biased initial condition (�=� � 1) might
lead to the curvaton mechanism in that limit. Indeed the
speculation is correct; however, to reach the correct con-
clusion we need quantitative calculation of the curvaton
mechanism in the equal-mass limit. The calculation details
are shown in the Appendix. The usual curvaton mechanism
is reviewed in Sec. II, and the nonlinear formalism of the
curvaton mechanism is reviewed in Sec. III. The basic idea
of the equal-mass curvaton model is shown in Sec. IV for
two-field inflation. Deviation from the equal-mass limit
and the applications are discussed in Sec. V.

II. CURVATON MECHANISM

In this section we review �N formalism used to calculate
� . To define � , one smooths the energy density � on a
superhorizon scale shorter than any scale of interest. Then
it satisfies the local energy continuity equation,

@�ðx; tÞ
@t

¼ � 3

aðx; tÞ
@aðx; tÞ

@t
ð�ðx; tÞ þ pðx; tÞÞ; (1)

1In Refs. [10–13], statistical distribution of the inflaton mass
has been considered for N-flation. The deviation mMax=mmin &
Oð10Þ will be considered in this paper.
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where t is time along a comoving thread of spacetime and a
is the local scale factor. Choosing the slicing of uniform �,
the curvature perturbation is � � �ðln aÞ and

@�ðx; tÞ
@t

¼ �

�
_�ðtÞ

�ðtÞ þ pðx; tÞ
�
: (2)

If p is a function purely of �, one will find _� ¼ 0. That
is the case of single field inflation when no other field
perturbation is relevant. The inflaton field �ðx; tÞ deter-
mines the future evolution of both � and p. Similarly, the
component perturbations �i are conserved if they scale like
matter (�m / a�3) or radiation (�r / a�4).

During nearly exponential inflation, the vacuum fluctua-
tion of each light scalar field �i is converted at the horizon
exit to a nearly Gaussian classical perturbation with spec-
trum ðH=2�Þ2, where H � _aðtÞ=aðtÞ in the unperturbed
universe. Writing

� ¼ �½ln ðaðx; tÞ=aðt1Þ� � �N; (3)

and taking t� to be an epoch during inflation after
relevant scales leave the horizon, we define Nð�1ðx; t�Þ;
�2ðx; t�Þ; . . . ; t; t�Þ so that

�ðx; tÞ ¼ Ni��iðx; t�Þ þ 1

2
Nij��iðx; t�Þ��jðx; t�Þ þ � � � ;

(4)

where a subscript i denotes @=@�i evaluated on the
unperturbed trajectory. We find

n� 1 ¼ 2
P

i NiNj�ijP
m N2

m

� 2�� 2

M2
p

P
m N2

m

; (5)

�ij � M2
pVij=V; � � M2

p

X
m

V2
m=V

2; (6)

where Mp is the reduced Planck mass.

The standard curvaton model [14,15] assumes that these
expressions are dominated by the single ‘‘curvaton’’ field
�, which starts to oscillate during radiation domination at
a time when the component perturbation �� has a negli-
gible contribution to the curvature perturbation. Then the
non-Gaussianity parameter is given by [16,17]

fNL ’ 5

4r�

�
1þ g00g

g2

�
� 5

3
� 5

6
r�; (7)

where gð�Þ is the initial amplitude of the oscillation as a
function of the curvaton field at the horizon exit [16]. Here
r� is identical to r1, which will be defined in this paper.2

III. NONLINEAR FORMALISM AND THE
EVOLUTION OF THE PERTURBATION

In this paper we consider a clear separation of the
adiabatic and the entropy perturbations in a two-field in-
flation model. The nonlinear formalism for the component
curvature perturbation is defined in Refs. [17,18] as

�i ¼ �N þ
Z �

��i

H
d~�i

3ð1þ wiÞ~�i

¼ �N þ 1

3ð1þ wiÞ ln
�
�i

��i

�

’ �N þ 1

3ð1þ wiÞ
��iso

i

��i

; (8)

where wi ¼ 1=3 for the radiation fluid and wi ¼ 0 for the
matter fluid. Here a bar is for a homogeneous quantity, and
the curvature perturbation of the total fluid should be
discriminated from the component curvature perturbation
�i. The quantity ��iso

i ¼ �i � ��i in Eq. (8) is the isocur-
vature perturbation (the fraction perturbation that satisfiesP

��iso
i � 0), which is defined on the uniform density

hypersurfaces.
In order to formulate the evolution of the curvature

perturbation, which is caused by the adiabatic-isocurvature
mixings, we need to define first the ‘‘starting point’’ per-
turbations at an epoch.

A. The primordial perturbations

For the first step, we define the primordial quantities. In
this paper the quantities at the end of inflation are denoted
by the subscript ‘‘end,’’ while the corresponding scale
exited horizon at t�. The subscript ‘‘�’’ is used for the
quantities at the horizon exit. For our purpose, we define
the primordial curvature and isocurvature perturbations
at the end of the primordial inflation.
We find from Eq. (8),

�i ¼ ��ie
3ð1þwiÞð�i��NÞ ’ ��i þ 3ð1þ wiÞ� isoi ��i

� ��i þ ��iso
i : (9)

Then we find from �tot � �1 þ �2 ¼ ��1 þ ��2,

f1e
3ð1þw1Þð�1��NÞ þ ð1� f1Þe3ð1þw2Þð�2��NÞ ¼ 1; (10)

where the fraction of the energy density is defined by

f1 � ��1

��1 þ ��2

: (11)

Expanding Eq. (10) and solving the equation for �N, we
find at first order [17]

�N ¼ r1�1 þ ð1� r1Þ�2� ½r1� iso1 þ ð1� r1Þ� iso2 � þ �adi;

(12)

where � isoi denotes the second component in Eq. (8). r1 is
defined by

2In this paper we use ð�1; �2Þ for two-field inflation, instead
of using the conventional ð�;�Þ in the curvaton scenario.
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r1 � 3ð1þ w1Þ ��1

3ð1þ w1Þ ��1 þ 3ð1þ w2Þ ��2

: (13)

Defining the primordial adiabatic curvature perturbation
(� inf ) just at the end of inflation, the component curvature
perturbation (�i) can be split into � inf and � isoi .

The obvious identity is

r1;end�
iso
1;end þ ð1� r1;endÞ� iso2;end � 0; (14)

which is valid at the end of inflation. Apart from that
point the deviation due to the evolution of r1 becomes
significant.

The parameter of the fluid (wi) is constant when �i

behaves like matter (wi ¼ 0) or radiation (wi ¼ 1=3),
and a jump (e.g., wi ¼ 0 ! wi ¼ 1=3) is possible when
instant transition is assumed. In this paper we are using the
sudden-decay approximation for the curvaton mechanism.3

We also assume that the inflatons start sinusoidal oscilla-
tions just at the end of slow roll.

The curvature perturbation in the standard curvaton
scenario is usually expressed as

�N ¼ r1�1 þ ð1� r1Þ� inf : (15)

Assuming that � iso1 	 � inf 	 � iso2 , one will find �1 ’ � iso1

and �2 ’ � inf , which gives Eq. (15) from Eq. (12). Usually
the above approximation is justified when m1 � m2 and
the curvaton is negligible during inflation.

In this paper we are considering the equal-mass limit
(m1 ’ m2), which is in the opposite limit of the conven-
tional curvaton. In the Appendix we show the validity of
the above approximations and derive the quantitative
bound on the ratio �1=�2.

IV. A BASIC MODEL

In this section we show why the curvaton mechanism
can create the dominant part of the curvature perturbation
after conventional chaotic multifield inflation, neither
by adding extra light field (curvaton) nor by introducing
many inflatons. The calculation clearly explains why and
how the curvaton mechanism works in the equal-mass
limit (m1 ’ m2).

We assume (for simplicity) that after inflation the field
�2 decays immediately into radiation and �1 starts sinu-
soidal oscillation at the same time. Then �1 decays late at
Hd1 � HI. There is no mixing between these components.
Here HI denotes the Hubble parameter during primordial
inflation.

In this scenario, we consider two phases ðA; BÞ charac-
terized by w1A ¼ 0 and w1B ¼ 1=3. Here the subscripts A
and B denote the quantities in phase (A) and phase (B).

They are separated by the uniform density hypersurface
Hd1 ’ �1:
(A) �1; oscillation, �2; radiation

(w1 ¼ 0, w2 ¼ 1=3)
(B) Radiation

(w1 ¼ w2 ¼ 1=3).
The important assumption of the model is that the

transition occurs on the uniform density hypersurfaces so
that we can neglect additional creation of �N (modulation)
at the transition.
We find in phase (A),

�N � r1A�1A þ ð1� r1AÞ�2; (16)

where the subscript ‘‘A’’ (or ‘‘B’’ is omitted for �2, since �2
is constant during the evolution. Here we used the
definition

r1A ¼ 3 ��1

3 ��1 þ 4 ��2

: (17)

Consider a simple double-quadratic chaotic inflation
model in the equal-mass limit. The potential is given by

Vð�1; �2Þ ¼ 1

2
m2ð�2

1 þ�2
2Þ �

1

2
m2�2

r ; (18)

where �1;2 are real scalar fields. Besides the potential, we

need the interaction that causes difference in the decay
rates. Figure 1 shows the evolution of the densities after
inflation. The end of chaotic inflation is given by

�2
1;end þ�2

2;end � �2
r;end ’ M2

p: (19)

Since the potential is quadratic during inflation, we find

� inf ¼ 1

�

��r�
�r�

: (20)

In this section we consider 	 � 1, which leads to the
simplifications sin	
 	 and cos 	
 1. Our approxima-
tions are based on the exact calculation in the Appendix.

FIG. 1. tend, td2, tosc, and td1 denote the time at the end of
inflation, �2 decay, the beginning of �1 oscillation, and �1

decay, respectively. Our scenario is shown in the left-hand side,
which gives the time ordering tend ’ tosc < td2 < td1. The usual
curvaton scenario is shown in the right-hand side, which gives
tend < td2 < tosc < td1.

3Authors of Ref. [19] consistently accounted the curvaton
decay when the curvaton decays perturbatively and showed
that the correction to the potential can be significant.
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From Eq. (A19), we find the component perturbation of
the late-decaying component (�1) at the end of inflation:

�1A ’ 1

3

��iso
1;end

��1;end

’ 2

3

�	
�	
þ 1

3

�
�	
�	

�
2
: (21)

The usual approximation of the curvaton mechanism is
� iso1A 	 � inf . The validity of this approximation is exam-
ined in the Appendix.

From Eq. (A21), the final curvature perturbation is

� fin ’ 2r1�
3

�
�	
�	
þ 1

2

�
�	
�	

�
2
�
: (22)

Defining the ratio y � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p
, r1� [r1 evaluated in

phase (A) just before the decay] is given by

r1� ’ 3 �	2

3 �	2 þ 4y
: (23)

The non-Gaussianity parameter has been calculated in
Ref. [17]. We find for 	 � 1,

fNL ’ 5

4r1

�
1þ g00g

g2

�
� 5

3
� 5

6
r1 
 5

4r1�
: (24)

Further simplification is possible when �	 ¼ �s�=�r�
and P �s� ¼ P ��r� . For the quadratic potential we have

�r� ¼ 2
ffiffiffiffiffiffi
Ne

p
Mp 	 �e;end, where Ne is the number of

e-foldings during the primordial inflation spent after the
corresponding scale exits horizon. The condition of the
curvaton mechanism � fin > � inf gives

�	 <
2

3
r1�� ’ 5

6

�

fNL
: (25)

Here �	 should be less than 1 but does not require many
orders of magnitude. From the cosmic microwave back-
ground (CMB) spectrumwe find the normalization given by

P 1=2

� fin
’ r1�
6�

ffiffiffiffiffiffi
Ne

p �	

HI

Mp

’ 5� 10�5: (26)

Using Eq. (25), we find

HI

Mp

< 5�� 10�3; (27)

which does not always require significant suppression.

The ratio y � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p
is calculated in Eq. (A24) and is

given by

y ’ 3

5
fNL	

2: (28)

We thus find that the difference between �1 and �2 decay
rates is in the conceivable range.

The above conditions tell us how small 	 and y have to
be to get a given CMB spectrum and fNL. They have to be
some orders of magnitude below 1 but not very many.

If the potential during inflation is both symmetric and
quadratic, we find � � �1 ¼ �2. We thus find the spectral
index

n� 1 ¼ �2�þ � ¼ 0; (29)

which shows that the above model requires deviation from
the symmetric potential.
Looking back into the many-field inflation, the model in

Ref. [10] assumed that the inflaton masses are not exactly
the same but may have statistical distribution around the
mean value. In that case, the cancellation in the spectral
index is not realistic. Since the deviation from the sym-
metric potential is expected, we need to examine what
deviation is needed for the model. Then we can understand
why and how the curvaton mechanism works in the many-
field inflation model.

V. DEVIATION FROM THE SYMMETRIC
POTENTIAL

The deviation from the symmetric quadratic potential
can be classified as follows:
(1) A small mass difference (1 & m2=m1 & 10).—The

spectral index does not vanish when the double
quadratic potential has different (but not so much
different as the usual curvaton) mass. The slow-roll
parameters are

�H � _H

H2
¼ X

�i ¼
X

�ifi�i � m2
i

3H2
I

; (30)

where the fraction of the density is given by fi �
�i�
�tot�

. The spectral index is shifted from ns � 1 ¼ 0

and is given by

ns � 1 ¼ �2�H þ 2�1

’ �2½�1f1 þ �2ð1� f1Þ� þ 2�1

’ �2ð�2 � �1Þ � �2P�2 ¼ � P

Ne

; (31)

where P � ðm2
2 �m2

1Þ=m2
2 < 1. The observation

[20] shows ns � 1 ¼ 0:037� 0:014, which sug-
gestsNe & 40 and requires secondary inflation [21].
Besides the spectral index, m1 <m2 suggests that
the oscillation of the field �1 is slightly delayed
compared to�2. The delay may enhance the density
of �1 at the beginning of the oscillation, while
the initial �1 density may be reduced since m1 is

smaller. Defining yeff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=m1

p
and 	eff � �1=�2

at the end of inflation, we find

r1A� ’ 3m2
1
��2
1

3m2
1
��2
1 þ 4m2

2
��2
2

�
m2

1

m2
2

�
yeff

’ 3 �	2eff
3 �	2eff þ 4yeff

;

(32)
which gives a similar bound for 	eff (yeff).

(2) Heavy curvaton (m1 * m2).—Usually the curvaton
is assumed to be much lighter than the inflaton;
however this assumption could be avoided. We con-
sider the curvaton mechanism when the curvaton is
slightly heavier than the inflaton.
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We assume �2 >�1. Once it is assumed at the begin-
ning of inflation, it remains true during inflation.4

Then �1 oscillation starts during inflation. It begins
when

m2
1 ¼ H2

osc ’ m2
2�

2
2josc

6M2
p

; (33)

where the subscript ‘‘osc’’ denotes the beginning of
�1 oscillation. From the above equation and�2josc ’
2

ffiffiffiffiffiffi
N2

p
Mp, where N2 is the remaining number of

e-foldings after the beginning of �1 oscillation, we
find

N2 ¼ 3m2
1

2m2
2

: (34)

Defining yeff � e3N2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p
and 	osc � ½�1=�2�osc,

we can estimate

r1A� 
 3 �	2osc
3 �	2osc þ 4yeff

: (35)

Unfortunately, the spectral index is

ns � 1 ’ �2�H þ 2�1 ’ �2�2 þ 2�1’ 2�1 > 0:

(36)

(3) Symmetric but nonquadratic.—The potential could
be dominated by a polynomial Vð�rÞ / �p

r at the
moment when the perturbation exits the horizon,
while it can be approximated by the quadratic po-
tential during the oscillation. For the polynomial we
find �r� ’

ffiffiffiffiffiffiffiffiffiffiffiffi
2pNe

p
Mp and the slow-roll parameters

�H ’ 1

2
M2

p

p2

�2
r

(37)

�1 ’ M2
p

pðp� 1Þ
�2

r

: (38)

The spectral index is shifted and is given by

ns � 1 ’ �M2
p

�2
r

½p2 � 2pðp� 1Þ� ’ p� 2

2Ne

: (39)

The result suggests that p < 2 is needed for the
scenario. In that case the mass and the coefficient
of the polynomial must run in the trans-Planckian
[22]. p ¼ 1 would correspond to monodromy in the
string theory and it requires Ne & 20. p < 1 is an
interesting possibility if the effective action allows
fractional power.

A. A model with a complex scalar

An interesting application of the idea is that a conven-
tional 2-field multiplet contains both inflation and the
curvaton at the same time. Consider a complex scalar field
� � �2 þ i�1, which gives the symmetric potential

Vð�Þ ¼ 1

2
m2j�2j2 ¼ 1

2
m2ð�2

1 þ�2
2Þ: (40)

First, consider a small symmetry breaking caused by

�V 
 �4

M2

�
�þ��

2

�
2
; (41)

where � � M is assumed. �2 oscillation may cause sig-
nificant particle production when there is the interaction
given by

Lint ¼ gð�þ��Þ �c c ; (42)

which can lead to significant c production at the enhanced
symmetric point (�2 
 0) [23]. The coefficient of the
interaction could be small (g
�=M � 1) when it is
suppressed by a cutoff scale. c may decay quickly into
radiation since the amplitude of the oscillation after chaotic
inflation is very large [23].

Define �m2 � 2�4

M2 . If �m
2 is much smaller than m2, the

cancellation in Eq. (31) is still significant. On the other
hand, it is possible to assume �m2=m2 
Oð1Þ (which is
still within the conventional setup of multifield inflation)
to find P
 1 and ns � 1
� 1

Ne
. Again, the scenario

requires an additional inflation stage [21].
Second, consider the case in which the potential during

inflation is dominated by a polynomial Vð�Þ / �p. The
curvaton can dominate the spectrum, however the spectral
index becomes

ns � 1 ’ �M2
p

�2
r

½p2 � 2pðp� 1Þ� ’ p� 2

2Ne

: (43)

The scenario requires p < 2.

B. Sneutrino inflation

It is possible to assume small inflation ‘‘before’’ the
multifield inflation. The observed spectrum of the curvaton
perturbation exits the horizon during the first inflation. In
that case �H is determined by the first inflation and the
cancellation in the spectral index is avoided. This scenario
uses multifield inflation for the curvaton inflation [24].
The usual sneutrino inflation [25] usesm
 1013 GeV to

satisfy the CMB normalization. When the condition is
combined with the gravitino problem, Yukawa coupling
of the first generation sneutrino (single-field inflaton) must

satisfy ðY
Y
Þy11 < 10�12, whilst other Yukawa couplings

will not be so small. Here Y
 is the neutrino Yukawa
matrix.
In this section we consider multistage inflation, in which

three sneutrinos play a crucial role. We assume that the first

4The opposite condition (�1 > �2) requires �1� >Mp, which
suppresses the component perturbation of the curvaton and does
not realize the curvaton mechanism.
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single-field inflation is caused by the third generation
sneutrino, and the secondary two-field inflation is caused
by the first and the second generation sneutrinos with the

mass M1 ¼ M2 � M̂. We assume M3 > M̂ for the third
generation.

The reheating after two-field inflation is due to the decay
of the second generation sneutrino, which gives the reheat-
ing temperature

TR ¼
�

90

�2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2Mp

q
; (44)

where the decay rate is

�i ’ 1

4�
ðY
Y

y

 ÞiiM̂: (45)

From Eq. (A9), the curvaton mechanism is significant
when �2 	 �1. For the two-field sneutrino inflation, which
is the secondary inflation of the above scenario, we find

P 1=2
�1

<
1

3�

�ðY
Y
y

 Þ22

ðY
Y
y

 Þ11

�
1=4 M̂

Mp

: (46)

Here the mass of the first (second) neutrino is

ðm
Þii ’ ðY
Y
y

 Þii hHui2

M̂
: (47)

We thus find for the given neutrino mass ðm
Þ11 and ðm
Þ22;

P 1=2
�1

<
1

3�

�ðm
Þ22
ðm
Þ11

�
1=4 M̂

Mp

: (48)

The reheating temperature after inflation is given by

TR ¼
�

45

8�4g�

�
1=4 M̂

hHui
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm
Þ22Mp

q
; (49)

while the temperature just after the curvaton decay is

T0
R ¼

�
45

8�4g�

�
1=4 M̂

hHui
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm
Þ11Mp

q
: (50)

We may write the spectrum P �1 using TR and T0
R;

P 1=2
�1

<
1

3�

�
TR

T0
R

�
1=2 M̂

Mp

: (51)

When the primary inflation gives the number of
e-foldings N1, the spectral index is

ns � 1 ’ �2�H ’ � 1

N1

: (52)

The observation gives ns � 1 ¼ 0:037� 0:014, which
suggests 20 & N1 & 40 for the first inflation.

C. N-flation

The two-field inflation model considered in this paper is
a simplification of the N-flation model [26]. The N-flation
has been studied using statistical argument [10], which

helps us understand the results obtained above for the
two-field model.
Assuming (for simplicity) the same potential for all Nf

fields, we find

Vð�nÞ ¼
XNf

n¼1

1

2
m2�2

n: (53)

Using the adiabatic field defined by

�2
r �

XNf

n¼1

�2
n; (54)

we find the potential

Vð�rÞ ¼ 1

2
m2�2

r : (55)

If we assume uniform initial condition�n ’ �0, the model

is identical to the two-field model with 	
 1=
ffiffiffiffiffiffi
Nf

p � 1.

For the number of e-foldings Ne 
 60, the usual curva-
ture perturbation created at the horizon exit is given by

� inf ¼ �HI

��r

_�r

���������
¼ 2Ne

��r

�r

���������
; (56)

where H2
I � Nfm

2�2
0=6M

2
p is the Hubble parameter dur-

ing the primordial N-flation.
Suppose that the decay rate �n is uniform except for a

field �1, which has �1 � �n. Here the density ratio
becomes r�1 ’ 1

Nf
. Repeating the same calculation, we find

�1 � ��1

3�1

¼ 2

3

��1

�0

’ 2

3

ffiffiffiffiffiffi
Nf

q �s

�r

: (57)

P 1=2

� inf
� P 1=2

�1
is possible when Nf 	 N2

e . This gives the

minimum number of the fields that is needed for the
curvaton mechanism and it explains the numerical calcu-
lation in Ref. [10].
In the above scenario, the curvaton is one of the inflaton

fields that is equally participating 1=Nf of the inflaton

dynamics.
At the end of inflation, the fraction of �1 is

r1ðtendÞ ¼ 1

Nf

� 1; (58)

while at the decay of �1 it can grow:

r1ðtdecayÞ ¼ r1ðtendÞ �
�
�n

�1

�
1=2

: (59)

We need for the curvaton mechanism (i.e., �1-domination)

2

3

ffiffiffiffiffiffi
Nf

q P ��1

�r

� 1

Nf

�
�n

�1

�
1=2

> 2Ne

P ��r

�r

; (60)

which leads to
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�
�1

�n

�
1=2

<
1

3Ne

ffiffiffiffiffiffi
Nf

p : (61)

Significant non-Gaussianity (fNL) requires rðtdecayÞ 
 0:1,

which gives �
�1

�n

�
1=2 
 10

Nf

: (62)

If the distribution is statistical for the decay rate, we need
Nf 	 1 for the strong suppression (�1=�n � 1).

In this section we found that the evolution after inflation
may dominate the curvature perturbation when Nf is large.

Our result explains the numerical calculation in Ref. [10].

VI. CONCLUSIONS

The evolution after multifield inflation can change the
curvature perturbation. In this paper we considered a
conventional two-field inflation model and showed that
the curvaton mechanism after multifield inflation could
be significant when the decay rates are not identical.5

Interestingly, the mechanism works for a complex scalar
field � � �2 þ i�1.

The previous numerical study [10] showed that Nf 	 1

causes significant evolution of the curvature perturbation
after inflation as well as the creation of significant non-
Gaussianity. We showed that the same is true for two-field
inflation, in which 	 � 1 is required instead of Nf 	 1.

The source of the curvaton mechanism is the entropy
perturbation generated during multifield inflation. Since
the uniform density surface of the multifield potential is
flat by definition, the perturbation on that surface is
inevitable.

Our results suggest that many-field inflation must be
considered with care. A large number (Nf � 103) can

easily explain the required condition for the curvaton
domination.
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APPENDIX: CALCULATION DETAILS

1. Evolution of the curvature perturbation

In this Appendix we show the calculation details of the
evolution after inflation.

We first assume that the potential is quadratic and sym-
metric during chaotic inflation. In our formalism � inf is

defined at the end of inflation. The entropy perturbation
is realized by �	, which is the perturbation of the angle 	
in Fig. 2.
The spectrum of the entropy perturbation during infla-

tion is P �s� ’ ðH�=2�Þ2. The entropy perturbation causes

the fraction perturbation between densities. Using �	, the
densities of the components and the isocurvature perturba-
tions at the end of inflation are given by

��1;end ¼ 1

2
m2j�end

r j2sin 2 �	 ’ m2M2
p

2
sin 2 �	 (A1)

��iso
1;end ’ m2M2

pðsin �	 cos �	Þ�	; (A2)

��2;end ¼ 1

2
m2j�end

r j2cos 2 �	 ’ m2M2
p

2
cos 2 �	 (A3)

��iso
1;end þ ��iso

2;end ¼ 0: (A4)

We find at the end of inflation,

f1 � ��1

��1 þ ��2

¼ sin 2 �	; (A5)

�f1 ’ @f1
@	

�	 ¼ 2½sin �	 cos �	��	 ¼ ½sin 2 �	��	: (A6)

The expansion with respect to �	 makes no sense when
�	= sin	 � 1 or �	= cos	 � 1 [28]. We are excluding
those regions.
Creation of the curvature perturbation after inflation

requires the decay rate �1 � �2. In phase (A) we find

� iso1A ’ 2

3

cos �	

sin �	
�	; (A7)

� iso2A ’ � 1

2

sin �	

cos �	
�	: (A8)

Using Eq. (12), we find

FIG. 2. The straight dotted line with an arrow is the inflaton
trajectory, and the circle gives the uniform-density surface along
which the entropy perturbation �s appears.

5A similar but another story has been discussed in Ref. [27].
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� fin ¼
�
2

3
r1�

cos �	

sin �	
� 1

2
ð1� r1�Þ sin

�	

cos �	

�
�	þ � inf

¼
�
4r1�cos 2 �	� 3ð1� r1�Þsin 2 �	

6 sin �	 cos �	

�
�	þ � inf ; (A9)

where r1� denotes the value of r1A evaluated just before the
end of phase (A).

The evolution is

��1� ¼
�
m2M2

p

2
sin 2 �	

�
�

�
ad1
aend

��3
;

��2� ¼
�
m2M2

p

2
cos 2 �	

�
�

�
ad2
aend

��3
�
ad1
ad2

��4
;

(A10)

which leads to the ratio

��2�
��1�

¼ cos 2 �	

sin 2 �	

�
ad2
ad1

�
: (A11)

Therefore, in the radiation dominated Universe we find

r1�¼ 3�1�
3�1�þ4�2�

¼ 3sin2 �	

3sin2 �	þ4cos2 �	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p : (A12)

Domination by the curvaton density (r1� 
 1) requiresffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p � tan 2 �	.
The CMB spectrum requires P � fin ’ ð5� 10�5Þ2 [20].

The requirement is trivial when � fin ’ � inf ,6 while in the
opposite case � fin > � inf , in which the curvaton mecha-
nism dominates, we need the condition�

2

3
r1�

cos �	

sin �	
� 1

2
ð1� r1�Þ sin

�	

cos �	

�
�	 >

��r�
��r�

: (A13)

Solving Eq. (A13) for r1� and using Eq. (A12), we find

ffiffiffiffiffiffi
�1

�2

s
<

2� tan �	� 3tan 2 �	

4þ 2� tan �	
< 1: (A14)

This equation also shows that 2�� 3 tan �	 > 0, which
gives

tan �	 <
2

3
�: (A15)

The CMB observation gives the normalization�
2

3
r1�

cos �	

sin �	
�1

2
ð1� r1�Þ sin

�	

cos �	

�
P 1=2

�	 ’ 5�10�5: (A16)

Defining k � P 1=2
�	 =ð5� 10�5Þ and y � ffiffiffiffiffiffiffiffiffiffiffiffiffi

�1=�2

p
, we

can solve Eq. (A16) for y and find

y ¼ 2k� 3 tan �	

2kþ 4tan�1 �	
’ k �	

2
: (A17)

To avoid y < 0, we need the condition

3

2
tan �	 < k: (A18)

The perturbations can be expanded up to second order.
We find

� iso1 ’ 2

3

�
cos �	

�
�	

sin �	

�
þ 1

2
cos 2 �	

�
�	

sin �	

�
2
�
; (A19)

� iso2 ’ � 1

2

�
sin �	

�
�	

cos �	

�
þ 1

2
cos 2 �	

�
�	

cos �	

�
2
�
: (A20)

Using Eq. (16), the final curvature perturbation after the
decay is

� fin ¼
�
2

3
r1�

cos �	

sin �	
� 1

2
ð1� r1�Þ sin

�	

cos �	

�
�	þ

�
1

3
r1�

cos 2 �	

sin 2 �	
� 1

4
ð1� r1�Þ cos 2

�	

cos 2 �	

�
ð�	Þ2 þ � inf

¼
�
4r1�cos 2 �	� 3ð1� r1�Þsin 2 �	

3 sin 2 �	

�
�	þ cos 2 �	

3sin 22 �	
½4r1�cos 2 �	� 3ð1� r1�Þsin 2 �	�ð�	Þ2 þ � inf

¼ 4r1�cos 2 �	� 3ð1� r1�Þsin 2 �	

3 sin 2 �	

�
�	þ cos 2 �	

sin 2 �	
ð�	Þ2

�
þ � inf : (A21)

When the curvaton perturbation dominates (	 � 1), the
non-Gaussianity of the spectrum is measured by

fNL ’ 5 cos 2 �	

4r1�cos 2 �	� 3ð1� r1�Þsin 2 �	
: (A22)

Using Eq. (A12), we can substitute r1� in Eq. (A22).
Then solving the equation for y, we find

y ’ 3

4
tan 2 �	

�
4

5

cos 2 �	

cos 2 �	
fNL � 1

�
: (A23)

Barring cancellation, the above equation gives a simplified
formula,

y ’ 3

5
fNL �	

2: (A24)

Being combined with Eq. (A17), which has been obtained
using the CMB normalization, we find

k ’ 6

5
fNL �	: (A25)

6Note however the non-Gaussianity is not trivial because the
curvaton perturbation may still dominate the second-order per-
turbation [29].
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We thus find (from fNL and CMB using the definition of k)

P 1=2
�	

�	
’ 6� 10�5 � fNL (A26)

or equivalently

HI ’ 6� 10�3 � fNL �	Mp: (A27)

Solving the equation for �	, it gives

�	 ’ 1

6fNL

�
HI

Mp

� 103
�
: (A28)

Using HI in Eq. (A27) and calculating the tensor to
scalar ratio rg, we find [30]

rg ’ f2NL
�	2 � 104: (A29)

Considering the natural bound �2 <HI and �1 >Hnuc,
where Hnuc is the Hubble parameter at the time of the
nucleosynthesis, Eq. (A23) gives the lower bound for �	:

�	 >

�
Hnuc

HI

�
1=4

: (A30)

Besides the above condition, we have another condition
coming from �	 > �	. Since we are assuming quadratic
potential in the trans-Planckian, we have �	 ¼ �s=�r�
and �r� ¼ 2

ffiffiffiffiffiffi
Ne

p
Mp. Then �	 > �	 leads to

�	 > 0:01
HI

Mp

: (A31)
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