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4Institute for the Early Universe, Ewha Womans University, Seoul 120-750, South Korea
(Received 4 February 2013; published 2 April 2013)

Any unified dark matter cosmology can be decomposed into dark matter interacting with vacuum

energy, without introducing any additional degrees of freedom. We present observational constraints on an

interacting vacuum plus dark energy corresponding to a generalized Chaplygin gas cosmology. We

consider two distinct models for the interaction leading to either a barotropic equation of state or dark

matter that follows geodesics, corresponding to a rest-frame sound speed equal to the adiabatic sound

speed or zero sound speed, respectively. For the barotropic model, the most stringent constraint on �

comes from the combination of CMBþ SNIaþ LSSðmÞ gives �< 5:66� 10�6 at the 95% confidence

level, which indicates that the barotropic model must be extremely close to the�CDM cosmology. For the

case where the dark matter follows geodesics, perturbations have zero sound speed, and CMBþ SNIaþ
gISW then gives the much weaker constraint �0:15<�< 0:26 at the 95% confidence level.

DOI: 10.1103/PhysRevD.87.083503 PACS numbers: 98.80.�k, 98.80.Es

I. INTRODUCTION

The dominance of dark energy and dark matter in the
present cosmological energy density has led many authors
to seek a unified description in terms of a single dark
component, referred to as unified dark matter or quartes-
sence [1], which should explain both the current acceler-
ated expansion of the Universe and the role of nonbaryonic
dark matter in structure formation. One candidate from this
kind of model, which has attracted a lot of attention, is the
generalized Chaplygin gas (GCG) model [2,3]. It is a fluid,
defined by an exotic equation of state,

PgCg ¼ � A

��
gCg

; (1)

with model parameters � and A. The GCG model with
� ¼ 1 reduces to the original Chaplygin gas model [2,4].
Predictions of the GCG cosmology have been tested
against the different observational data, including type Ia
supernovae (SNIa)[5–7], the positions of cosmic micro-
wave background (CMB) radiation peaks [8–10], the x-ray
gas mass fraction of clusters [11], Hubble parameter-
redshift data [12,13], the lookback time-redshift data
[14], gamma-ray bursts [15], and various combinations of
the updated data [16].

Going beyond constraints provided by the homogeneous
background cosmology, the inclusion of inhomogeneous
linear perturbations in the GCG has an effect on both the
cosmic microwave background anisotropies and structure
formation. In particular, the imprint of a large integrated
Sachs-Wolfe (ISW) signal [17], which arises from a time-
dependent gravitational potential when dark energy domi-
nates at late times in the Universe, could be observed on the

CMB anisotropies [18,19]. Recently, in Ref. [20] two of us
revisited constraints on the GCG model from the combi-
nation of CMB, baryon acoustic oscillations (BAO), and
SNIa, including the full CMB temperature and polarization
power spectra data. A tight bound for the parameter � was
obtained up to the order of 10�3.
The effect of the GCG on structure formation also con-

tains important information. In Ref. [21], it was argued that
in order to predict large-scale structure (LSS) consistent
with the data from the 2dF survey [22], the GCGmodel has
to be indistinguishable from �CDM, with �<Oð10�5Þ.
The slightly looser constraint, �<Oð10�4Þ was obtained
in Ref. [23] by fitting the predicted baryon matter power
spectrum, rather than the total matter power spectrum, to
the Sloan Digital Sky Survey (SDSS) DR7 power spectrum
data.1 In either case a stringent limit is placed on the �
parameter because there are either instabilities or oscilla-
tions in the GCG power spectra due to the adiabatic pres-
sure perturbation produced for nonzero �. This problem
can be avoided in some unified dark matter models by
requiring a fast transition between a CDM-like era and a
�CDM-like phase [25–27].
In order to save the GCG model some type of intrinsic

entropy perturbation must be introduced in the GCG fluid
to counteract the effect caused by the adiabatic GCG
pressure perturbation, as in the so-called silent GCGmodel
[28]. The combined constraints from data on both the silent
GCG and standard GCG model are presented in Ref. [29].

1The theoretical baryon power spectrum may also be compat-
ible with SDSS observations for large �> 1, corresponding to a
superluminal sound speed [24], however the CMB power spec-
trum does not favor this regime [23].
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It is shown that with a vanishing GCG pressure perturba-
tion there is a much wider allowed parameter range,
�0:3<�< 0:7 [29]. Subsequently, the ISW data [30]
was used to constrain the silent GCG model [31]. The
required entropy perturbation can be introduced by decom-
posing the GCG fluid into two components of dark matter
and dark energy [32], but the possible ways of decompo-
sition are not unique [33]. In Ref. [34] the GCG model was
split into dark matter and vacuum energy, considering a
homogeneous vacuum when studying density perturba-
tions in the Newtonian limit.

Recently it has been shown that any unified dark matter
model can be decomposed into dark matter interacting with
a vacuum energy (with equation of state P ¼ ��) without
introducing any additional degrees of freedom [35]. In
general an interacting vacuum energy is inhomogeneous,
and a description of the dynamics of inhomogeneous
vacuum energy was presented in Refs. [35,36].

In this paper we will study in detail the constraints on a
decomposed GCG model described by dark matter inter-
acting with inhomogeneous vacuum energy. A closed set of
perturbation equations are obtained once a covariant form
is specified for the interaction. Firstly, we consider a model
in which the vacuum energy is a function of the local
matter density. We show this leads to a barotropic equation
of state for the dark matterþ vacuum, and hence reprodu-
ces previous results for a unified GCG. Secondly, we
consider an energy-momentum transfer parallel to the
matter four-velocity, leading to a geodesic flow for the
matter. In both cases we consider background cosmologies
that mimic the GCG cosmologies, but the evolution of
linear perturbations differs due to the presence of non-
adiabatic pressure perturbations. We pay particular atten-
tion to their imprints on the CMB and LSS power spectra.
To constrain the barotropic and geodesic model parameters
we will use different combinations of current cosmological
data including the CMB temperature and polarization
power spectra [37], SNIa from the Union2.1 compilation
of the Supernova Cosmology Project Collaboration [38],
the BAO distance measurements [39], the LSS power
spectrum from SDSS DR7 [40], and the galaxy-ISW
(gISW) cross-correlation power spectra from Ref. [41].

This paper is organized as follows. In the next section,
we review the background equations for the GCG model.
In Sec. III, the linear perturbation equations for both the
unified GCG model and the two decomposed models are
presented. In Sec. IV, we show the effects on CMB and
LSS power spectra in the two decomposed models, then
perform a global fitting to observational data by using the
Markov Chain Monte Carlo (MCMC) method and discuss
the resulting constraints on the interaction. In the final
section we present our conclusions. In what follows (unless
otherwise specified) the illustrative plots are shown using
the joint mean values for cosmological parameters from
WMAP7 data [37]: �bh

2 ¼ 0:02255, �dmh
2 ¼ 0:1126,

h ¼ 0:702, � ¼ 0:088, ns ¼ 0:968, and As ¼ 2:43�
10�9 at ks0 ¼ 0:002 Mpc�1.

II. CHAPLYGIN GAS COSMOLOGY

We will consider a spatially flat, homogeneous and iso-
tropic Friedmann-Robertson-Walker universe with metric

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj; (2)

where the Friedmann equation is given by

H2 �
�
_a

a

�
2 ¼ 8�G

3
ð�b þ �r þ �gCgÞ; (3)

where �b, �r and �gCg are the energy densities of baryons,

radiation and a generalized Chaplygin gas which can act as
both a dark energy component, accelerating the Universe at
late times, and dark matter. The energy conservation
equations for the various components read

_�b þ 3H�b ¼ 0; (4)

_�r þ 4H�r ¼ 0; (5)

_�gCg þ 3Hð�gCg þ PgCgÞ ¼ 0: (6)

The equation of state for GCG (1) then allows us to integrate
Eq. (6) to obtain

�gCg ¼ �gCg0½Bs þ ð1� BsÞa�3ð1þ�Þ�1=ð1þ�Þ; (7)

where �gCg0 is the present value of energy density of

GCG (when a ¼ a0 ¼ 1) and we have replaced A in
Eq. (1) with the dimensionless model parameter,
Bs ¼ A=�1þ�

gCg0.

In a previous work we have shown that a unified dark
matter fluid with an arbitrary equation of state can be
decomposed into pressureless dark matter interacting
with a vacuum energy, V, with an appropriate energy
transfer [35] (see also Ref. [33]). For the GCG solution
(7), we can write

�gCg ¼ �dm þ V; (8)

such that, from Eq. (1)

A ¼ Vð�dm þ VÞ�: (9)

The conservation equations of dark matter and vacuum
energy are

_�dm þ 3H�dm ¼ �Q; (10)

_V ¼ Q: (11)

Thus from Eqs. (9)–(11), we obtain

Q ¼ 3�H
�dmV

�dm þ V
: (12)
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In the decomposed model (8), the parameter, Bs in
Eq. (7), can be written in terms of the present values of
the energy densities, Bs ¼ ½V=ð�dm þ VÞ�0. The decom-
posed model is characterized by a single dimensionless
parameter � [35], but an FRW solution is specified by two
boundary conditions (such as the present density of matter
and vacuum) whereas the original GCG model is specified
by two model parameters, � and A (or Bs) and one bound-
ary condition. This already suggests that the decomposed
model may naturally accommodate nonadiabatic density
perturbations, in addition to the adiabatic perturbations of
the original GCG. As we shall see, this can have important
consequences for the evolution of perturbations in a
decomposed model.

Note that the Friedmann equation (3) can be written as

H2 ¼ H2
0

�
�ba

�3 þ�ra
�4 þ ð�V þ�dmÞ

�
�

�V

�V þ�dm

þ �dm

�V þ�dm

a�3ð1þ�Þ
� 1

1þ�

�
; (13)

where the dimensionless fractional energy density of
individual components is defined as

�I ¼
�
8�G�I

3H2

�
0
; (14)

which satisfies �b þ�r þ�V þ�dm ¼ 1.
We illustrate the background evolution as a function

of redshift for different values of the parameter � in
Fig. 1. In the particular case when � ¼ 0, the background
evolution is identical to that for the �CDM model.

The FRW background solution, Eq. (13), shows a de-
generacy between the decomposed vacuumþ dark matter
with the interaction (12) and the unified GCG with
equation of state (1), where �gCg ¼ �V þ�dm and Bs ¼
�V=ð�V þ�dmÞ. As discussed in Ref. [33], this is an
example of a more general degeneracy between interacting
and unified models. One can either specify an exotic
equation of state for a unified dark matter model, or
one can obtain many equivalent decomposed models

containing interacting fluids with a specified energy
transfer. Although equivalent to a unified model at the
background level, we expect different physical models
for the interaction to be distinguished by the evolution of
inhomogeneous perturbations.

III. THE LINEAR PERTURBATION EQUATIONS

We begin with a general scalar mode of the metric
perturbation in an arbitrary gauge with the perturbed line
of element [42–45]

ds2 ¼ �ð1þ 2�Þdt2 þ 2a@iBdtdx
i

þ a2½ð1� 2c Þ�ij þ 2@i@jE�dxidxj: (15)

The Einstein equations are [42–45]

3Hð _c þH�Þ � r2

a2
ðc þH�Þ ¼ �4�G��; (16)

_c þH� ¼ �4�Gð�þ PÞ�; (17)

_�þH���þ c ¼ 8�G�; (18)

€c þ 3H _c þH _�þ ð3H2 þ 2 _HÞ�

¼ 4�G

�
�Pþ 2

3

r2

a2
�

�
; (19)

where � � a2 _E� aB is the shear, �� is the total density
perturbation, �P is the total pressure perturbation,� is the
total anisotropic stress, and � is the total covariant velocity
perturbation.2

For each individual component, the covariant conser-
vation equation allowing for energy-momentum transfer
gives

r	T
	

ðIÞ ¼ Q


ðIÞ: (20)

General relativity requires conservation of the total
energy-momentum, r	T

	
 ¼ 0, so we have
P

IQ


ðIÞ ¼ 0.

The perturbed energy-momentum transfer four-vector is
conventionally split into the energy transfer, QI þ �QI,
and momentum transfer, fI, relative to the total four-
velocity [44–47]

QðIÞ
	 ¼ ½�QIð1þ�Þ � �QI; @iðfI þQI�Þ�: (21)

The energy and momentum conservation equations for
each fluid component are then [43–45,47]

_��I þ 3Hð��I þ �PIÞ � 3ð�I þ PIÞ _c

þ ð�I þ PIÞ r
2

a2
ð�I þ �Þ ¼ �QI þQI�; (22)
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FIG. 1 (color online). The Hubble parameter as a function of
redshift z for different values of parameter �, where the solid
line with � ¼ 0 corresponds to �CDM model.

2Note that � � aðvþ BÞ in terms of the total velocity poten-
tial v defined in, e.g., Ref. [45].
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ð�I þ PIÞ _�I � 3c2sIHð�I þ PIÞ�I þ ð�I þ PIÞ�

þ �PI þ 2

3

r2

a2
�I ¼ fI þQI�� ð1þ c2sIÞQI�I; (23)

where c2sI ¼ _PI= _�I is the adiabatic sound speed.
The numerical code CAMB [48] is written in the

synchronous gauge, so in order to place quantitative
constraints on the model parameters we will solve the
equations in a synchronous gauge [49] where

�¼B¼ 0; c ¼�; and k2E¼�h

2
� 3�: (24)

There is a residual spatial gauge freedom in the synchro-
nous gauge which allows one to set the initial velocity of
any component to zero. We see from Eq. (23) that it is
possible to work in a gauge in which �I ¼ 0 at all times for
noninteracting, pressureless matter. A comoving synchro-
nous gauge is commonly used, in which the dark matter
velocity is zero, �dm ¼ 0. This is no longer possible in
models where the dark matter experiences a momentum
transfer, fdm þQdmð�� �dmÞ � 0. We can still work in a
synchronous gauge, but note that the dark matter velocity is
not necessarily zero.

The time-time and time-space components of the
perturbed Einstein field equations, (16) and (17), in the
synchronous gauge are

_h

2
¼ 1

H

�
k2

a2
�þ 4�G��

�
; (25)

_� ¼ �4�Gð�þ PÞ�: (26)

Together with the energy and momentum conservation
equations for each component, these form a closed set
of equations.

After decoupling, the baryon component is conserved
independently and the perturbation equations for the
baryon density contrast and velocity are given by

_�b � k2

a2
�b ¼ �

_h

2
; (27)

_�b ¼ 0: (28)

Combining Eqs. (18) and (19) in the synchronous gauge
and Eq. (25), we have

€hþ 2H _h ¼ �8�Gð��þ 3�PÞ: (29)

By differentiating Eq. (27) with respect to time and
combining Eq. (28) and the above equation, we find a
second-order differential equation for the baryonic density
contrast,

€�b þ 2H _�b ¼ 4�Gð��þ 3�PÞ: (30)

A. Unified GCG model

First let us consider perturbations in the unified GCG
model, where the energy-momentum tensor of the GCG is
conserved and hence Eqs. (22) and (23) give the perturbed
energy and momentum conservation equations

_�gCg þ 3Hðc2s;gCg � wgCgÞ�gCg

þ ð1þ wgCgÞ
�
� k2

a2
�gCg þ

_h

2

�
¼ 0; (31)

_�gCg � 3c2s;gCgH�gCg þ
c2s;gCg

1þ wgCg

�gCg ¼ 0; (32)

where the adiabatic sound speed for the GCG is fixed by
the equation of state of the GCG,

c2s;gCg ¼ ��wgCg; (33)

wgCg ¼ � Bs

Bs þ ð1� BsÞa�3ð1þ�Þ : (34)

We can derive a second-order differential equation for
GCG overdensity by differentiating Eq. (31) with respect
to time and combining Eqs. (29) and (32),

€�gCg þ 2H½1þ 3ðc2s;gCg � wgCgÞ� _�gCg

þ ½3 _Hðc2s;gCg � wgCgÞ þ 3Hðc2s;gCg � wgCgÞ:
þ 9H2ðc2s;gCg � wgCgÞ2 þ 6H2ðc2s;gCg � wgCgÞ��gCg

¼ �c2s;gCg
k2

a2
�gCg þ ð1þ wgCgÞ3c2s;gCgH

k2

a2
�gCg

þ ð1þ wgCgÞ4�Gð��þ 3�PÞ: (35)

The first term on the right-hand-side of the above equation
dominates in the small-scale limit and the adiabatic pres-
sure perturbation causes the instabilities (or oscillations)
of density perturbations for negative (or positive) � [50].

B. Interacting vacuum energyþ dark matter models

Let us now consider a general interacting
vacuum energyþ dark matter model, where the energy
continuity equations (22) for the dark matter and vacuum
energy in the synchronous gauge become

_��dm þ 3H��dm þ �dm

�
� k2

a2
�dm þ

_h

2

�
¼ �Qdm; (36)

_�V ¼ �QV; (37)

while the momentum conservation equations (23) are
given by

�dm
_�dm ¼ fdm þQdmð�� �dmÞ; (38)

� �V ¼ fV þQV�: (39)
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Note that the vacuum energy has vanishing momentum and
therefore the force exerted on the vacuum, @iðfV þQV�Þ,
is exactly canceled by the gradient of the vacuum pressure,
@ið��VÞ.

The conservation of total energy-momentum for the
interacting dark matter and vacuum energy implies that

QV ¼ �Qdm ¼ Q; �QV ¼ ��Qdm;

fV ¼ �fdm: (40)

We can then eliminate �Qdm and fdm using the energy and
momentum conservation equations for the vacuum (37)
and (39) to leave the energy-momentum conservation
equations for the dark matter

_�dm � Q

�dm

�dm � k2

a2
�dm þ

_h

2
¼ �

_�V

�dm

(41)

�dm
_�dm ¼ �V þQ�dm; (42)

where the background energy transfer Q is given by
Eq. (12).

Note that the interacting vacuumþ dark matter introdu-
ces no additional degrees of freedom with respect to the
original GCG. We have two coupled first-order equations
(41) and (42) for the dark matter density and velocity,
instead of the two coupled first-order equations (31) and
(32) for the GCG density and velocity. The background
solution determines the adiabatic sound speed and equation
of state for the GCG, whereas a physical model for the
interaction is required to determine the vacuum perturba-
tion, �V, and can affect the sound speed for the interacting
vacuumþ dark matter.

Generally we can identify two classes of interacting
models which could be used to specify the energy-
momentum transfer in the decomposed model. Either one
can specify the vacuum energy as a function, VðXÞ, of
some scalar quantity X, and hence �V ¼ V 0ðXÞ�X. Or
else one can identify a four-vector, U	, which the
energy-transfer (20) is parallel to:Q	

V / U	. In the follow-
ing we will consider one example of each class of interact-
ing model, but we note that these are not unique and it may
be interesting to consider other possibilities with different
observational signatures.

1. Barotropic model

Firstly, we consider a model in which the vacuum energy
density is a function of local dark matter density

V ¼ Vð�dmÞ: (43)

This implies that the energy transfer between the vacuum
and the dark matter is along the gradient of the local dark
matter density: Q

	
V / r	�dm.

At linear order, we have

�V ¼ _V

_�dm

��dm; (44)

which shows that in this case the relative perturbations
between the vacuum and the dark matter are adiabatic.
The total pressure perturbation for the interacting
dark matterþ vacuum energy is

��V ¼ �V

�dm þ V
ð��dm þ �VÞ;

¼ c2s;gCgð��dm þ �VÞ: (45)

Therefore, the sound speed for the interacting
dark matterþ vacuum energy is exactly the same as the
adiabatic sound speed for the original generalized Chaplygin
gas, c2s;gCg given by Eq. (33) [35,36]. We show the effect on

the sound speed caused by the parameter � in Fig. 2.
In the synchronous gauge, we have from Eqs. (41), (42),

and (44)

_�dm ¼ ð1þ �ÞQ
�dm þ ð1þ �ÞV �dm þ �dm þ ð1þ �ÞV

�dm þ V

k2

a2
�dm

� �dm þ ð1þ �ÞV
�dm þ V

_h

2
; (46)

_�dm ¼ Q

�dm

�dm � �V

�dm þ ð1þ �ÞV �dm: (47)

It is clear that the barotropic model with � ¼ 0 reduces to
the�CDMmodel at the linear order. Comparing with dark
matter perturbations in the standard�CDMmodel, we can
see that density contrasts and velocities of the interacting
dark matter evolve very differently. In this case, due to the
presence of momentum transfer, �dm will evolve to be
nonzero, even if its initial value is set to zero. Therefore,
the synchronous gauge is not comoving with the interact-
ing dark matter and we calculate the perturbed equations in
an arbitrary synchronous gauge [51].
Combining Eqs. (46) and (47) with Eq. (29), we obtain

a second-order differential equation for the dark matter
overdensity
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FIG. 2 (color online). The sound speed as a function of scale
factor a for the barotropic model.
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€�dm �
�

2ð1þ �ÞQ
�dm þ ð1þ �ÞV � 2H

�
_�dm

�
�� ð1þ �ÞQ
�dm þ ð1þ �ÞV

�
: �

� ð1þ �ÞQ
�dm þ ð1þ �ÞV

�
2

þ 2H

� ð1þ �ÞQ
�dm þ ð1þ �ÞV

��
�dm

¼ �c2s;gCg
k2

a2
�dm þ

�
1þ �V

�dm þ V

�
Q

�dm

k2

a2
�dm

þ
�
1þ �V

�dm þ V

�
4�Gð��þ 3�PÞ: (48)

The first term on the right-hand-side of Eq. (48) dominates
in the small-scale limit. Negative � causes instabilities of
density perturbations. Conversely, there are oscillations of
perturbations for positive �. In order to avoid the presence
of negative sound speed, wewill require� � 0 in this case.

We find that the perturbations for the barotropic model,
Eqs. (46)–(48), obey the same dynamical evolutions as
those for the unified GCG model, Eqs. (31), (32), and
(35), where we identify

�gCg ¼ �dm

�dm þ ð1þ �ÞV �dm; �gCg ¼ �dm: (49)

We should not be surprised that this interacting model
reproduces the same behavior as the GCG since by
requiring V ¼ Vð�dmÞ we have set the pressure of the
interacting matterþ vacuum PdmþV¼�V to be an imp-
licit function of �dm þ V, i.e., we have a barotropic fluid.

The evolution of the dark matter density perturbations
for the barotropic model on a fixed scale is shown in
Fig. 3. In the left panel, it is shown that increasing �
causes the suppression of the growth of density fluctua-
tions on the scale, k ¼ 0:001 ½hMpc�1�. For the smaller
scale, k¼0:01 ½hMpc�1�, in the right panel, we can see
that density fluctuations rapidly decay and oscillate with
increasing �.

2. Geodesic model

An alternative model for the energy transfer is to con-
sider an energy flow that is parallel to the four-velocity of
the dark matter,

Q	
ðdmÞ ¼ �Qu	ðdmÞ: (50)

For this form of the covariant interaction there is no
momentum transfer in the rest frame of dark matter
[52,53], fdm �Qð�� �dmÞ ¼ 0 in Eq. (21). The velocity
perturbation for dark matter is not affected by the interac-
tion and obeys the standard equation, _�dm ¼ 0 from
Eq. (38). This allows us to work in a synchronous gauge
that is comoving with the dark matter (�dm ¼ 0). The dark
matter four-velocity, u	 is thus a geodesic flow:
u	ðdmÞr	u



ðdmÞ ¼ 0. Hence we will refer to this form of

energy-transfer as a geodesic model.
The vacuum perturbation in the dark matter-comoving

frame is identically zero, from Eq. (42),

�Vcom ¼ �V þ _V�dm ¼ 0: (51)
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FIG. 3 (color online). The dark matter density perturbations on fixed scales: k¼0:001½hMpc�1� (left panel) and k ¼ 0:01 ½hMpc�1�
(right panel) as a function of scale factor for the barotropic model. The thin solid line, dashed line, dotted line, dot-dashed line, and
thick solid line correspond to � ¼ 0:1, 0.05, 0.01, 0.001, 0 (�CDM model), respectively.
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The pressure perturbation for the interacting
vacuumþ dark matter is therefore zero in the dark matter
rest frame and thus the speed of sound for the interacting
vacuumþ dark matter is zero3 [35,36]. Note that this
implies that in this case there is a nonadiabatic pressure
perturbation, due to the relative entropy perturbation
between the dark matter and the vacuum energy [35,36],
in contrast to the barotropic model.

From Eq. (41), the perturbation equation for the dark
matter density contrast in the rest frame of dark matter obeys

_� dm ¼ �
_h

2
þ Q

�dm

�dm: (52)

We see that, again, the case with � ¼ 0 is completely
equivalent to �CDM at linear order.

A second-order differential equation for the dark matter
overdensity can be derived from the above equation and
Eq. (29), which gives

€�dm þ
�
� Q

�dm

þ 2H

�
_�dm �

�
2H

Q

�dm

þ
_�
Q

�dm

��
�dm

¼ 4�Gð��þ 3�PÞ: (53)

We plot the evolution of the dark matter density pertur-
bations on different scales in Fig. 4. Compared with the
growth in the�CDMmodel, positive � indicates that there
is an energy transfer from dark matter to vacuum energy,
so the growth of density perturbations with positive � is
suppressed at early times during matter-domination. At
late times, vacuum energy dominates in the Universe, and
the vacuum interaction drives the growth of dark matter
density perturbations. Conversely, for the negative � the
growth of density perturbations is enhanced at early times
and is gradually suppressed at late times. Note that there is
no instability associated with imaginary speed of sound
for �< 0 in the geodesic model.

IV. COSMOLOGICAL CONSTRAINTS

A. Theoretical predictions of CMB
and LSS power spectra

First, we illustrate the imprint on the CMB and LSS
power spectra for different values of the parameter � for
both the barotropic model and geodesic model. For the
barotropic model we will restrict the value of � to be
greater than or equal to zero in order to avoid instabilities
due to an imaginary sound speed, but we will extend � to
negative values for the geodesic model since the sound
speed remains real in that case.
The effects on the CMB power spectra are shown in

Fig. 5. From the left panel, positive � leads to an energy
transfer from dark matter to vacuum energy. Increasing �
causes the matter-radiation equality to happen earlier and
hence suppresses the first acoustic peaks. Conversely,
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FIG. 4 (color online). The dark matter density perturbations on fixed scales: k¼0:001½hMpc�1� (left panel) and k ¼ 0:01 ½hMpc�1�
(right panel) as a function of scale factor for the geodesic model. The thin solid line, dashed line, thick solid line, dotted line, and
dot-dashed line correspond to � ¼ 0:2, 0.1, 0 (�CDM model), �0:1, �0:2, respectively.

3A vanishing pressure perturbation was also considered in a
Cardassian model without any internal fluctuations, which in a
special case that 
 ¼ 1 reproduces a GCG background [54].
However we will show that in the geodesic model dark matter
density perturbations are affected by the background interaction
and obey a modified perturbation equation.
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negative � delays the epoch of matter-radiation equality,
and hence amplifies the acoustic peaks, as shown in the
geodesic case in the right panel of Fig. 5.

One source of CMB anisotropies at low multipoles is the
ISW effect. The amplitude of the ISW signal on large
scales is affected not only by the epoch of dark matter-
vacuum energy equality, but is also modified directly by
the evolution of the gravitational potential, which differs in
the barotropic and geodesic models. These two competing
mechanisms give the final ISW signal.

In order to clearly express the ISW effect caused by the
time-varying gravitational potential, we calculate the
Newtonian potential, c N , corresponding to the metric
perturbation, c , in the Newtonian or longitudinal gauge
(B ¼ E ¼ 0) [49].

This is given by the relativistic Poisson equation [44]

k2c N ¼ �4�Ga2��; (54)

where the total comoving density perturbation is given by

�� ¼ X
I

�I½�I � 3Hð1þ wIÞ�I�; (55)

including the vacuum perturbation. The traceless, space-
space component of the Einstein field equations, (18),
gives the relation between the two scalar potentials in the
Newtonian gauge [44],

c N ��N ¼ 8�G�; (56)

where � is related to total the anisotropic stresses.
Now the ISW temperature anisotropy is given by the

following source:

SISW ¼ _c N þ _�N;

¼ �8�G
d

dt

�
a2

k2
��þ�

�
: (57)

At late times, the relativistic particles (photons and neu-
trinos) can be neglected and there is no anisotropic stress.
Therefore, it is the comoving density perturbation that

drives the late-time ISW effect. Figure 6 shows how the
parameter � affects the time evolution of the gravitational
potential in the twomodels.We see that for the samevalue of
�wefind amuch larger variation in the Newtonian potential
at late times in the barotropic model due to the nonzero
sound speed, as shown in Fig. 2. This will be reflected in
much tighter bounds on the value of � in the barotropic
model coming from the overall CMBanisotropies, and these
constraints become even tighter when the galaxy clustering
data is also used to identify the late-time ISW effect.
Note that the overall CMB anisotropies, including the

ISW effect, are the same in the barotropic model and the
original unified Chaplygin gas model4 since the evolution
of the total matterþ vacuum density perturbations is the
same as the density perturbations in the unifiedGCGmodel.
In Fig. 7, we present the dark matter power spectrum, the

baryonic power spectrum, and the total matter power spec-
trum (baryon and dark matter) for the barotropic model.
The figure shows that, as expected, the dark matter has an
oscillating power spectrum in the small-scale limit for
nonzero �. The larger the parameter �, the larger the scale
where the oscillations of dark matter power spectra begin.
By comparison, the baryonic power spectra behave much
more smoothly as they are only gravitationally coupled to
the oscillating dark matter density [23]. The total matter
power spectra combining both dark matter and baryon
densities therefore shows intermediate behavior, but can-
not avoid the rapid decay of power spectrum on the small
scales for nonzero �.
Figure 8 shows the total matter power spectra for the

geodesic model. The problematic oscillations of the dark
matter power spectra do not occur in this case since the sound
speed is zero. The only oscillations seen are the baryon
acoustic oscillations, also seen in�CDM. The matter power
spectrum is enhanced on small scales for �> 0 due to the
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FIG. 5 (color online). CMB temperature power spectra vs multipole moment l. The solid line is for the �CDM model. Left panel:
The thick lines and thin lines for the same values of parameter � correspond to the barotropic model and geodesic model, respectively.
Right panel: The dashed line and dotted line correspond to � ¼ 0:1 and � ¼ �0:1 in the geodesic model, respectively.

4This case can also be obtained from case II of the Cardassian
model in Ref. [54] for 
 ¼ 1.
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earliermatter-radiation equality whichmoves the turnover in
the matter power spectrum to smaller scales.

B. Constraint method and data

Next, we will use a variety of cosmological data to
constrain these two models for the matterþ vacuum
interaction, according to the Markov Chain Monte Carlo
method, using the publicly available CosmoMC
package [55,56]. The cosmological parameter set is P �
f�bh

2;�dmh
2;�S; �; �; ns; log ½1010As�g, where�bh

2 and
�dmh

2 are the physical baryon and dark matter densities,
�S is the ratio (multiplied by 100) of the sound horizon and
angular diameter distance, � is the optical depth, � is the
dimensionless generalized Chaplygin gas model parame-
ter, ns is the scalar spectral index, and As is defined as the
amplitude of the initial power spectrum. Note that the
dimensional parameter A in the original definition of
the Chaplygin gas (1) is given in terms of �dm and �V

using Eq. (9) as

A ¼ �Vð�dm þ�VÞ�
�
3H2

0

8�G

�
1þ�

; (58)

and �V ¼ 1��b ��r ��dm, by the requirement of
spatial flatness.

We will use different combinations of data (CMBþ
SNIaþ BAO, CMBþ SNIaþ LSS, and CMBþ SNIaþ
gISW). For the LSS power spectra we will only use the
linear matter power spectrum up to k� 0:1 ½hMpc�1�.
In addition, we use a top-hat prior for the cosmic age,
i.e., 10 Gyr< t0 < 20 Gyr, impose a weak Gaussian prior
on the physical baryon density �bh

2 ¼ 0:022� 0:002
from big bang nucleosynthesis [57], and use the value of

the Hubble constant H0 ¼ 73:8� 2:4 km s�1 Mpc�1 [58]
taking a Gaussian likelihood function.
The theoretical galaxy-ISW cross-correlated power

spectrum, P�; _�, where
_� � _c N þ _�N , can be calculated

by a modified CAMB code. We modify the code by refer-
ring to ISiTGR [59], so that a power spectrum can be
directly calculated from the individual transfer function.
In the absence of magnification bias, the gISW cross
correlation is written as

CgxT
l ¼ TCMB

ðlþ 1=2Þ2
Z

dzbxðzÞ�xðzÞP�; _�

�
lþ 1=2

�ðzÞ ; z

�
; (59)

where the galaxy samples in Ref. [41] are collected from
the Two Micron All Sky Survey (2MASS) Extended
Source Catalog (XSC), which is divided into 4 bins:
2MASS0-3, the luminous red galaxies (LRGs) from
SDSS split into 2 sample bins: LRG0-1, the photometric
quasars from SDSS with 2 redshift bins: QSO0-1, and
NRAO VLA Sky Survey (NVSS): NVSS. Namely, there
are 9 galaxy sample bins x. The scale-independent bias
factor bxðzÞ is assumed to relate the observed projected
galaxy overdensity to the matter density. �xðzÞ is the
redshift distribution. �ðzÞ is the comoving radial distance.
In ISWWLL code, the function fxðzÞ � bxðzÞ�xðzÞ is
determined by fitting auto power spectra and cross power
spectra between the samples,

C
gxgy
l ¼

Z
dzfxðzÞfyðzÞ HðzÞ

�2ðzÞD
2ðzÞP�;�

�
lþ 1=2

�ðzÞ ; 0

�
;

(60)

even if the methods differ for the various samples.
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FIG. 8 (color online). The total matter power spectra as a function of wave number for the geodesic model. The thin solid line,
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For the 2MASS galaxies, the redshifts are identified
by matching 2MASS galaxies with SDSS main galaxies.
The nonlinearQmodel [60] (denoted by the bold text to be
distinguished from the background interaction Q) of the
galaxy power spectrum is used to get the bias bðzÞ and
parameter Q by fitting the auto power spectra of the
galaxies to the measured values. For the SDSS LRGs, the
redshift distribution is determined by the method in
Ref. [61], and the bias is also obtained by adopting the
same Q model fitting to the measurements as done for the
2MASS samples. For the SDSS quasars, the preliminary
redshift distribution is constructed and is used to predict
the shape of the function fQSO0-1ðzÞ in the presence of

magnification bias. For NVSS, the analytic � distribution

for fNVSSðzÞ is constrained by NVSS auto power spectrum
and cross power spectra with other samples.
For each sample, the individual fxðzÞ need to be recom-

puted when the cosmological parameters are changed. We
have modified the code [41] to give the correct background
evolution for our case, following Eq. (13), and the second-
order differential equation for the total matter density
perturbation is also modified due to the interaction of the
dark matter density perturbation with the vacuum, as given
in Eqs. (48) or (53) for our two interaction models. The
total matter density contrast is given by

�mðzÞ ¼ �dm�dm þ �b�b

�dm þ �b

: (61)

TABLE I. The mean values with 1� errors and marginalized 95% C.L. of parameter � for the barotropic model using different
combinations of data sets.

Parameters CMBþ SNIaþ BAO CMBþ SNIaþ LSSðmÞ CMBþ SNIaþ gISW CMBþ SNIaþ LSSðbÞ
�bh

2 0:0225þ0:0005
�0:0005 0:0224þ0:0005

�0:0005 0:0224þ0:0005
�0:0005 0:0224þ0:0005

�0:0005

�dmh
2 0:1115þ0:0033

�0:0032 0:1156þ0:0035
�0:0035 0:1102þ0:0038

�0:0038 0:1156þ0:0035
�0:0034

�S 1:0396þ0:0025
�0:0025 1:0396þ0:0025

�0:0025 1:0395þ0:0025
�0:0025 1:0395þ0:0025

�0:0025

� 0:0872þ0:0060
�0:0067 0:0851þ0:0062

�0:0072 0:0880þ0:0064
�0:0070 0:0855þ0:0061

�0:0066

� <2:68� 10�3 <5:66� 10�6 <3:97� 10�5 <1:07� 10�4

ns 0:970þ0:013
�0:012 0:964þ0:012

�0:012 0:967þ0:012
�0:012 0:964þ0:012

�0:012

log ½1010As� 3:081þ0:033
�0:033 3:090þ0:032

�0:032 3:075þ0:034
�0:034 3:091þ0:032

�0:032

�V 0:73þ0:01
�0:01 0:71þ0:02

�0:02 0:74þ0:02
�0:02 0:71þ0:02

�0:02

H0 70:8þ1:3
�1:2 69:1þ1:5

�1:5 71:2þ1:5
�1:6 69:1þ1:5
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FIG. 9 (color online). The 1D marginalized distributions for the parameter � and 2D contours with 68% C.L. and 95% C.L. for the
barotropic model using the combinations of data (left to right) CMBþ BAOþ SNIa (black line), CMBþ SNIaþ LSSðmÞ (red line),
CMBþ SNIaþ gISW (blue line) and CMBþ SNIaþ LSSðbÞ (magenta line), respectively. The vertical lines in the top panels are the
95% confidence levels.
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We have checked that compared with the density perturba-
tion, the dark matter velocity term, �dm, on the right-hand-
side of Eq. (48) is small enough to be ignored when we
solve the second-order differential equation (48) for the
barotropic case.

C. Barotropic model constraints

We present the constraints for the barotropic model from
the combined data sets of CMBþ SNIaþ BAO, CMBþ
SNIaþ LSSðmÞ, CMBþ SNIaþ gISW, and CMBþ
SNIaþ LSSðbÞ in Table I. Here LSS(b) denotes the
constraints obtained by fitting the LSS power spectra to
the baryonic matter power spectra, while LSS(m) means
that the theoretical predictions for the total matter
(baryonþ dark matter) power spectra are used. The

corresponding 1D marginal distribution of the parameter
� and the 2D contour plots of the parameters � and�V are

shown in Fig. 9.
From Table I and Fig. 9, we can see that the joint data

from CMBþ SNIaþ BAO can constrain � to be less than

or of order 10�3. Tighter bounds on the parameter � can be

obtained by using the LSS power spectra data. When the

total matter power spectra are used to fit the SDSS DR7

power spectra data combined with data from CMBþ
SNIa, the tightest bounds on the parameter � are obtained,

to less than or of order 10�6. By comparison when the

baryonic power spectra are fitted to the SDSS DR7 power

spectra data, larger values of � are allowed and the upper

limit at 95% C.L. is 1:07� 10�4. This is because the dark

matter power spectra are damped on small scales more

TABLE II. The mean values with 1� errors for the geodesic model using different combinations of data sets.

Parameters CMBþ SNIaþ BAO CMBþ SNIaþ LSSðmÞ CMBþ SNIaþ gISW

�bh
2 0:0224þ0:0005

�0:0005 0:0224þ0:0005
�0:0005 0:0225þ0:0005

�0:0005

�dmh
2 0:1077þ0:0144

�0:0146 0:1167þ0:0149
�0:0150 0:1062þ0:0135

�0:0135

�S 1:0395þ0:0026
�0:0026 1:0394þ0:0026

�0:0026 1:0397þ0:0025
�0:0025

� 0:0864þ0:0063
�0:0072 0:0862þ0:0063

�0:0072 0:0895þ0:0065
�0:0076

� 0:04þ0:11
�0:11 �0:01þ0:11

�0:11 0:03þ0:10
�0:10

ns 0:964þ0:013
�0:013 0:965þ0:013

�0:013 0:967þ0:013
�0:013

log ½1010As� 3:081þ0:033
�0:033 3:086þ0:033

�0:033 3:076þ0:034
�0:034

�V 0:74þ0:04
�0:04 0:71þ0:04

�0:04 0:75þ0:03
�0:03

H0 70:6þ1:5
�1:5 69:3þ1:9

�1:9 71:8þ1:7�1:7
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FIG. 10 (color online). The 1D marginalized distributions for the parameter � and 2D contours with 68% C.L. and 95% C.L. for the
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quickly than the baryonic power spectra as shown in Fig. 7.
From the thick lines in the left panel of Fig. 5, it is seen that
the low-multipole CMB power spectrum for the barotropic
model is obviously enhanced with the increasing� through
the ISW effect. By using the data of CMBþ SNIaþ
gISW, we obtain �< 3:97� 10�5 at the 95% C.L.

D. Geodesic model constraints

For the geodesic model, the constraints from the combi-
nation of various data are listed in Table II. The marginal
1D distributions and 2D contour plots from CMBþ
SNIaþ BAO, CMBþ SNIaþ LSSðmÞ, and CMBþ
SNIaþgISW are shown in Fig. 10.

CMBþ SNIaþ LSSðmÞ constraints allow negative
mean value for �. Compared with results from CMBþ
SNIaþ BAO and CMBþ SNIaþ LSSðmÞ constraints,
CMBþ SNIaþ gISW gives a relatively narrow allowed
range for �. The allowed range of the parameter � at
the 95% C.L. in this case are �0:16<�< 0:30 from
CMBþ SNIaþ BAO, �0:20<�< 0:21 from CMBþ
SNIaþ LSSðmÞ and �0:15<�< 0:26 from CMBþ
SNIaþ gISW, respectively. By comparison with the
results for the barotropic model on the basis of the same

data sets, the allowed region of parameter � for the geo-
desic model is obviously enlarged.
Finally, in Fig. 11 we show gISW cross-correlation

power spectra predicted by using the mean values of
CMBþ SNIaþ gISW for the two models.

V. CONCLUSIONS

Any unified dark matter model can be decomposed into
dark matter interacting with vacuum energy [34–36]. In
such a decomposed model, the vacuum energy is coupled
to dark matter and the energy-momentum transfer between
the vacuum energy and the dark matter is given by the
gradient of vacuum energy. Different covariant forms for
the energy-momentum transfer four-vector have different
effects on the CMBangular power spectrum andLSS power
spectrum through the different evolution of inhomogeneous
perturbation evolutions, even if the background cosmology
is the same. Observational constraints on these decomposed
models correspond to constraints on the interaction between
dark matter and the vacuum energy, where we recover
�CDM in the limit of zero interaction.
In this paper, we studied the evolution of perturbations in

a decomposed Chaplygin gas model and compared this
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FIG. 11 (color online). The gISW cross-correlation power spectra with different galaxy samples for the barotropic model (dashed
line) with mean values taken from CMBþ SNIaþ gISW constraints in the Table I and the geodesic model (solid line) with mean
values taken from CMBþ SNIaþ gISW constraints in the Table II, respectively. The dots with error bars denote the gISW data from
Ho et al. [41].
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with the evolution in a unified Chaplygin gas model with
adiabatic perturbations. We considered two different mod-
els for the energy-momentum transfer in the decomposed
case. In one model the energy-momentum transfer is along
the gradient of the local dark matter density, in which case
we recover the evolution equations for perturbations of a
single barotropic fluid with the same equation of state as
the generalized Chaplygin gas. The pressure perturbations
are adiabatic and the rest-frame sound speed equals the
adiabatic sound speed. This nonzero sound speed has an
effect on both the CMB power spectrum and the LSS
power spectrum. Increasing � enhances the CMB power
spectra at the low multipoles. In addition, the effect on the
total matter (baryonþ dark matter) power spectrum
caused by the sound speed is that there are decaying
oscillations in the matter power spectrum for positive �,
as for the generalized Chaplygin gas [21].

A different possibility which we considered is that the
energy-momentum transfer is along the dark matter four-
velocity, which leads to the dark matter following geodesics.
Comparedwith the barotropicmodel, the geodesicmodel has
a relative entropy perturbation between dark matter and
vacuum energy. Thus the sound speed of the interacting
dark matterþ vacuum energy in the dark matter rest frame
is zero. There are no oscillations or instabilities in the total
matter power spectrum for positive or negative �.

In the decomposed Chaplygin gas, different interaction
models can lead to very different evolutions of perturba-
tions due to the different sound speeds. We test whether
these two kinds of decomposed models can be supported
or distinguished by current observations. We have con-
strained the barotropic model and geodesic model by using
various combinations of data sets, including CMB con-
straints, type Ia supernovae, BAO distance measurements,
large-scale structure and the integrated Sachs-Wolfe effect.

For the barotropic model the most stringent constraint on
the � parameter is of the order of 10�6 from the combi-
nations of CMBþ SNIaþ LSSðmÞ, where the theoretical
total matter (baryonþ dark matter) power spectrum is
fitted to the LSS power spectrum data. We conclude that a
barotropic model must be extremely close to the �CDM

model. In contrast the allowed region for the� parameter in
the geodesic model is much larger, and negative � can also
be compatible with the observations. The geodesic model
thus allows significant deviations from the �CDM model.
In the case of a unified dark matter model it is not clear

whether the galaxy power spectrum on large scales should
follow the totalmatter power spectrum,which gives rise to the
gravitational potential, or the baryonic matter power spec-
trum, since only baryons follow geodesics. This choice leads
to different predictions for the LSS power spectrum [23]. The
same ambiguity applies in our barotropicmodel of interacting
vacuumþ dark matter, since the darkmatter does not follow
geodesics in this case, so we present constraints using LSS
fitted toboth the totalmatter power spectrumand the baryonic
matter power spectrum. In the geodesic model, however, we
only use the total matter power spectrum to fit the LSS power
spectrum since both the dark matter and the baryons follow
geodesics in this case, and we expect the total matter over-
density to be responsible for the formation of collapsed halos.
Nonetheless it would be interesting to study further the
process of nonlinear collapse in this model, and we hope to
return to this question in future work.
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