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The present article discusses the effect of a Lee-Wick partner infested radiation phase of the early

universe. As Lee-Wick partners can contribute negative energy density it is always possible that at some

early phase of the universe when the Lee-Wick partners were thermalized the total energy density of the

universe became very small making the effective Hubble radius very big. This possibility gives rise to the

probability of a bouncing universe. As will be shown in the article a simple Lee-Wick radiation is not

enough to produce a bounce. There can be two possibilities which can produce a bounce in the Lee-Wick

radiation phase. One requires a cold dark matter candidate to trigger the bounce and the other possibility

requires the bouncing temperature to be fine-tuned such as all the Lee-Wick partners of the standard fields

are not thermalized at the bounce temperature. Both the possibilities give rise to a blue-tilted power

spectrum of metric perturbations. Moreover the bouncing universe model can predict the lower limit of the

masses of the Lee-Wick partners of chiral fermions and massless gauge bosons. The mass limit intrinsi-

cally depends upon the bounce temperature.
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I. INTRODUCTION

Recently the idea of constructing a unitary, gauge-
invariant, Lorentz-invariant and divergence free theory of
quantum electrodynamics by invoking unusual partners of
the standard particles in the Lagrangian, originally pro-
posed by Lee and Wick [1,2], has been generalized to
construct a Lee-Wick theory of the standard model of
particle physics [3]. This model, while it still suffers
from unsettled issues such as quantum instability of the
vacuum due to gravitational interaction [4], attracts a lot of
attention in the literature for several phenomenological
benefits. Namely, the mass of the Higgs field in such a
quantum field theory is perturbatively stable against the
quadratically divergent radiative corrections and thus the
well-known ‘‘hierarchy puzzle’’ of the standard model of
particle physics could be avoided. There are many other
interesting applications of the Lee-Wick idea of which
some are discussed here. In Ref. [5] a minimal extension
of the Lee-Wick standard model (LWSM) is considered; in
Ref. [6] a LWSM with more than one Lee-Wick (LW)
partner for each standard model particle is studied.
Reference [7] deals with gauge-coupling unification in
the Lee-Wick framework and in Refs. [8,9] analysis of
two-Higgs doublet models where one of the doublet con-
tains Lee-Wick fields is presented. In Ref. [10] the process
gg ! h0 ! �� is studied in the framework of LWSM
where the authors predict small changes in the rate of these
processes, due to the presences of Lee-Wick fields, from

those rates calculated from other models such as universal
extra dimensions. In Ref. [11] Higgs pair production pro-
cesses gg ! h0h0 and gg ! h0 ~p0 are studied in LWSM
framework.
It was recently realized in Ref. [12] that a model con-

structed out of aLee-Wick type scalar field theory is capable
of yielding a bounce during the evolution of the universe
within the framework of a homogeneous and isotropic
cosmological background. In this model the energy density
and pressure of all other kinds of fields are supposed to be
negligible. In this scenario the Lee-Wick partners, which
arise from higher derivative operators, evolve as a tracking
solution to the normal matter (the standard scalar field) and
can break certain energy conditions when the energy scale
of the universe becomes high enough. Therefore, a non-
singular bounce takes place which avoids the big bang
singularity widely existing in the standard Friedmann-
Robertson-Walker (FRW) cosmologies. Interests in such
Lee-Wick nonsingular bouncing models have increased
recently as these models [13,14] can be considered as an
alternative to inflation and can be used to explain the origin
of large scale structure in the Universe. In this paradigm the
primordial vacuum fluctuations leave the Hubble radius
during a matter dominated contracting phase and then
form a nearly scale-invariant power spectrum after the
bounce.
However, it was found that nonsingular Lee-Wick

bouncing cosmologies induced by pressureless matter are
in general unstable while accompanied with radiation and a
bouncing solution might be achieved only when an ex-
tremely fine tuning of the initial phases of the field con-
figuration is assumed [15,16]. This problem can be roughly
understood as follows. The normal matter which scales as
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a�3 as a function of the scale factor a could be easily
suppressed by radiation matter which scales as a�4 in the
contracting phase. If we simply add a radiation component
to nonrelativistic matter within a framework of a Lee-Wick
bounce model without fine-tuning of the initial values of
radiation then the radiation would become dominant, dur-
ing the contraction phase of the universe, and produce a big
crunch singularity before the bounce takes place. In
Ref. [15], the effects of Lee-Wick partners of radiation
fields were taken into account as well but the energy scale
of the universe is assumed to be below the scale of ther-
malization of Lee-Wick radiation. Then, it was found the
effective energy density of Lee-Wick radiation increases
slower than that of regular radiation and thus cannot help to
realize the bounce at the low temperature regime.

But unlike these models of bouncing cosmologies,
where the energy density and pressure of the universe
arises from a scalar field (whose energy scales as a�3) or
a radiation field (whose energy scales as a�4), one can
conceive a phase of the early universe where we have the
normal standard model particles and their Lee-Wick par-
ters (as virtual resonances) in thermal equilibrium as
shown in Refs. [17,18]. This phase is a nonstandard radia-
tion dominated phase where one can have a state parameter
w� 1 and consequently the energy density scales�a�6. It
is explicitly described in Ref. [18] that in such kind of a
Lee-Wick partner infested radiation dominated universe
the time-temperature relation in standard cosmology
changes and the universe may go through out-of-
equilibrium processes when some of the Lee-Wick partners
become nonrelativistic. It was noticed that these kinds of
cosmologies can produce negative energy densities and
pressure when one includes chiral fermions and massless
gauge bosons [19,20]. This particular point turned out to be
a serious drawback for these models. It was shown that
only under some specific conditions this kind of an early
radiation domination can exist. On the other hand bouncing
cosmologies naturally require a time (bounce time) when
the Hubble parameter turns out to be zero (indicating a zero
energy density). It turns out that one can construct an
interesting model of a bouncing cosmology from the non-
standard Lee-Wick radiation phase.

In this paper we study the possibility of realizing a Lee-
Wick bounce at high temperature by taking into account
the radiation fields. The Lee-Wick resonances are pro-
duced dramatically when the temperature of the radiation
fluid is much higher than the mass of heavy Lee-Wick
fields. As the contribution of Lee-Wick radiation to the
total energy density is always negative it enlarges the
viable phase space for the universe to experience the non-
singular bounce. Unlike the method developed in Ref. [15]
in which the radiation fields are described by the field
configuration of gauge fields, we directly study thermody-
namics of normal particles and their Lee-Wick partners
following Refs. [17,18]. However, for a radiation

dominated universe purely dominated by standard fields
and their Lee-Wick partners, one still cannot obtain a
nonsingular bounce. This is because, at the bouncing mo-
ment when the energy density of Lee-Wick resonances are
able to cancel that of normal radiation, the pressure of the
universe keeps positive and then prevents the background
from evolving into an expanding phase. Thus we introduce
a cold dark matter (CDM) component in our model which
can easily solve this problem. As a consequence, our
cosmological model, which realizes a nonsingular bounc-
ing solution in the thermal Lee-Wick theory, consists of
cold dark matter fluid, radiation, and Lee-Wick resonances.
If one does not include the CDM component then one

cannot obtain the required condition of the bounce as
discussed in the last paragraph. This fact is true if all the
standard particles and their Lee-Wick partners are in ther-
mal equilibrium near the bounce time. But if it happens
that the bounce temperature is such that some of the Lee-
Wick partners’ masses are more than the bounce tempera-
ture then the plasma around the bounce time will have
fewer Lee-Wick partners. Interestingly, this kind of a
model where the bounce temperature is less than some of
the masses of the Lee-Wick partners can give rise to a
nonsingular bounce. This model does not require any CDM
candidate to make the pressure negative at the bounce time.
In the present article we will also discuss this alternative
bouncing model. Both of the bouncing models yield a
blue-tilted power spectrum of metric perturbations in the
expanding phase after bounce.
The outline of this paper is as follows: In Sec. II we

briefly introduce the thermodynamics of Lee-Wick parti-
cles. In Sec. III, we study the condition for a Lee-Wick
thermal bounce and then provide a concrete cosmological
model which involves both kinds of bounce scenarios as
described above. Section IV is devoted to the discussion of
cosmological perturbations in both of these models. The
final section presents some conclusions and discussion. For
completeness we have attached an Appendix at the end of
the article which discusses the mode matching conditions
near the bounce point.

II. THERMODYNAMICS OF LEE-WICK
PARTICLES REVISITED

In this section we will give a brief account of the
thermodynamics of Lee-Wick particles. We will show
that in a realistic model of Lee-Wick theory, where all
the degrees of freedom of the standard particles along with
their Lee-Wick partners are taken into account properly,
the energy density of the Lee-Wick resonance dominated
universe would become very small when the heaviest of the
Lee-Wick partners thermalize due to the very high tem-
perature of the universe. This property is in favor of a
bouncing scenario which requires the Hubble parameter
(which is directly proportional to the square root of the
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total energy density of the universe) to vanish at the time of
bounce.

It is noted in Refs. [17,18] that the Lee-Wick particles
behave very differently from their standard partners in the
relativistic regime. For the standard bosons and fermions
the energy density, pressure and the entropy density read as

�ðsmÞ
b ¼ g�2T4

30
; pðsmÞ

b ¼ g�2T4

90
; sðsmÞ

b ¼ 2g�2T3

45
;

(1)

and

�ðsmÞ
f ¼ 7g�2T4

240
; pðsmÞ

f ¼ 7g�2T4

720
; sðsmÞ

f ¼ 7g�2T3

180
;

(2)

respectively. Here the subscripts b and f stand for bosons
and fermions and g stands for any number of internal
degrees of freedom of the relativistic species. On the other
hand, it is shown in Refs. [17,18] that the Lee-Wick
particles at high energies contribute negatively to the
energy density, pressure and entropy density as

�ðLWÞ
b ¼ �g

�
�2T4

30
�M2T2

24

�
; (3)

pðLWÞ
b ¼ �g

�
�2T4

90
�M2T2

24

�
; (4)

sðLWÞ
b ¼ �g

�
2�2T3

45
�M2T

12

�
(5)

for the bosonic Lee-Wick partners and

�ðLWÞ
f ¼ �g

�
7�2T4

240
�M2T2

48

�
; (6)

pðLWÞ
f ¼ �g

�
7�2T4

720
�M2T2

48

�
; (7)

sðLWÞ
f ¼ �g

�
7�2T3

180
�M2T

24

�
(8)

for the fermionic Lee-Wick partners. In the above
equations M is the mass of a generic Lee-Wick partner
and as the system is relativistic T � M. The Lee-Wick
particles were initially introduced as resonance particles to
overcome the divergences appearing in a theory and con-
sequently when T � M the standard model particles are
naturally ultrarelativistic. If one considers a toy model
where each standard particle is accompanied by one Lee-
Wick partner and the number of degrees of freedom of the
Lee-Wick partner is the same as that of its standard partner
then in such a scenario the total energy density, pressure
and entropy density turn out to be positive as [17,18]

�b ¼ �ðsmÞ
b þ �ðLWÞ

b ¼ gM2T2

24
; (9)

pb ¼ pðsmÞ
b þ pðLWÞ

b ¼ gM2T2

24
; (10)

sb ¼ sðsmÞ
b þ sðLWÞ

b ¼ gM2T

12
(11)

for the bosonic sector and

�f ¼ �ðsmÞ
f þ �ðLWÞ

f ¼ gM2T2

48
; (12)

pf ¼ pðsmÞ
f þ pðLWÞ

f ¼ gM2T2

48
; (13)

sf ¼ sðsmÞ
f þ sðLWÞ

f ¼ gM2T

24
(14)

for the fermionic sector. But this simple scenario, where
each standard particle is accompanied by one Lee-Wick
particle with equal number of degrees of freedom, does not
serve the purpose while dealing with realistic scenarios. It
is discussed in Ref. [19] that in the fermionic sector each
chiral fermion requires two Lee-Wick partners to eliminate
the higher derivative terms in an initial higher derivative
Lagrangian to construct a Lee-Wick theory. Such discrep-
ancies also arise in the bosonic sector when one considers
massive Lee-Wick partners (with three degrees of freedom)
of massless gauge bosons (with two longitudinal degrees of
freedom) [20]. Both these cases lead to unacceptable sce-
narios with negative energy density. It is shown in Ref. [20]
that considering both the fermionic and bosonic sector
together one still can come up with a scenario where the
total energy density, pressure and entropy density can
become positive.
In a realistic scenario, where each fermion is accompa-

nied by two Lee-Wick partners and the extra degrees of
freedom of the massive Lee-Wick partners of each
massless gauge boson are taken into account, the total
energy density of the realistic Lee-Wick plasma can be
written as [20]

� ¼ ~M2

24
~g�NT2 � 7�2

240
~gFT

4 � �2

30
nT4: (15)

Here the new number of degrees of freedom ~g�N is given as

~g�N ¼ X
i¼bosons

giN

�
Mi

~M

�
2
�
Ti

T

�
2 þ X

i¼fermions

giF

�
Mi

~M

�
2
�
Ti

T

�
2
;

(16)

where giN for bosonic particles stands for the number of
internal degrees of freedom gi for the partners of massive
standard bosons (which may be 2 or 1), while for standard
massless vector boson partners it equals gi þ 1 where
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primarily gi ¼ 2. Also the unpaired fermionic contribution
comes with ~gF where

~gF ¼ X
i¼fermions

giF

�
Ti

T

�
4
; (17)

where ~gF solely arises from the unpaired fermionic Lee-
Wick partners of the standard model particles. The quantity
n is defined as

n ¼ X
i¼massive vect: bosons

�
Ti

T

�
4
: (18)

Here Ti is the temperature at which the ith massive Lee-
Wick vector boson partner of a standard massless gauge
boson is equilibrated and n denotes the number of massive
vector boson partners of massless standard gauge bosons if
all the species are in thermal equilibrium at the same
temperature T. The sum appearing in Eq. (18) does not
include all the massive Lee-Wick vector boson partners,
but includes only those which are partners of massless
standard gauge bosons. The total pressure of this Lee-
Wick infested plasma is given by

p ¼ ~M2

24
~g�NT2 � 7�2

720
~gFT

4 � �2

90
nT4: (19)

It must be noted that if the energy density of the Lee-Wick
partner infested universe is positive then the pressure of the
same universe must be positive. It is also to be noted that
the negative contributions to the total energy density and
pressure are coming from the Lee-Wick partners of the
chiral fermions and massless gauge bosons.

III. MODEL(S) OF LEE-WICKTHERMALBOUNCE

Our main aim is to construct a nonsingular bouncing
cosmology within the arena of the thermal Lee-Wick sce-
nario in which the universe initially starts its evolution in a
contracting phase and evolves into a standard thermal
expanding phase smoothly and continuously through a
nonsingular bounce. We first start with a general discussion
on the conditions required for a nonsingular bounce and
would consider a simple model where the universe consists
of bosonic and fermionic radiation fields and their ther-
malized Lee-Wick resonances. We will show that this
simple toy model, which consists of only radiation fields
accompanied by their thermal Lee-Wick partners, is inca-
pable of achieving the conditions required for a nonsingu-
lar bounce and then we will try to illustrate two possible
modifications to this simple model where a bounce can be
achieved.

We start with a spatially flat FRW metric

ds2 ¼ dt2 � a2ðtÞd~x2; (20)

where aðtÞ stands for the scale factor. The dynamics of
the FRW universe is described by the Hubble parameter

H � _a=a and its time derivative _H which obey the
well-known Friedman equations:

H2 ¼ 8�G

3
�; (21)

_H ¼ �4�Gð�þ pÞ: (22)

At the moment of the nonsingular bounce, i.e., at t ¼ tB,
the Hubble parameter vanishes HðtBÞ ¼ 0 and in order to
ensure that the universe enters an expanding phase one also
requires _HðtBÞ> 0 at the same moment.
Let us consider that in the contracting phase the universe

was initially radiation dominated with the standard parti-
cles (with w ¼ 1=3). As the scale factor contracts the
temperature of the Universe increases and the Lee-Wick
particles (which are heavier than their standard model
partners) will gradually start to contribute thermally as
t ! 0� and just before the bounce the energy density of
the universe would be given by Eq. (15). To satisfy the first
condition of bounce i.e.,HðtBÞ ¼ 0 one requires �ðtBÞ ¼ 0
which can be seen from Eq. (21). Thus, assuming that just
before the bounce all the particle species and their Lee-
Wick partners are thermalized, it can be seen from Eq. (15)
that at the time of bounce the energy density vanishes, i.e.,
�ðtBÞ ¼ 0, to yield

~M2

24
~g�NT2

B ¼ 7�2

240
~gFT

4
B þ �2

30
nT4

B; (23)

where TB is the temperature of the universe at bouncing
time tB. This shows that at bounce the pressure given in
Eq. (19) would be positive as

pðtBÞ ¼ 7�2

360
~gFT

4
B þ �2

45
nT4

B > 0: (24)

Thus at the bouncing point one has from Eq. (22) that

_HðtBÞ ¼ �4�Gð�ðtBÞ þ pðtBÞÞ< 0; (25)

which indicates that after the bounce the universe fails to
enter into an expanding phase. This means that in this
simple cosmological model which is comprised of pure
radiation and their thermalized Lee-Wick resonances, one
cannot obtain a bouncing solution for a universe. Now we
will discuss two distinct cases which slightly deviate from
this simple scenario discussed above and where a bouncing
universe scenario can be realized.

A. Lee-Wick infested radiation plasma
and a CDM component

First we consider a CDM component along with the
radiation plasma which is composed of thermal standard
particles and their thermalized Lee-Wick partners. The
CDM candidate is nonrelativistic throughout the whole
evolution and hence we can neglect its pressure in the
following analysis. The CDM component too can have
Lee-Wick partners according to the Lee-Wick scenario,
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but these partners would be heavier than the CDM particle
under consideration. Hence the Lee-Wick partners of the
CDM component could never thermalize in the evolution
(as the CDM remains nonrelativistic throughout) and
would remain off shell. Thus these Lee-Wick partners of
the CDM component would not contribute thermally to the
energy density of the radiation plasma. Thus the energy
density and pressure of the CDM component would be

�D ¼ nDm; pD � 0; (26)

respectively, where nD and m are the number density and
mass of the CDM particles, respectively, and m � T dur-
ing all the phases of evolution of the universe.

Let us briefly illustrate the scenario under consideration.
We naively imagine an inverse picture of evolution of the
expanding phase of the universe in the contracting phase.
Hence in the contracting phase the universe initially
evolves in a CDM dominated phase with w ¼ 0. As the
universe contracts the temperature of the universe in-
creases and the universe enters a standard radiation domi-
nated phase with w ¼ 1=3. As the temperature of the
universe keeps on increasing with the contraction the
Lee-Wick resonances start to contribute thermally and
negatively to the energy density of the radiation bath. In
that case, though the temperature of the universe increases
with contraction the energy density starts to decrease with
more and more Lee-Wick particles (mainly the partners of
chiral fermions and massless gauge bosons) contributing
thermally. The CDM component, during this period,
evolves nonrelativistically with the background evolution
decoupled from the thermal bath. Once the energy density
of the Lee-Wick infested radiation bath becomes slightly

smaller than the energy density of the CDM component,
the later dominates the energy density of the universe and
helps a bounce to occur, as will be shown next. This is not a
conventional matter domination phase as during this period
the state parameter of the cosmic fluid would not be zero.
This whole scenario is shown graphically in Fig. 1.
According to the above discussion, the total energy

density of the universe in this scenario, which consists of
the energy density of the Lee-Wick infested radiation
plasma �RðtBÞ and that of the CDM particles �DðtBÞ, at
the bouncing time tB turns out to be

�ðtBÞ � �RðtBÞ þ�DðtBÞ

¼ ~M2

24
~g�NT2

B �
7�2

240
~gFT

4
B �

�2

30
nT4

B þ�DðtBÞ; (27)

whereas the expression for the pressure of this Lee-Wick
infested radiation plasma aided with the CDM particles
remains the same as given in Eq. (19). If one wants to make
pðtBÞ< 0, required for a bounce at a temperature TB, then
the first constraint on the model is given by

~M2

24
~g�NT2

B <
7�2

720
~gFT

4
B þ �2

90
nT4

B: (28)

If this constraint on the system is fulfilled, then one can
indeed have a bouncing universe where the energy density
of the CDM candidate has to satisfy the second constraint:

�DðtBÞ> 7�2

360
~gFT

4
B þ �2

45
nT4

B; (29)

which is obtained by requiring that �ðtBÞ ¼ 0 and using the
first constraint given in Eq. (28). Along with these two

FIG. 1 (color online). Figure showing the bounce point and the energy balance of the universe. The CDM domination near the
bounce point is due to the addition of the nonstandard CDM-like component in the theory.
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constraints we also must have the other constraint about the
relativistic nature of the heaviest LW particle at TB which
reads as

TB > ~M; (30)

This condition along with Eq. (28) yields the constraint on
~g�N as

~g �N � 7�2

30
~gF þ 4�2

15
n: (31)

If we fix the free parameters of this model as
TB � 1016 GeV and roughly use the standard model values
for calculating the number of internal degrees of freedom
as ~gF � 40 and n� 10, then these three parameters yield
�DðtBÞ> 4� 1064 GeV4 and ~g�N � 100. Also to get
�ðtBÞ ¼ 0 one requires from Eq. (27) �RðtBÞ ¼ ��DðtBÞ
which yields ~M � 9� 1015 GeV which is the mass of the
heaviest Lee-Wick particle in the model under
consideration.

B. Bouncing Universe within thermal LW framework
without a CDM component

We can have another scenario where only radiation can
trigger the bounce. But for this to happen some conditions
have to be met. The conditions are related to the mass of
some Lee-Wick partners of the normal particles and the
bouncing temperature TB. In this case we consider that the
bounce temperature TB is smaller than the masses of some
Lee-Wick particles. If this happens then some standard
particles’ Lee-Wick partners will not be able to thermalize
as their masses are higher than TB, but their standard
partners being lighter would be thermalized at TB. Due to
this effect these (unpaired) standard particles will contrib-
ute only with positive radiation energy density. Such stan-
dard particles whose Lee-Wick partners could not
thermalize at TB can both be bosonic and fermionic. In
this scenario the total energy density of the Universe can be
written as

�ðtBÞ ¼
~M2

24
~g�NT2

B � 7�2

240
~gFT

4
B � �2

30
nT4

B þ ~c

4
T4
B; (32)

and the total pressure would be

pðtBÞ ¼
~M2

24
~g�NT2

B � 7�2

720
~gFT

4
B � �2

90
nT4

B þ
~d

4
T4
B: (33)

Here ~c and ~d encapsulate all the numbers of degrees of
freedom and the corresponding factors of those standard
particles whose Lee-Wick partners could not thermalize at
the bouncing point and ~M is the mass of the heaviest Lee-
Wick particle which could thermalize at or before tB. Thus
in this case too we have ~M< TB. To satisfy the bouncing
condition pðtBÞ< 0 one requires [using Eq. (33)]

~M2

24
~g�NT2

B <
7�2

720
~gFT

4
B þ �2

90
nT4

B �
~d

4
T4
B; (34)

and to achieve the other bouncing condition i.e., �ðtBÞ ¼ 0
one gets

~c� ~d >
7�2

90
~gFT

4
B þ 4�2

45
nT4

B; (35)

where we have used Eqs. (32) and (34). This scheme of a
bouncing universe is also a possibility as for any thermal-
ized bosonic or fermionic standard model particle p ¼ 1

3�

and thus ~d ¼ 1
3
~c. Hence the above condition can be sat-

isfied by choosing an appropriate set of parameters.

IV. COSMOLOGICAL PERTURBATIONS
IN BOUNCING UNIVERSE

In the previous section two distinct thermal Lee-Wick
scenarios are considered where a nonsingular bouncing
universe scenario can be achieved. We devote this section
to study the dynamics of linear cosmological perturbations
generated in these models of thermal Lee-Wick bounce and
to investigate the nature of the power spectrum generated
in such models. We focus on adiabatic fluctuations and
consider matter components without anisotropic stress (we
refer to Ref. [21] for a comprehensive review on the theory
of cosmological perturbations). In general, there are
mainly two methods of analyzing cosmological perturba-
tions in bouncing scenarios. One is to introduce a canonical
variable of perturbation mode v (known as the Mukhanov-
Sasaki variable) of which the quadratic action is of canoni-
cal form in the frame of a conformal time coordinate. This
variable is associated with the curvature fluctuation in
comoving gauge � through v ¼ z� where z is a back-
ground dependent coefficient and is roughly proportional
to the scale factor if the background evolution is stable. A
detailed calculation using a generalized canonical variable
v in nonsingular bounce cosmologies was carried out in
Ref. [22] and it was shown that such a method is more
suitable for those early universe models in which the
primordial perturbations originate from quantum fluctua-
tions. Another method is to study the gravitational poten-
tial� directly. The advantage of this method over the other
is that it is much easier to impose initial conditions while
analyzing gravitational potential � as cosmological per-
turbations [23]. We will follow the second method for our
analysis of cosmological perturbations.
Before going into the details of the analysis of cosmo-

logical perturbations and the corresponding power spectra
let us discuss briefly how the modes of these primordial
perturbations evolve in the contracting and the expanding
phases. For the discussion let us only consider the case with
the CDM component and Fig. 2 explains the essence of this
particular bouncing model. Similar analysis also holds for
the other case which does not consider any CDM compo-
nent. In Fig. 2 it is shown how the Hubble radius jH j�1

behaves in the space-time diagram. The lowermost heavy
curve shows that the universe is undergoing a contracting
phase where the energy density of the universe is changing
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from the standard radiation dominated phase (� / T4) to
the mildly Lee-Wick radiation phase (� / T2). In this
phase, the dark matter energy density is not important as
it is mainly a radiation dominated phase. At the beginning
of this Lee-Wick infested radiation phase, as all the Lee-
Wick partners are not thermalized, the effective energy
density will look like

�� aT4 þ bT2 � cT4; (36)

where a, b and c are some constants whose exact values are
not of much importance in this discussion. The first term
aT4 is the dominant term in the standard radiation domi-
nation as shown in Fig. 1 and arises because the radiation
domination is mainly dictated by the standard fields. The
bT2 term designates that some of the Lee-Wick partners
have entered the scene and they have paired up with their
normal partners to give the T2 nature of energy density.
The last term cT4 is the contribution from the unpaired
Lee-Wick partners of chiral fermions and massless gauge
bosons. The schematic form of energy density, in Eq. (36),
is similar to the form of energy density in Eq. (15) except
that here one also takes into account the standard thermal
radiation part (aT4). In presenting the energy density of
Lee-Wick thermal radiation in Eq. (15) one assumed that
all of the standard field’s Lee-Wick partners are in thermal
equilibrium. In the initial stage of the contracting phase of
the universe when the temperature of the system is not very
high it is natural that most of the Lee-Wick partners would
not have thermalized and so Eq. (36) holds true. In this
phase b � c and a � c, which amounts to an assumption
that most of the Lee-Wick partners of the chiral fermions
and the massless gauge bosons (which give rise to the

negative radiation energy density) are predominantly heav-
ier than the other Lee-Wick partners. If this was not the
case then the Lee-Wick partners of the chiral fermions and
massless gauge bosons should have dominated the energy
density at the onset of the Lee-Wick infested radiation era
and the total energy density of the universe should have
decreased dramatically.
At the start of the contracting phase, when a > b, the

state parameter w� 1=3 designates a standard radiation
phase. After some time b > a (and b � c) and the state
parameter becomes w� 1. This phase is shown as the Lee-
Wick radiation domination phase in Fig. 1. Because of the b
and c terms in the energy density the effective energy
density of this phase rises but its rise is slowed down (as a
result the growth of the Hubble parameter is inhibited) and
consequently theHubble radius goes on decreasing but with
a slower rate. During this phase the modes with wavelength
� ¼ 1=k leave the Hubble radius as shown in Fig. 2.
As soon as the conformal time is about ��B the c term in

the effective energy density starts to dominate and now c >
a, b and the radiation part of the effective energy density
starts to decrease rapidly. In this phase the radiation energy
density starts to decrease as more and more Lee-Wick
partners of the chiral fermions and massless gauge bosons
thermalize, the Hubble parameter effectively decreases
rapidly, and the CDM energy density starts to dominate.
This phase of the universe is represented by the nonstan-
dard CDM domination phase in Fig. 1. The CDM contri-
bution to the energy density ultimately balances the
negative energy density due to Lee-Wick radiation and
leads to a bounce.
If we assume symmetry in time then a symmetric analy-

sis can be presented for the expanding phase of the uni-
verse. The heavy dashed curves from ��B to �þB correspond
to the bouncing phase of the universe where the micro-
physics is mainly governed by the Lee-Wick partners of
chiral fermions and massless gauge bosons and the dark
matter sector. The solid heavy curves stand for the con-
tracting and expanding phases of the universe. The modes
with wavelength � which went out during the contracting
phase start to reenter the Hubble radius after �þB in the
expanding phase. In Fig. 2, �B is the time of bounce
whereas �	B stands for the time where there should have
been big-bang- or big-crunch-like singularities in the ab-
sence of the bounce. In Fig. 2, kUV is the maximum
possible wave number, which becomes super-Hubble, in
such a bouncing scenario as it corresponds to the minimum
radius of the possible Hubble radius. In the absence of the
bounce kUV could have been much bigger, effectively of
the Planckian order.

A. Cosmological perturbations in contracting and
expanding phases and their matching conditions

Here we will discuss how cosmological perturba-
tions generate in a contracting phase and evolve into the

FIG. 2. Figure showing the contracting and expanding phases
of the universe in the bouncing model. The horizontal axis is a
comoving spatial coordinate and the vertical axis is conformal
time. The main plot is of the Hubble radius jH j�1 and the
wavelength � of fluctuations with comoving wave number k. kUV
is roughly the wave number at the onset of the bouncing phase
whose value is dictated by the microphysics of the bounce. The
heavy dashed curves on the main figure correspond to the bounce
phase.
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expanding phase in a generic bouncing universe scenario.
The linearly perturbed FRW metric in longitudinal gauge
can be written as [21]

ds2 ¼ að�Þ2½ð1þ 2�Þd�2 � ð1� 2�Þd~x2
; (37)

where � is the gravitational potential which characterizes
metric fluctuations and � is the conformal time. At linear
order the scalar metric fluctuations evolve independently.
Thus we are able to study the evolution of � by following
one of its Fourier modes with a fixed comoving wave
number k and the perturbation equation of �k is given by

�00
k þ 2�H�0

k þ ðc2sk2 � 2�H 2 þ 2�H 2Þ�k ¼ 0;

(38)

where H � a0=a and the prime denotes the derivative
with respective to �. The sound speed parameter cs in the
above equation is usually determined by the thermodynam-
ical property of the background system. Moreover, we
have defined two background dependent parameters
� � � _H=H2 and � � � €H=2H _H. For a constant back-
ground equation of state (say w) these two parameters
are equal and are totally determined by the background
equation of state as

� ¼ � ¼ 3

2
ð1þ wÞ: (39)

The situation which we are interested in here is a con-
tracting phase of the universe dominated by radiation fields
along with their thermalized Lee-Wick partners evolving in
a stable background which evolves with a constant state
parameter w. In that case the scale factor and the Hubble
parameter of the Universe can be written as

a� ð�� �iBÞ 2
1þ3w; H ’ 2

ð1þ 3wÞð�� �iBÞ
; (40)

respectively, where �iB is some moment at which the big
bang or the big crunch singularity would occur in absence
of the nonsingular bouncing phase. In our particular model
�iB ¼ �þB , ��B as shown in Fig. 2. As a consequence, the
perturbation equation given in Eq. (38) can be simplified
using Eq. (39) as

�00
k þ

1þ 	

�� �iB
�0

k þ c2sk
2�k ’ 0; (41)

with

	 ¼ 5þ 3w

1þ 3w
: (42)

Generically, the solutions to Eq. (41) are composed of two
linearly independent Bessel functions. On super-Hubble
scales they correspond to a constant mode (called the D
mode) and a time-evolving mode (called the S mode).
Specifically, the general solution to the perturbation
equation on super-Hubble scales can be expressed as

�	
k ¼ D	 þ S	

�
�B � �	B
�� �	B

�
	
; (43)

whereD and S are the mode coefficients and the subscripts
	 represent the expanding and the contracting phases of the
universe, respectively. In the above expression �B is the
conformal time at the bouncing point. It is also assumed in
the above solutions that the background dynamics of the
universe both in the contracting and in the expanding phases
are governed by the same steady equation of state w.
Now one needs to know how to transfer the primordial

fluctuations generated in the contracting phase of the uni-
verse through the bounce. This issue was initially studied
by replacing the bounce with a matching surface across
which the perturbation modes are connected by using the
Hwang-Vishniac [24] (or Deruelle-Mukhanov [25]) match-
ing conditions. Later, it was found that for a nonsingular
bounce one can evolve the fluctuations through bounce
both numerically and analytically [12,26,27]. Thus, rela-
tions between the mode coefficients in the expanding phase
and those in the contracting phase can be calculated ex-
plicitly [12] (also see Ref. [23] for a general discussion1).
A general transfer relation between these coefficients in the
contracting and expanding phase can be written as

Dþ ¼ Oð1ÞD� þOð1Þ
�

k

kUV

�
2
S�; (44)

where kUV is a normalization scale which is set by the
microphysics of the bounce. It corresponds to the inverse
length scales near around �	B in our model as shown in
Fig. 2. A brief derivation of the above relation is presented
in the Appendix.

B. Thermal fluctuations in the case
which includes CDM

In the model which we consider here the universe expe-
riences a Lee-Wick infested radiation dominated period in
the contracting phase just before the CDM component
takes over to yield a bounce. In the following we will study
the generation of the primordial power spectrum of curva-
ture perturbation arisen from thermal fluctuations of Lee-
Wick infested radiation plasma. Due to the existence of
Lee-Wick partners, the heat capacity of the radiation
plasma is different from the conventional one and thus
affects the scale dependence of the power spectrum.

1It is interesting to observe that for a nonsingular bounce
model based on a closed space geometry, the primordial pertur-
bation would be dramatically affected by the spatial curvature
during the bounce even at large scale limit [28]. However, since
in the model under consideration the bouncing solution is
achieved by introducing matter components which violate the
null energy condition in the frame of flat spatial coordinates, the
curvature term will not be involved in the following transfer
relation, as has been verified explicitly in the cold Lee-Wick
bounce model [12].
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Then we will study the stability of this cosmological
system and estimate the mass bounds of the Lee-Wick
partners.

1. Generation of primordial power spectrum
of thermal fluctuations in IR regime

To determine the IR regime of the primordial power
spectrum of the thermal fluctuations generated in the con-
tracting phase of the universe, one should consider the
modes which leave the horizon at earliest times of the
contracting phase. From Fig. 1 we see that at the onset of
the radiation dominated era in the contracting phase the
radiation fluid is dominated mainly by standard particles
(as Lee-Wick partners being heavy thermalize at a later
stage) yielding wr � 1=3. The radiation energy density
during that time thus can be written as

�r � gsmT
4=4; (45)

where gsm takes into account the number of degrees
of freedom of the standard particles thermalized initially.
We also consider that the background during these initial
phases of radiation domination still evolves under the
influence of the CDM yielding w� 0 and the index
	 ¼ 5 introduced in Eq. (42).

The correlation function of the energy density of such a
cosmic fluid in thermal equilibrium can be written as

h
�2ijR ¼ k3

2�2
h
�2

ki ¼ CV

T2

V2
; (46)

where V is a fixed volume determined by the correlation
length R of the thermal system which in a cosmological
setup is roughly of the same order of the Hubble radius
R� 1=H and a Fourier transform of any generic quantity
� with the corresponding Fourier mode �k is defined as

�ðt;xÞ ¼ ffiffiffiffi
V

p Z d3k

ð2�Þ3=2 e
ik�x�kðtÞ: (47)

The parameter CV is the heat capacity of the radiation
plasma and is defined in terms of the expectation value
of the internal energy within the thermally correlated
volume. These fluctuations in the energy density of the
radiation fluid are coupled to the metric perturbations
�� during the contracting phase through the time-time
component of the perturbed Einstein equation which is
given as [21]

� 3H ðH�� þ�0�Þ þ r2�� ¼ a2
�=2M2
p; (48)

where MP is the reduced Planck mass. When these pertur-
bations leave the Hubble radius during the contracting
phase (i.e., when the corresponding wave number of
the mode is of the order of the comoving Hubble radius
k� aH), the three terms contribute equally to the ampli-
tude of �� yielding

j��
k j �

að�kÞ2
�k

2k2M2
p

’ �a2ð�kÞC1=2
V ð�kÞTð�kÞ

21=2k7=2M2
pVð�kÞ

; (49)

up to a constant of order Oð1Þ. We have used Eq. (48) to
derive the second expression and �k is the conformal time
at the time of the Hubble crossing of the mode k. All the
quantities in the above equation are to be derived at the
time of the Hubble crossing of the mode k.
Now, the key issue is to find out the explicit form of the

heat capacity of the thermal system under consideration.
By definition, the heat capacity of a thermal fluid is deter-
mined by

CV � V
@�

@T
: (50)

As has been mentioned before, the volume V is determined
by the thermal correlation length which is of the order of
the Hubble radius. Consequently, using Eq. (45) the heat
capacity at the Hubble-crossing moment of the IR modes is
given by

CVð�kÞ � 4�

3
gsmð�kÞ Tð�kÞ

3

Hð�kÞ3
: (51)

We note here that the perturbations in the radiation energy
density scale with the scale factor wr as


�� a�3ð1þwrÞ; (52)

where the entropy density of a fluid is defined as

s ¼ 
�þ 
p

T
¼ ð1þ wrÞ
�T : (53)

For an adiabatic expansion of the Universe the comoving
entropy remains conserved which means a3s is a conserved
quantity. Thus the temperature of the radiation plasma
evolves as

T � a�3wr ; (54)

which follows from the previous two equations. Moreover,

the scale factor of the universe evolves as a� �
1
2ð	�1Þ in the

contracting background which can be seen from Eq. (40)
and at the time of the Hubble crossing of the mode k one
has �k ¼ � 1

k . Then we have a ¼ a�ðk=k�Þ�2. Thus, fol-

lowing the above expressions, the temperature of the uni-
verse at the time when the mode k leaves the Hubble radius
can be determined as

Tð�kÞ ’ T�
�
k

k�

�3wr
2 ð	�1Þ

; (55)

where k� and T� are associated with the initial moment of
thermal equilibrium as introduced in the previous subsec-

tion. Similarly the Hubble parameterHð�kÞ � H ð�kÞ
að�kÞ during

that time can also be derived using Eq. (40) which reads as
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Hð�kÞ ’ H�
�
k

k�

�1
2ð	þ1Þ

; (56)

where H� again is associated with k�. Thus the above two
equations yield

Tð�kÞ ’ T�
�
k

k�

�
2
; Hð�kÞ ’ H�

�
k

k�

�
3
; (57)

if the perturbation modes exit the Hubble radius before the
universe is fully thermalized. Here, k� is a normalization
scale which is associated with the initial moment of ther-
mal equilibrium, T� is the corresponding temperature at
that moment, and H� is the Hubble parameter correspond-
ing to k� as well. Thus the heat capacity is given by

CVð�kÞ � 4�

3
gsmð�kÞ T

3�
H3�

�
k

k�

��3
; (58)

at the moment of Hubble crossing during initial radiation
contraction. Then we get the amplitude of gravitational
potential as

�H � ��
k ð�HÞ ’

ð3�Þ1=2
23=2M2

p

ffiffiffiffiffiffiffiffi
gsm

p
T5=2
�

a7=2� H4�
k2; (59)

where Eq. (49) was applied and the scale factor a� is
associated with the moment of thermal equilibrium.
Following Eq. (43), we see that the amplitudes of the
constant D� mode and the growing S� mode during the
initial radiation contraction are related to the metric fluc-
tuation as

D�ðkÞ ’ �H; S�ðkÞ ’
�
H UV

k

�
5
�H: (60)

Here H UV is the maximal scale of the Hubble parameter,
in the beginning of the bouncing phase, which is roughly of
the same order of kUV introduced in Eq. (44). Thus from
the above equation and Eq. (44) we easily find out that the
amplitude of the Dþ mode in the expanding phase is
mainly contributed by the S� mode in the IR regime.
Correspondingly, we derive the primordial power spectrum
of metric perturbation in the IR regime as

P� ¼ k3

2�2
jDþj2 ’ 3gsmH 6

UVT
5�

16�M4
pa

6�H7�

�
k

k�

�
; (61)

and the corresponding spectral index is given by

n� � 1þ d lnP�

d ln k
¼ 2; (62)

which implies that the power spectrum of metric perturba-
tions seeded by thermal fluctuations during the onset of the
radiation dominated contracting phase is a blue spectrum.

2. Generation of primordial power spectrum
of thermal fluctuations in UV regime

As we have pointed out before, the thermodynamics of
the radiation fluid in the contracting phase would be greatly
affected by the Lee-Wick resonances at very high tempera-
tures (T > ~M) and the corresponding equation of state of
the radiation fluid evolves from the conventional value of
wr ¼ 1=3 to a nonconventional value of wr � 1 when
more and more Lee-Wick resonances thermalize with the
increasing temperature of the universe. Therefore, the gen-
eration of the primordial power spectrum of thermal
fluctuations is dramatically changed in the UV regime as
the background and the radiation fluid at these later stages
of the evolution will evolve with state parameters as
w� wr � 1.
During the Hubble crossing of the mode k the cosmic

fluid would be dominated by Lee-Wick resonance infested
radiation plasma and the energy density of that fluid can be
expressed as given in Eq. (15) (where we can neglect the
contribution of the CDM component required for the non-
singular bounce). Also, to let the Hubble radius of the
universe contract which allows the mode to become
super-Hubble, the first term in Eq. (15) would be the
dominant term in the total energy density (as discussed
before). If during that time the mass of the heaviest ther-
malized Lee-Wick particle is ~M then using Eq. (15) in
Eq. (50) one gets an expression for the heat capacity of the
radiation fluid at the time of the Hubble crossing of the
mode k as

CVð�kÞ � Vð�kÞ�ð�kÞ ~M2Tð�kÞ; (63)

where we have introduced

�ð�kÞ ¼ ~g�Nð�kÞ
12

; (64)

which is associated with the number of internal degrees of
freedom of the thermal system at the time �k. As the energy
density and pressure of the radiation fluid are dominated by
the � term [as given in Eq. (15)] during the Hubble cross-
ing of the modes the equation of state of that plasma would
be wrð�HÞ � 1. In that case, following Eq. (63), the heat
capacity of the universe would be

CVð�kÞ � 4�

3
�ð�kÞ ~M2 T�

H3�

�
k

k�

��3
; (65)

where we have used Eqs. (55) and (56). Thus, if we also
consider in this scenario that the background cosmology of
the universe is also evolving due to the dominance of the
Lee-Wick infested radiation field and considerw ¼ wr � 1
during the Hubble exit of the mode k, then we get the
amplitude of the metric fluctuation corresponding to mode
k using Eq. (49) as

�H � ��
k ð�HÞ ’

ð3�Þ1=2
23=2M2

p

ffiffiffiffi
�

p
~MT3=2

�
a3=2� H2�

; (66)

KAUSHIK BHATTACHARYA, YI-FU CAI, AND SURATNA DAS PHYSICAL REVIEW D 87, 083511 (2013)

083511-10



where a� is the scale factor corresponding to k� through
k� ¼ a�H�. Following Eq. (66), we see that the amplitudes
of the constant D� mode and the growing S� mode during
the contracting phase are related to the metric fluctuation as

D�ðkÞ ’ �H; S�ðkÞ ’
�
H UV

k

�
2
�H; (67)

where 	 ¼ 2 asw ¼ 1 in this particular case. HereH UV is
themaximal scale of theHubble parameter, in the beginning
of the bouncing phase, which is roughly of the same order of
kUV introduced in Eq. (44). Thus from the above equation
and Eq. (44) we see that both the modes D� and S�
contribute equally to the amplitude of the Dþ mode which
is the dominant mode of the expanding phase (as the other
Sþ mode is the decaying one and its amplitude falls off with
time).2 Hence, we obtain the primordial power spectrum of
the expanding phase of the universe as

P� ¼ k3

2�2
jDþj2 ’ ~g�N ~M2T3�

64�M4
pH�

�
k

k�

�
3
; (68)

and the corresponding spectral index is given by

n� � 1þ d lnP�

d ln k
¼ 4; (69)

which implies that the power spectrum of metric perturba-
tions seeded by thermal fluctuations during the Lee-Wick
resonance dominated contracting phase is highly blue in the
UV regime.

3. Stability analysis and a rough estimate of the mass
bounds of the Lee-Wick partners of chiral fermions

and massless gauge bosons

As the primordial power spectrum of metric perturbation
generated in the Lee-Wick radiation phase is deeply blue,
its amplitude would become secondary in the infrared limit
which corresponds to a large length scale. However, one
needs to be aware of the potential concern that the power
spectrum would become too large in the ultraviolet regime
where k takes a large value. Fortunately, for all nonsingular
bounce models, there is a natural ultraviolet cutoff on k
modes due to the existence of the bouncing scale. This is
because, if a perturbation mode has not yet evolved into the
super-Hubble scale before the bouncing phase, then it will
never take place unless there is a period of inflation after
the bounce. As a consequence, one can easily read that the
maximal value of the power spectrum takes place right at
the beginning of the bouncing phase.

The universe is in thermal equilibrium, with standard
particles, in the phase of traditional radiation domination
and thus one can assume the benchmark value of the

Hubble parameter to beH� ’ g1=2�T2�
3
ffiffiffiffi
10

p
Mp

where g is the number

of internal degrees of freedom of traditional radiation.
Using this equation and the relation between H and k
from Eq. (56), one can calculate the maximal value of
the primordial power spectrum as

Pmax
� ’ 27~g�N ~M2H2

UV

64�g3=2MpT
3�
: (70)

In the above equationHUV is roughly similar to kUV whose
value is set by the microphysics of the bounce. In our
notation it is trivial to show that

h�ðxÞ2i ¼ V
Z kUV

0

dk

k
P�ðkÞ; (71)

where P�ðkÞ ¼ k3j�kj2=2�2 is the power spectrum of
metric perturbation �. Note that this UV cutoff can be
selected as the Planck scale kUV � aMp in inflationary

cosmology, and due to the quasiexponential expansion of
the background universe, it leads to the well-known trans-
Planckian problem for inflationary perturbation [30,31]
(see also Ref. [32]). This issue does not happen in this
model of bouncing cosmology as there is another natural
cutoff, kUV as shown in Fig. 2, which is much lower than
the Planck scale, i.e., the bounce scale (the maximal abso-
lute value that the Hubble parameter can reach throughout
the whole evolution). If P�ðkÞ / kn (where n ¼ 3 in our

bounce model) then we obtain h�ðxÞ2i � knUV
n � Pmax

�

n . As

�ðxÞ is supposed to be the metric perturbation we expect
1
V h�ðxÞ2i to be smaller than unity. Consequently the above

equation implies the maximal value of the power spectrum
to be less than unity as well.
If we take g ’ 107 which is the number of internal

degrees of freedom of the standard model of particle
physics, then we can roughly obtain an upper bound on a
combination of the Lee-Wick mass and the bounce scale as

~MjHUVj & 100

�
MpT

3�
~g�N

�
1=2

; (72)

by requiring Pmax
� & 1. We further take ~g�N � 100 and

assume T� � 100 GeV, and then get ~MjHUVj &
1014 GeV2. However, since the bounce scale must be
higher than the mass scale of Lee-Wick partners jHUVj>
~M, it roughly implies that ~M & 107 GeV.
This theoretical constraint restricts the masses of the

Lee-Wick partners in the expanding or in the contracting
phase of the universe to be less than 107 GeV as only the
terms proportional to � are taken into account in the heat
capacity. The constraint does not work in the bouncing
phase of the universe (in the time between ��B and �þB )
where much heavier Lee-Wick partners can get thermal-
ized. In the present models where a dark component is used
we have calculated the maximum mass of the Lee-Wick
partner to be of the order of 1015 GeV, but this does not

2We would like to refer to Refs. [12,22,26,27,29] for extensive
analysis on microscopic description of the nonsingular bouncing
phase in a wide class of linear bounce models.
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contradict the analysis given above as the heavily massive
Lee-Wick particle is only thermalized at the bounce point,
near �B. Predominantly in the bouncing phase the Lee-
Wick partners of the chiral fermions and massless gauge
bosons will contribute and consequently we can infer that
most of the Lee-Wick partners of the chiral fermions and
massless gauge bosons will have their mass in the range
107–1015 GeV if the temperature near the bounce is
1016 GeV.

4. Numerical analysis of the background and
the perturbation in the bouncing phase

Previously the problem of mode matching near the
bounce was done analytically for modes in the IR or UV
regime. In the analytic way one matches the modes which
were super-Hubble before t�B and after tþB . The super-
Hubble modes briefly reenter the causal horizon during
the bouncing phase (in the time interval between tþB and
t�B ). To see what happens inside the bouncing phase we use
numerical techniques.

To ensure that the model under consideration indeed
yields a bouncing phase of the Universe we analyze the
behavior of the background plasma on which the perturba-
tions live. It is seen that with some benchmark values of the
theory the model gives rise to predictable bouncing behav-
ior. In the numerical codewe set the scale factor aðtÞ ¼ 1 at
the bouncing time t ¼ tB � 0. We also set the temperature
of bounce, TB, and the mass of the heaviest Lee-Wick
partner’s mass during the bouncing phase, ~M, as

~M ¼ 10�5Mp; TB ¼ 10�4Mp; (73)

whereMp is the Planck mass which is set to 1,Mp ¼ 1. In

this numerical analysis the time unit is set to be the Planck
time. The other parameters appearing in Eq. (27) are set as

~g �N ¼ 120; ~gF ¼ 40; n ¼ 10: (74)

It is to be noted that as we treat the CDM component to be
nonrelativistic throughout the evolution of the universe, the
energy density of this CDM component evolves as

�DðtÞ ¼ �B

aðtÞ3 ; (75)

where the constant �B is found from the condition that at
the bouncing time t ¼ tB one must have �RðtBÞ þ
�DðtBÞ ¼ 0.

With these typical parameter values it is seen that the
background properties of our model encoded in aðtÞ, HðtÞ,
TðtÞ, �ðtÞ and pðtÞ show a continuous nonsingular bounce.
From Fig. 3 it is clear that the scale factor aðtÞ has a
minimum at t ¼ 0. Before t ¼ 0 it is seen that aðtÞ is
decreasing, specifying a contracting universe which
smoothly transforms into an expanding universe after the
bounce. In Fig. 4 the variation of the Hubble parameter
HðtÞ across the bounce is depicted. The variation of tem-
perature of the background near the bouncing point is

shown in Fig. 5. If one compares the variation of energy
density with time, as shown in Fig. 6, with the variation in
temperature near the bouncing point one notices that the
temperature of the system is the maximum at the bounce
point when the total energy density is the minimum. This
point shows the nature of Lee-Wick particle dominated
cosmology where the Lee-Wick partners contribute to the
energy density of the cosmic plasma with a negative con-
tribution. In Fig. 7 the pressure of the background plasma,
pðtÞ, is plotted against time. The figure clearly shows that
pressure is negative in the bouncing region, which is a
prerequisite of the bouncing model.
The metric perturbation amplitude j�kj for three values

of the wave number are plotted in Fig. 8. Numerical
analysis shows that the perturbations remain almost con-
stant across the bouncing point. The perturbations
smoothly evolve through the bouncing point and that al-
lows one to match the mode functions in the expanding
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FIG. 3 (color online). Figure showing the behavior of the scale
factor aðtÞ in the bouncing phase.
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FIG. 4 (color online). Figure showing the behavior of the
Hubble parameter HðtÞ in the bouncing phase.
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phase after the bounce. While comparing these different
Fourier modes, one finds that the perturbation mode with
the highest value of k has the largest amplitude. Thus, it
shows explicitly a blue spectrum is achieved in our model
based on the thermal initial condition. Therefore, the nu-
merical result is in agreement with the analytic analysis
performed previously.

C. Thermal fluctuations in the case
which does not include CDM

Here we will discuss the scenario where a bounce can be
achieved in the contracting phase without invoking a CDM
component in the cosmic plasma. The main feature of this
model is that the bounce would occur before all the heav-
iest Lee-Wick resonances could thermalize. So, some of
the standard model particles will contribute to the radiation
plasma without their Lee-Wick resonances (like the stan-
dard radiation phase) near the bounce. In this case the
dominant part of energy density before ��B or after �þB is
assumed to be coming from the standard radiation part,
namely from ~cT4=4, in Eq. (32). The energy density starts
to decrease (or increase) rapidly in the bouncing phase.
Consequently in this scenario the dominant nature of
the radiation plasma would be more like a conventional
radiation fluid with wr � 1=3. Hence, for the modes
which would leave the Hubble radius in the contracting
phase, much before the bounce takes place, one can
consider w ¼ wr � 1=3.
The analysis of the IR regime is the same as that in the

regular radiation era. We need to analyze the UV regime
separately as now the background and radiation fluid
evolve as w� wr � 1=3. Following the arguments given
in the previous subsections, one can see that the heat
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FIG. 5 (color online). Figure showing the behavior of the
background temperature TðtÞ in the bouncing phase.
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FIG. 6 (color online). Figure showing the behavior of the total
energy density �ðtÞ in the bouncing phase.
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FIG. 8 (color online). Figure showing the behavior of the
perturbations across the bouncing point. In the above figure we
have numerically evolved the perturbations along the bounce
point for the following values of the wave number: from top
the wave numbers are k ¼ 8� 10�7, 8� 10�9, 8� 10�11,
respectively. The y axis is plotted in the logarithmic scale.
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FIG. 7 (color online). Figure showing the behavior of pressure
pðtÞ in the bouncing phase.
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capacity of the plasma during the Hubble exit of mode k in
this case would be

CVð�kÞ � 4�

3
~cð�kÞ T

3�
H3�

�
k

k�

��3
; (76)

and the amplitude of the metric fluctuation with wave
number k would become

�H � ��
k ð�HÞ ’

ð3�Þ1=2
23=2M2

p

ffiffiffi
~c

p
T5=2
�

a3=2� H2�
; (77)

where we have applied w ¼ wr ’ 1=3 and consequently
	 ¼ 3. In this case, by matching the formula (77) and the
general solution (43) in the contracting phase, the D� and
S� modes can be expressed as

D�ðkÞ ’ �H / k0; S�ðkÞ ’
�
H UV

k

�
3
�H / 1

k3
; (78)

which show that the contribution of theD� mode to theDþ
mode in the expanding phase is scale free whereas the
contribution of the S� mode for the same is proportional
to 1=k [following Eq. (44)]. Thus, if the S� mode (being
the growing mode in the contracting phase) contributes
dominantly to the Dþ mode in the expanding phase, then
we get the power spectrum as follows:

P� ¼ k3

2�2
jDþj2 ¼ 3~ca2BH

2
UVT�

4�M2
pa

2�H�

�
k

k�

�
; (79)

which is also a blue-tilted spectrum as before with a
spectral index

n� � 1þ d lnP�

d ln k
¼ 2: (80)

Note that, if theDþ mode in the expanding phase is mainly
inherited from the D� mode in the contracting phase for
some reason, the corresponding power spectrum is propor-
tional to k3.

Thus from the above analysis we see that here the
spectrum remains equally blue tilted in both IR and UV
regimes. In the other case, where a CDM component is
added, the spectrum is more blue titled in the UV regime
than that of IR. Therefore, it is not difficult to distinguish
these two models observationally.

V. CONCLUSION

In this article an attempt has been made to apply the
esoteric topic of Lee-Wick thermodynamics in the physics
of the early universe undergoing a nonsingular bounce.
Bouncing cosmologies try to evade the big bang singularity
which plagues most of the recent cosmological models.
Moreover the bouncing universe models presented in the
article do not require inflation to solve the standard cos-
mological problems as an inflationlike scenario is built into
the bouncing models.

If one includes Lee-Wick partners of standard fields in
the theory then it naturally leads to a radiation dominated
phase where the partners of some of the standard fields
contribute with a negative sign in the effective energy
density of the universe. This negative radiation can lead
to a bouncing phase of the universe when the total energy
density reaches zero. There can be two options to produce
the bounce. The first option includes a dark matter compo-
nent which helps to produce a negative pressure near the
bounce point.3 A brief numerical analysis of the back-
ground evolution and the evolution of the perturbations
across the bouncing point for this option is presented in the
article. The other option does not require any dark matter
component but it requires the temperature of the universe
near the bounce point to be less than the masses of some of
the Lee-Wick partners of the standard fields.
It has been shown that for the bounce mechanism to

succeed one has to have the Lee-Wick partners of most of
the chiral fermions and massless gauge bosons to be heav-
ier than a mass scale. This scale depends on the bounce
energy scale. This fact gives us a hint about the mass of the
elusive Lee-Wick partners.
In the bouncing universe scenarios presented in this

article, the relevant perturbation modes leave the Hubble
radius while the universe is contracting as the Hubble
radius starts to shrink. These modes lie outside the
Hubble radius for a brief time. After the bounce is over
and the Hubble radius starts to increase these modes start to
reenter. In this way the bouncing universe scenarios can
mimic the effects of inflationary universe models. The
bouncing universe models naturally set a wave number
cutoff; in our case it is called kUV. In the Lee-Wick thermal
radiation induced bouncing models discussed here we have
calculated the power spectrum of the metric perturbation
�. In both the cases one gets a blue-tilted power spectrum.
Therefore, the primordial power spectrum induced by
thermal fluctuations in the contracting phase can hardly
explain the CMB data since cosmological observations
have proven a nearly scale-invariant power spectrum.
However, this problem can be generally circumvented by
introducing another light scalar field during the matter
contracting phase, which is known as the bounce curvaton
mechanism [33,34].
The theories of Lee-Wick partners are still in their

infancy as they were neglected for a long time because
there were other interesting scenarios in particle physics
which could address the most pressing problems, as the
hierarchy problem and other related problems, there. At the
present moment Lee-Wick standard model and Lee-Wick
thermodynamics related works are also trying to address
the problems plaguing particle physics and cosmology. In
this regard the present article discusses an interesting

3It helps to evade the null energy condition near the bounce
point.
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property of the probable early universe utilizing the
properties of the Lee-Wick theories.
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APPENDIX: TRANSFER RELATION BETWEEN
THE MODE SOLUTIONS IN THE CONTRACTING

AND EXPANDING PHASES

Here we will give a brief description of how to match the
mode functions of the two phases, contracting and expand-
ing, at the nonsingular bouncing point by making use of the
analysis of Ref. [25]. In Ref. [25], the matching conditions
of modes have been extensively derived in a situation
where the stress-energy tensor undergoes a finite disconti-
nuity at a phase transition. If this sudden change in the
stress-energy tensor is due to a sudden change in the
equation of state w, then the energy density remains con-
stant on the hypersurface � of the phase transition. In such
a situation the two matching conditions in the conformal
Newtonian gauge (longitudinal gauge) read

�	
k ¼ 0; v̂	

k ¼
�
vk � k2

3
ðH 0 �H 2Þ�1�k

�
	
¼ 0;

(A1)

where v is the Mukhanov-Sasaki variable which can be
written in terms of � as

v ¼ �þ 2

3

H�1 _�þ�

ð1þ wÞ ¼ �þ H
H 2 �H 0 ð�0 þH�Þ:

(A2)

Using ��	 ¼ H
a2

the first matching condition yields

Dþ ¼ D� þ S�H� � SþHþ
a2

; (A3)

where we have used the solutions for�	
k given in Eq. (43).

On the other hand the second matching condition gives

1

H 0� �H 2�

��
H 2� þ k2

3

�
D�

þ S�H�
a2

�
H 0� �H 2� þ k2

3

��

¼ 1

H 0þ �H 2þ

��
H 2þ þ k2

3

�
Dþ

þ SþHþ
a2

�
H 0þ �H 2þ þ k2

3

��
: (A4)

Using the first relation given in Eq. (A3) in the above
equation one gets

2H 0þ�H 2þ
H 0þ�H 2þ

Dþ

¼
�
2H 0��H 2�
H 0��H 2�

þk2

3

�
1

H 0��H 2�
� 1

H 0þ�H 2þ

��
D�

�S�H�
a2

�
k2

3

��
1

H 0��H 2�
þ 1

H 0þ�H 2þ

�
: (A5)

If the universe goes through a symmetric evolution around
the bounce then the above equation leads to

Dþ ¼ AD� þ Bk2S�; (A6)

where A and B are constants of Oð1Þ.
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