
Analysis of the nonminimally coupled scalar field in the Palatini formalism
by the Noether symmetry approach

Rudinei C. de Souza, Raı́la André, and Gilberto M. Kremer
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We analyze a scalar field nonminimally coupled to gravity in the context of a Universe described by the

flat Friedmann-Robertson-Walker metric. The adopted model comprises a Universe filled by the scalar

field and standard matter (dark and baryonic). The corresponding field equations are obtained through the

Palatini formalism. From the action of the model in the flat Friedmann-Robertson-Walker space-time, a

pointlike Lagrangian of first order is obtained and the Noether symmetry approach is applied to restrict the

forms of the a priori undefined coupling and potential of the scalar field. We show that the massive scalar

field is associated with a Noether symmetry of the model. Analytical cosmological solutions for this

case are found and their respective importance for the description of the dark energy are discussed.
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I. INTRODUCTION

The scalar fields play a fundamental role in several
physical phenomena and are a useful tool in modern cos-
mology, being an indispensable part of a theoretical frame-
work. In the model adopted in this work the scalar field
acts as a source of gravity and nonminimally couples to
the curvature through a generic function Fð�Þ and its self-
interaction potential is given by a generic function Vð�Þ.

The purpose of this paper is to analyze the dynamics
of this field in the Palatini formalism [1–3] through the
Noether symmetry approach [4–11]. The most fundamen-
tal aspect to be noted in the Palatini formalism is the
independence, a priori, between the metric tensor and
affine connection, which are in fact independent geometric
variables [1]. The variation of the action with respect to the
metric tensor yields modified Einstein’s field equations
and the variation with respect to the affine connection
reveals the dynamic equation responsible for the new field
relative to the generalized affine connection. The action is
formally the same, but the new Riemann and Ricci tensors
are built from the independent affine connection.

By considering a flat Friedmann-Robertson-Walker
(FRW) metric in the action of the model, we can derive a
pointlike Lagrangian which furnishes the same dynamic
equations that are generated from the tensor components of
the modified Einstein’s field equations for the respective
cosmological model. Using such a pointlike Lagrangian,
we can restrict the forms of the undefined coupling and
potential of the action by imposing that the Lagrangian
presents a Noether symmetry, which formally works as
a first principle for the determination of the undefined
functions without ad hoc procedures [12–16]. Since the
dynamical system presents a Noether symmetry, there
exists a constant of motion associated with it and through
a coordinate transformation it is possible to find a cyclic
variable. After this procedure is performed, the constant of
motion and the cyclic variable may lead us to the complete

integration of the dynamical system [17–22]. As follows,
wewill apply the Noether symmetry approach to determine
the generic coupling and potential of the model and ana-
lyze its dynamics.
This paper is organized as follows. In Sec. II we intro-

duce the model in the Palatini formalism. The pointlike
Lagrangian for a flat FRW metric and the field equations
are presented in Sec. III. In Sec. IV we apply the Noether
symmetry approach to constrain the undefined functions.
The solutions of the field equations and their cosmological
meaning are presented in Sec. V. In Sec. VI we close the
paper with conclusions.
In this work we adopt the natural units 8�G¼ℏ¼c¼1

and the metric signature ðþ;�;�;�Þ.

II. THEMODELANDTHE PALATINI FORMALISM

The model we consider in this work is described by the
following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Fð�Þ ~Rþ 1

2
@��@��� Vð�Þ þLm

�
;

(1)

where � represents the scalar field, Vð�Þ is the self-
interaction potential, and Fð�Þ denotes the coupling func-
tion between the scalar field and gravity. Here ~R stands for
the generalized Ricci scalar and Lm is the Lagrangian of
the matter fields, comprising the ordinary and dark matter.
By varying the action with respect to the metric tensor,

in accordance with the principle of least action we find the
respective modified Einstein’s field equations

2F

�
~R�� � 1

2
g��

~R

�
¼ �T��; (2)

where T�� ¼ Tð�Þ
�� þ TðmÞ

�� is the total energy-momentum

tensor. The energy-momentum tensor of the scalar field is
given by
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Tð�Þ
�� ¼ @��@���

�
1

2
@��@��� Vð�Þ

�
g��; (3)

and the matter energy-momentum tensor is

TðmÞ
�� ¼ 2

@Lm

@g��

� g��Lm: (4)

Now, by varying the action with respect to the connec-
tion through the Palatini equation

� ~R�� ¼ ~r�ð�~�k
�kÞ � ~rkð�~�k

��Þ; (5)

with ~r� denoting the covariant derivative associated with
~�k
��, we obtain the equation responsible for the dynamics

of ~�k
��, namely,

~rkð ffiffiffiffiffiffiffi�g
p

Fð�Þg��Þ ¼ 0: (6)

The solution of this equation is the generalized affine
connection

~��
�� ¼ ��

�� þ 1

2
gk�½gk�@�Fþ g�k@�F� g��@kF�; (7)

where the ��
�� are the usual Christoffel symbols.

The Ricci tensor corresponding to this generalization is
given by

~R��¼R��þ 1

F
r�r�F� 3

2F2
@�F@�Fþ 1

2F
g��r�r�F;

(8)

where R�� is the usual Ricci tensor andr� is the covariant

derivative associated with the Christoffel symbols.
If we define an effective energy-momentum tensor as

T �� ¼ T�� þ 2r�r�F� 3

F
@�F@�F� 2r�r�Fg��

þ 3

2F
@�F@�Fg��; (9)

which absorbs the non-Christoffel symbols’ terms of the
connection, we can write the field equations with the
gravitational part in the standard form of the Einstein’s
equations

R�� � 1

2
g��R ¼ �T ��

2F
: (10)

Note that F ¼ 1=2 recovers the Einstein’s gravitation.
From the variation of action (1) with respect to the scalar

field, we have the respective Klein-Gordon equation�
1� 3F02

F

�
r�r��þ 3

�
F03

2F2
� F0F00

F

�
@��@��

� RF0 þ V 0 ¼ 0: (11)

The complete dynamics of the model is then described
by the field equations (10) and (11).

III. POINTLIKE LAGRANGIAN
AND FRW FIELD EQUATIONS

For the analysis of the cosmological aspects of the
model through the Noether symmetry approach, it is a
necessary step to determine the pointlike Lagrangian
corresponding to the model for a FRW metric. From
action (1), after eliminating the boundary terms, we obtain
the pointlike Lagrangian

L¼6Fa _a2þ6F0a2 _a _��a3

2

�
1�3F02

F

�
_�2þa3Vþ�0

m;

(12)

where the dot represents time derivative and �0
m is the

matter energy density at an initial instant.
From the Euler-Lagrange equation for a applied to (12),

we obtain the acceleration equation

€a

a
¼ �ð�m þ �� þ 3p�Þ

12F
; (13)

and by imposing that the energy function associated with
(12) vanishes, we have a Friedmann equation, namely

EL ¼ @L
@ _a

_aþ @L

@ _�
_��L ¼ 0 ) H2 ¼ �m þ ��

6F
: (14)

In Eqs. (13) and (14) we defined the effective energy
density and pressure of the scalar field as follows:

�� ¼
_�2

2
þ V � 6HF0 _�� 3

2F
F02 _�2; (15)

p�¼1

2
_�2�Vþ2ðF00 _�2þ2HF0 _�þF0 €�Þ� 3

2F
F02 _�2;

(16)

in accordance to the energy-momentum tensors (3) and (9).
Finally, the Euler-Lagrange equation for � applied to

(12) furnishes the FRW Klein-Gordon equation�
1� 3F02

F

�
€�þ 3H

�
1� 3F02

F

�
_�þ 3

�
F03

2F2
� F0F00

F

�
_�2

� RF0 þ V 0 ¼ 0: (17)

Note that Eqs. (13), (14), and (17) are necessarily the
same as those from the application of the FRW metric to
the field equations (10) and (11), respectively. In the next
section we will apply the Noether symmetry condition to
the Lagrangian (12).

IV. NOETHER SYMMETRY

Now we are ready to employ the Noether symmetry
approach to constrain the self-interaction potential and
coupling to gravity. Let us consider the following infini-
tesimal generator of symmetry
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X ¼ �
@

@a
þ 	

@

@�
þ

�
@�

@a
_aþ @�

@�
_�

�
@

@ _a

þ
�
@	

@a
_aþ @	

@�
_�

�
@

@ _�
; (18)

where � and 	 are functions only of a and �. There will
exist a Noether symmetry for the pointlike Lagrangian of
our model if the condition

LXL ¼ XL ¼ 0 (19)

holds, i.e., if the Lie derivative of the Lagrangian with
respect to the vector fieldX vanishes [23–26]. By applying
the symmetry condition (19) to (12), with respect to the
vector field (18), we obtain a system of coupled partial
differential equations as shown below

3�V þ a	V 0 ¼ 0; (20)

�þ 2a
@�

@a
þ a

�
	þ a

@	

@a

�
F0

F
¼ 0; (21)

	aF00 þ
�
2�þ a

@�

@a
þ a

@	

@�

�
F0 þ 2F

@�

@�

� a2

6

�
1� 3F02

F

�
@	

@a
¼ 0; (22)

3�� 12
@�

@�
F0 þ 2a

�
1� 3F02

F

�
@	

@�

� 3

�
3�� a	

F0

F
þ 2a	

F00

F0

�
F02

F
¼ 0: (23)

To solve the above system we consider � and 	 as
separable functions of a and �, i.e., � ¼ �1ðaÞ�2ð�Þ
and 	 ¼ 	1ðaÞ	2ð�Þ. The respective solutions are in
Table I which contains all the sets of functions �, 	,
Vð�Þ, and Fð�Þ, where the quantities m, �0, V0 and F0

are constants. If we now employ the potentials and
couplings of Table I, the model will present a Noether
symmetry.

We are interested in working with the solution form ¼ 1
and n ¼ 0 since the respective potential describes a
massive scalar field, which is physically interesting. The
conserved quantity associated with the Noether symmetry
corresponding to this solution reads

�0 ¼ �6F0�a2ð� _aþ a _�Þ þ 3

2
a3� _�: (24)

As follows, we will search for analytical solutions for
the case of the massive scalar field.

V. SOLUTIONS OF THE FIELD EQUATIONS

To find the solutions of the field equations we need to
rewrite the pointlike Lagrangian (12) in another system
of coordinates which makes integration easier. Thus, by
knowing that there is a Noether symmetry related to F and
V, there must exist a coordinate transformation in the space
of configuration in which one of these coordinates is cyclic.
Such a transformation obeys the following system of
differential equations:

�
@u

@a
þ 	

@u

@�
¼ 0; (25)

�
@z

@a
þ 	

@z

@�
¼ 1; (26)

where u and z are the new coordinates linked to the old
ones, a and �. In this transformation z is the cyclic
coordinate. A convenient particular solution of this system
for the case m ¼ 1, n ¼ 0 of Table I is

u ¼ a3�2; z ¼ ln a: (27)

The pointlike Lagrangian (12), with F and V respective
to the case m ¼ 1, n ¼ 0, rewritten in the new variables
given by (27) takes the form

L ¼ k1 _u _z�k2u _z2 þ k3
_u2

u
þ V0uþ �0

m; (28)

with

k1 ¼ 3

4
ð1� 4F0Þ; k2 ¼ 3

8
ð3� 4F0Þ;

k3 ¼ � 1

8
ð1� 12F0Þ:

(29)

Now, from the Euler-Lagrange equations associated
with the Lagrangian (28), we obtain the field equations in
the new variables, namely,

2k2u _z� k1 _u ¼ �0; (30)

2k3
€u

u
þ k1 €zþ k2 _z

2 � k3
_u2

u2
� V0 ¼ 0; (31)

where �0 is nothing else than the constant of motion (24)
rewritten in the new variables.

TABLE I. Set of solutions.

Range of validity � 	 V F F0

m, n � 0; m � � 1
2 �0a

m�n �ð3�0=2lÞam�1�nþ1 V0F
3m

2mþ1 F0�
2 2m�n�2mn�2m2

24ðm�n�1Þ
m ¼ 1, n ¼ 0 �0a �ð3�0=2Þ� V0�

2 F0�
2 F0
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The energy function associated with the Lagrangian (28)
provides another equation

k3
_u2

u2
þ k1

_u

u
_z� ðV0 þ k2 _z

2Þ � �0
m

u
¼ 0; (32)

which is equivalent to the Friedmann equation in the old
variables.

The system (30)–(32) comprehends three differential
equations for two dynamical variables, u and z. Then one
can solve it completely from any pair of equations. For this
task we take Eqs. (30) and (32), which are simpler to solve
once they involve only first order derivatives. Proceeding
in this way, we obtain two solutions for the system. The
first one, expressed in the original variables, reads

aðtÞ ¼ a0

2
64tanh 1

2 ðu1tþ u2Þ þ u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u20

q
tanh 1

2 ðu1tþ u2Þ þ u0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u20

q
3
75

p

� ½u0 sinh ðu1tþ u2Þ � 1�
k1
2k2 ; (33)

�ðtÞ ¼ �0

2
64tanh 1

2 ðu1tþ u2Þ þ u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u20

q
tanh 1

2 ðu1tþ u2Þ þ u0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u20

q
3
75

�3p
2

� ½u0 sinh ðu1tþ u2Þ � 1�
2k2�3k1

4k2 ; (34)

where u2 is a constant of integration and

a0 ¼ z0

�
�0
m

2V0

� k1
2k2 ; u1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2V0

k21 þ 4k2k3

s
;

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0V0

k2ð�0
mÞ2

� 1

s
; p ¼ �0V0

�0
mk2u1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u20

q ;

�0 ¼ z�3=2
0

�
�0
m

2V0

�2k2�3k1
4k2 ;

(35)

with z0 being another constant of integration. This solution
is valid for

�2
0 >

k2ð�0
mÞ2

V0

: (36)

The second one reads

aðtÞ ¼ a0e
�a1tðu3eu1t � 1Þqþ

k1
2k2 ; (37)

�ðtÞ ¼ �0e
3a1
2 tðu3eu1t � 1Þ

2ð1�3qÞk2�3k1
4k2 ; (38)

where

a1 ¼ �0V0

�0
mk2

; u3 ¼ V0e
u2

�0
m

; q ¼ �0V0

�0
mk2u1

: (39)

Such a solution is valid for

�2
0 ¼

k2ð�0
mÞ2

V0

: (40)

Let us analyze the cosmological meaning of the found
solutions by means of their asymptotic behaviors. If we set
u2 ¼ 0 in solution (33) and expand the hyperbolic func-
tions up to first order in t, by considering u1t � u0 for
small t, i.e., that u0 is sufficiently larger than unity, one has
the respective asymptotic form

aðtÞ ¼ a0ðu0u1Þ
k1
2k2

0
B@u0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u20

q
u0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u20

q
1
CA

p�
t� 1

u0u1

� k1
2k2 ; (41)

which is valid for small t. In this asymptotic limit we
require that the usual matter era holds, which occurs if
the exponent k1=2k2 presents the value 2=3. On the other
hand, from (29) we see that such a requirement implies that
F0 ¼ �3=4. Thus the usual matter era is not possible in
this solution since gravity must be attractive. By requiring
that k1=2k2 > 0 (a noncollapsing Universe) at the same
time that F0 > 0, we have that the exponent must be
limited in the ranges 0< k1=2k2 < 1=3 and 0< F0 <
1=4. Hence the model can produce a decelerated expansion
in the past although not a usual matter dominated era, with
the effective fluid composed of scalar and matter fields
driving such a deceleration.
Under the same considerations, the asymptotic behavior

of solution (33) for large t is

aðtÞ¼a0

�
u0
2

� k1
2k2

0
B@1þu0�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu20

q
1þu0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu20

q
1
CA

p

e
k1u1
2k2

t
; (42)

which stands for a de Sitter–like expansion in the future.
Therefore the referred solution describes a Universe that is
decelerated in the past and passes through a transition from
a decelerated to an accelerated phase in the present, evolv-
ing to a de Sitter Universe in the distant future.
Proceeding as above, the asymptotic form of solution

(37) for small t reads

aðtÞ ¼ a0ðu1u3Þqþ
k1
2k2

�
t� 1� u3

u1u3

�
qþ k1

2k2 : (43)

The usual matter era exponent, qþ k1=2k2 ¼ 2=3, holds
in this asymptotic form in the limit F0 ! 3=4. Note that if
we set F0 ¼ 3=4, one has an indeterminate form in the
exponent and the constant u1 vanishes, freezing out the
time evolution of the scale factor. Thus one can approxi-
mately recover the usual matter era in the past with F0 near
3=4, which from (40) implies that the constant of motion
must have a small value. It is important to point out that all
the positive values for F0 (except 3=4), all of which are
acceptable, produce a noncollapsing Universe, but only
values around F0 ¼ 3=4 can produce a quasiusual matter
dominated era.
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For large t, solution (37) presents the following asymp-
totic behavior:

aðtÞ ¼ a0u
qþ k1

2k2

3 e
½u1ðqþ k1

2k2
Þ�a1�t: (44)

Keeping all the fixed considerations for small t, the
above limit for large t also generates a de Sitter–like
expansion. Hence this solution also has the property
of a decelerated-accelerated phase transition, as well as
solution (33).

The general behavior of the solutions are in accordance
with the relatively recent astronomical observations on the
decelerated-accelerated expansion of the Universe [27–29].
However the first solution cannot recover the usual matter
era in the past, which is approximately achieved by the
second one. Thus the analyzed model may more success-
fully reproduce the cosmological dynamics through solution
(37). From these results, themassive scalar field of themodel
may simulate the dark energy.

VI. CONCLUSIONS

In this work we analyzed a model with a scalar field
nonminimally coupled to gravity through the Palatini

formalism and Noether symmetry approach and investi-
gated its cosmological relevance for the late Universe. A
technical advantage of this approach is that once theNoether
symmetry exists for the pointlike Lagrangian of the model,
the associated constant of motion and cyclic variable can
help with the integration of the system. We showed that the
massive scalar field is associated with a Noether symmetry
of the model and the corresponding dynamical system can
be completely integrated. The solutions of the system can
describe the transition from a decelerated to an accelerated
expansion of the Universe. However, the first found solution
cannot account for the usual matter dominated era in the
past, which is approximately accounted for by the second
one, being more in accordance with astronomical observa-
tions. Both solutions forecast a de Sitter Universe in the
distant future, i.e., an eternal accelerated expansion. In view
of these results, the massive scalar field may play the role
of dark energy in this model.
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