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This analysis aims at exploring what can be said about the growth rate of magnetized inhomogeneities

under two concurrent hypotheses: a phase of quasi—de Sitter dynamics driven by a single inflaton field

and the simultaneous presence of a spectator field coupled to gravity and to the gauge sector. Instead of

invoking ad hoc correlations between the various components, the system of scalar inhomogeneities is

diagonalized in terms of two gauge-invariant quasinormal modes whose weighted sum gives the curvature

perturbations on comoving orthogonal hypersurfaces. The predominance of the conventional adiabatic

scalar mode implies that the growth rate of magnetized inhomogeneities must not exceed 2.2 in Hubble

units if the conventional inflationary phase is to last about 70 e-folds and for a range of slow roll

parameters between 0.1 and 0.001. Longer and shorter durations of the quasi—de Sitter stage lead,

respectively, either to tighter or to looser bounds which are anyway more constraining than the standard

backreaction demands imposed on the gauge sector. Since a critical growth rate of order 2 leads to a

quasiflat magnetic energy spectrum, the upper bounds on the growth rate imply a lower bound on

the magnetic spectral index. The advantages of the uniform curvature gauge are emphasized and

specifically exploited throughout the treatment of the multicomponent system characterizing this class

of problems.
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I. FORMULATION OF THE PROBLEM

According to a recurrent theme of speculations, large-
scale magnetic fields could be generated in the early
Universe [1–6]. The curvature perturbations evolving
for typical length scales larger than the Hubble radius
can thus be magnetized with a mechanism bearing some
resemblance to a pristine nonadiabatic pressure fluctua-
tion. This observation has been used some time ago to
argue that the evolution of curvature perturbations con-
strains the magnetic power spectra [7]. In the present
paper the same logic explored in Ref. [7], i.e., the pre-
dominance of the adiabatic mode over the gauge contri-
butions, will be used to analyze consistently the
fluctuations of inflationary magnetogenesis and derive
different constraints on the growth rate of the correspond-
ing inhomogeneities.

The fate of magnetized scalar modes during diverse
dynamical regimes can be followed through a gauge-
invariant variable, conventionally denoted by � , describ-
ing either the curvature perturbations on the hypersurface
where the energy density is uniform or, complementarily,
the density contrast on uniform curvature hypersurfaces.
The latter interpretation becomes physically appealing
and mathematically simpler in the so-called uniform cur-
vature gauge which has been discussed in different con-
texts [8–11]. Since � is ultimately gauge invariant its
evolution can be studied in any gauge and the result of
Giovannini [7] derived originally in the uniform curvature

gauge [12] can be confirmed in different coordinate sys-
tems and in different dynamical situations [13]1; neglect-
ing electric fields and Ohmic currents the evolution
equation of � is

� 0 ¼ � H
�tð1þ wtÞ�pnad þH ð3c2st � 1Þ

3�tð1þ wtÞ ��B � �t
3
;

(1.1)

where �pnadð ~x; �Þ accounts for the nonadiabatic pressure
inhomogeneities; ��Bð ~x; �Þ is the fluctuation of the mag-

netic energy density and �t ¼ ~r � ~vt is the divergence of
the total velocity field. Barring for a possible contribution
of the total velocity field2 and in the absence of entropic
modes (i.e., �pnad ¼ 0) the solution of Eq. (1.1) is in fact
a functional of the total barotropic index wt ¼ pt=�t and
of the total sound speed c2st ¼ p0

t=�
0
t. Denoting with ��ð ~xÞ

the conventional adiabatic mode, the full solution of
Eq. (1.1) becomes

�ð ~x; a; a�Þ ¼ ��ð ~xÞ þ
Z a

a�

ð3c2stðbÞ � 1Þ
3�tðbÞ½1þ wtðbÞ�

� ��Bð ~x; bÞd ln b; (1.2)

*massimo.giovannini@cern.ch

1As usual the prime denotes the derivation with respect to the
conformal time coordinate � andH ¼ a0=a where a is the scale
factor of a conformally flat metric of Friedmann-Robertson-
Walker type.

2This term is subleading for wavelengths larger than the
Hubble radius at the corresponding epoch.
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where the integration variable is provided directly by the
scale factor.3

In the uniform curvature gauge [8–11], Eq. (1.1)
stems directly from the covariant conservation of the
total energy-momentum tensor on uniform curvature
hypersurfaces:

��0
t þ 3H ð��t þ �ptÞ þ ðpt þ �tÞ�t ¼ 0;

� ¼ ð��t þ ��BÞ
3ð1þ wtÞ�t

;
(1.3)

where, by definition,4 �pt ¼ c2st��t þ �pnad. The cova-
riant conservation of the total energy-momentum tensor
also implies the adiabatic suppression of ��Bð ~x; �Þ red-
shifting as a�4. A more general derivation of Eq. (1.1)
including Ohmic currents and energy flow is swiftly out-
lined in Eq. A.28 of Appendix A.

The strategy leading to Eqs. (1.1)–(1.3) could be rigidly
translated, at first sight, directly during the inflationary
stage of expansion. It might then seem plausible to keep
the whole logic untouched but to concoct specific modifi-
cations of the evolution of ��B modeling, via an appro-
priate rate of increase, the growth of ��B during inflation
when the relevant wavelengths of the corresponding fluc-
tuations are larger than the Hubble radius. A candidate
equation describing the amplification of the magnetic in-
homogeneities is, for instance,

��0
B þ 4H��B ¼ 2F��B; (1.4)

where 2F denotes the rate of increase of the magnetic
energy density which is twice the growth rate of the
magnetic field itself. Barring the presence of Ohmic cur-
rents and electric fields, Eq. (1.4) partially accounts for the
effect of superadiabatic amplification of the magnetic
fields but disrupts the covariant conservation of the total
system. This means that the evolution equation for � is no
longer valid. A compensating term can be added at the
right-hand side of Eq. (1.3) but this has different drawbacks
since the evolution equations derived from the covariant
conservation of the total energy-momentum tensor will be

no longer compatible with the remaining perturbed
Einstein equations.
If the dynamics of the inflationary magnetogenesis is not

taken into account specifically, the evolution of the whole
system turns out to be inconsistent because of the lack of
covariant conservation of the total energy-momentum ten-
sor. The first mandatory step for any analysis involving the
fluctuations of inflationary magnetogenesis is to posit a
perfectible framework where magnetic fields are amplified,
the Bianchi identities are satisfied and the inflationary
dynamics is satisfactorily implemented. We suggest that
the dynamics of magnetized inhomogeneities can be con-
sistently scrutinized in the following system:

G �
� ¼ 8�G½T�

�ð’Þ þ T�
�ð	Þ þT �

�ðp; �Þ þZ�
�ðYÞ�;

(1.5)

where G�
� denotes the Einstein tensor while T�

�ð’Þ is the
energy-momentum tensor of the inflaton ’; T�

�ð	Þ is the
energy-momentum tensor of a spectator field 	 and
T �

�ðp; �Þ is the energy-momentum tensors of the total

fluid sources while Z�
�ðYÞ is the energy-momentum tensor

of the gauge fields. The explicit coupling to the spectator or
to the inflaton fields leads to the covariant nonconservation
of Z�

�

r�Z
�
� ¼ @�


16�
Y��Y

�� þ j�Y��; (1.6)

where Y�� is the gauge field strength, j� is the four-current

and 
ðxÞ is a function parametrizing the coupling between
the gauge fields and the spectator field 	. For the sake of
generality we shall also consider the possibility that the
coupling will depend both on	 and’ so that 
 ¼ 
ð	;’Þ.
The covariant nonconservation of Z�

� is compensated by
the covariant nonconservation of the other energy-
momentum tensors:

r�T
�
� ð’Þ ¼ � @�’

16�

@


@’
Y��Y

��; (1.7)

r�T
�
� ð	Þ ¼ � @�	

16�

@


@	
Y��Y

��; (1.8)

r�T
�
� ¼ �j�Y��: (1.9)

Equation (1.5) captures a class of magnetogenesis scenar-
ios studied along different perspectives through the years
and some of the possibilities will now be recalled. In
general terms 
 ¼ 
½’ðxÞ; 	ðxÞ; . . .� may be a functional
of various scalar degrees of freedom such as the inflaton
’ [15], the dilaton [16], a dynamic gauge coupling [17,18]
(see also Refs. [19,20]). The field 
 can be a functional of a
spectator field 	 [21,22] (see also Refs. [23,24]) evolving
during the inflationary phase; in this case there is no
connection between the evolution of 
 and the gauge
coupling. Some of these possibilities can be realized in

3Equation (1.1) corresponds exactly to Eq. (2.15) of Ref. [7].
The same equation has been used [12] to deduce the initial
conditions of the cosmic microwave background (CMB) anisot-
ropies in the presence of postinflationary magnetic fields char-
acterizing the so-called magnetized adiabatic mode. Equation
(1.1) has been later generalized to the case when Ohmic currents
are present and also in the framework of the gradient expansion
(see, respectively, the first and second papers of Ref. [13]).
Exactly the same Eq. (1.1) has been applied in Ref. [14] with
virtually the same purpose of deriving a bound connecting the
amplitude of the adiabatic mode and the strength of the magnetic
field.

4The total pressure can fluctuate either because of a change in
the energy density (when the specific entropy is unperturbed) or
because of a change in the specific entropy of the system (when
the energy density is unperturbed).
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the case of bouncing models [16], some others are compat-
ible with the standard inflationary paradigm [15,17,18,21].
It is finally worth recalling a recent observation: the initial
conditions of inflationary magnetogenesis may be con-
ducting [25] since the Ohmic currents present during the
preinflationary dynamics are not damped by expansion due
to the Weyl invariance of the electromagnetic sources.

A perturbative treatment of the fluctuations of inflation-
ary magnetogenesis in a consistent dynamical framework
encompassing the inhomogeneities of the inflaton, of the
spectator field, of the growth factor and, last but not least,
of the relevant plasma variables will now be presented.
This analysis is lacking and it is mandatory if the principle
of predominance of the adiabatic mode spelled out in of
Ref. [7] is to be enforced during the inflationary phase. The
tools developed in this paper will allow for an accurate
constraint involving simultaneously the slow roll parame-
ters, the total number of inflationary e-folds and the total
rate of increase which can be defined, for the present

purposes, directly from Eq. (1.6) as F ¼ @�
ffiffiffiffi



p
=

ffiffiffiffi



p
.

Inspired by the analysis of Ref. [7] the pivotal variables
for the evolution of the gauge sector will not be the gauge
fields but rather the components of the energy-momentum
tensor. This strategy together with the gauge choice men-
tioned above will allow for a swifter calculation of the
primary and secondary curvature perturbations induced by
the inflaton field and by the spectator field.

The layout of this paper is the following. In Sec. II
the general equations of the system will be discussed
and the main notations specified. In Sec. III the description
of stochastic averages will be introduced with the aim of
reducing the evolution of the system to the evolution of the
components of the energy-momentum tensor of the gauge
field inhomogeneities. In Sec. IV the quasinormal modes of
inflationary magnetogenesis will be discussed in general
terms. In Sec. V the magnetized power spectra of the scalar
modes will be computed while in Sec. VI the bounds on the
growth rate of the magnetic energy density will be derived.
To avoid lengthy digressions various technical details have
been collected in the appendixes: in Appendix A the evo-
lution equations of the system have been explicitly derived
in the uniform curvature gauge systematically used in the
analysis; in Appendix B the second-order correlations of
the electric and magnetic fields have been specifically
computed and analyzed.

II. BASIC EQUATIONS AND DEFINITIONS

The system of equations swiftly outlined in
Eqs. (1.6)–(1.9) can be illustrated by specifying the actions
of the different contributions:

Stot ¼ Sgravity þ S’ þ S	 þ Sem þ Sfluid; (2.1)

where the first three terms of Eq. (2.1) are given by

SgravityþS’

¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

� 1

2‘2P
Rþ1

2
g��@�’@�’�Vð’Þ

�
; (2.2)

S	 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
g��@�	@�	�Wð	Þ

�
; (2.3)

Sem ¼ � 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p


ð’;	ÞY��Y
��

�
Z

d4x
ffiffiffiffiffiffiffi�g

p
j�Y

� þ SðþÞ þ Sð�Þ: (2.4)

In Eqs. (2.2) and (2.3), Vð’Þ and Wð	Þ denote, respec-
tively, the potentials of the inflaton field and of the specta-

tor field. In Eq. (2.4) j� ¼ jðþÞ
� � jð�Þ

� is the total current;

Sð�Þ are the actions of the charged species while the last

term of Eq. (2.1) (parametrized via a barotropic fluid) can
be important either at the onset of inflation (for conducting
initial conditions [25]) or during the postinflationary phase.
The notations for the Planck length and for the Planck mass
in units ℏ ¼ c ¼ B ¼ 1 are as follows:

‘2P ¼ 8�G ¼ 8�

M2
P

¼ 1
�M2
P

; (2.5)

where MP ¼ G�1=2 ¼ 1:22� 1019 GeV. On top of
Eq. (1.5), the equations of motion of the various fields
appearing in Eqs. (2.1) and (2.4) are given by Eq. (1.5)
supplemented by the following three equations:

g��r�r�’þ @V

@’
þ 1

16�

@


@’
Y��Y

�� ¼ 0; (2.6)

g��r�r�	þ @W

@	
þ 1

16�

@


@	
Y��Y

�� ¼ 0; (2.7)

r�T �
� ¼ 0; (2.8)

the explicit forms of the energy-momentum tensors T�
� ð’Þ,

T�
� ð	Þ and T �

�ð�; pÞ are

T�
� ð’Þ ¼ @�’@

�’�
�
1

2
g��@�’@�’� Vð’Þ

�
��
�; (2.9)

T�
� ð	Þ ¼ @�	@

�	�
�
1

2
g��@�	@�	�Wð	Þ

�
��
�;

(2.10)

T �
�ð�; pÞ ¼ ðpþ �Þu�u� � p��

�; (2.11)

Z �
�ðYÞ ¼ 


4�

�
�Y��Y

�� þ 1

4
��
�Y��Y

��

�
; (2.12)

where g��u�u� ¼ 1. By using Eqs. (2.9)–(2.12), the evo-

lution equations for the energy-momentum tensors men-
tioned in Eqs. (1.7)–(1.9), (2.6), and (2.7) can be
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reproduced bearing in mind the following pair of equations
for the gauge fields:

r�ð
Y��Þ ¼ 4�j�; r�
~Y�� ¼ 0; (2.13)

the dual field strength is defined as ~Y�� ¼ E����Y��=2 in

terms of the Levi-Civita tensor density E���� ¼
�����=

ffiffiffiffiffiffiffi�g
p

. Note, finally, as already mentioned in Sec. I

that 
 ¼ 
ð’;	Þ and, consequently, @�
 ¼ ð@’
@�’þ
@	
@�	Þ.

A. Background evolutions and some approximations

In a conformally flat background of the type �g�� ¼
a2ð�Þ��� [where að�Þ is the scale factor and ��� is the

Minkowski metric], Eqs. (1.5), (2.6), and (2.7) lead to the
following set of equations valid during the inflationary
phase:

3 �M2
PH

2 ¼ 1

2
ð’02 þ 	02Þ þ a2Vð’Þ þ a2Wð	Þ; (2.14)

2 �M2
PðH 2 �H 0Þ ¼ ’02 þ 	02; (2.15)

’00 þ 2H’0 þ @V

@’
a2 ¼ 0; (2.16)

	00 þ 2H	0 þ @W

@	
a2 ¼ 0: (2.17)

As mentioned prior to Eq. 1.1, in Eqs. (2.14)–(2.17) the
prime denotes a derivation with respect to the conformal
time coordinate �; furthermore H ¼ ðln aÞ0 ¼ aH where
H ¼ _a=a is the conventional Hubble rate and the overdot
denotes a derivation with respect to the cosmic time coor-
dinate t.

The slow roll approximation completely defines the evo-
lution during the inflationary phase where the parameters �,
� and �� are all much smaller than 1 and eventually get to 1
when inflation ends. The definitions of the slow roll parame-
ters within the notations of this paper are as follows:

�¼� _H

H2
¼ �M2

P

2

�
V;’

V

�
2
; �¼ €’

H _’
; ��¼ �M2

P

�
V;’’

V

�
;

(2.18)

note thatV;’ andV;’’ are shorthandnotations for the first and

second derivatives of the potential Vð’Þ with respect to ’.
The slow roll parameters�, �� and � are not independent and
their mutual relation, i.e., � ¼ �� �� follows from the slow
roll equations written in the cosmic time coordinate:

3H _’þ @V

@’
¼ 0; 3 �M2

PH
2 ¼ V; 2 �M2

P
_H ¼ � _’2;

(2.19)

where, by definition of spectator field, we have that �	 �
�’ and _’2 � _	2 having introduced the energy densities of

the inflaton �’ and of the spectator field �	. In the slow roll

approximation and for constant � we have that

H ¼ aH ¼ � 1

ð1� �Þ� : (2.20)

There are some classes of exact solutions which shall be used
in order to test the specific approximations discussed in the
second part of this analysis. If both’ and	 have exponential
potentials a solution of the system (2.14)–(2.17) subjected to
the constraint that�	 � �’ and _’2 � _	2 can bewritten, in

cosmic time, as

aðtÞ ¼ ðH1tÞ�; ’ðtÞ ¼ ffiffiffiffiffiffi
2�

p
�MP ln ðH1tÞ; (2.21)

Vð’Þ ¼ �M2
PH

2
1ð3�2 � �Þ exp

2
4�

ffiffiffiffi
2

�

s
’
�MP

3
5; (2.22)

	ðtÞ ¼ 2M ln ðMtÞ;
Wð	Þ ¼ 2ð3�� 1ÞM4 exp

�
� 	

M

�
;

(2.23)

with M � �MP and � � 1 so that � ¼ � ¼ 1=� � 1. In
conformal time the corresponding scale factor becomes

að�Þ ¼
�
� �

�1

���
; � ¼ �

�� 1
; (2.24)

with � ! 1 in the limit � � 1 and � � 1. In specific
models of inflationary evolution, the values of the slow roll
parameters, for a given number of e-folds, can be related to
the properties of the potential. To keep the discussion suffi-
ciently general we shall treat the slow roll parameters and the
number of e-folds as independent variables; conversely, as
already mentioned prior to Eq. (2.20), the slow roll parame-
terswill be taken to be constant implying that the inflationary
potentials considered here have a monomial form.

III. QUANTUM AND STOCHASTIC
DESCRIPTIONS

The amplification of the gauge fields can be described
quantum mechanically in terms of the appropriate canoni-
cal field operators and of their related mode functions. This
description is equivalent to the evolution of the power
spectra of the different correlations. The two approaches
are related and this observation turns out to be very prac-
tical for the present considerations.

A. Evolution of the canonical gauge field fluctuations

In the conformally flat background discussed in the
previous section, Eq. (2.13) becomes explicit in terms of
the canonical electric and magnetic fields diagonalizing the
action and the canonical Hamiltonian [25]:
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1ffiffiffiffi



p ~r � ð ffiffiffiffi



p
~EÞ ¼ 4�qðnþ � n�Þ;

ffiffiffiffi



p
~r �

� ~Bffiffiffiffi



p
�
¼ 0;

(3.1)

1ffiffiffiffi



p ~r� ð ffiffiffiffi



p
~BÞ ¼ 4�qðnþ ~vþ � n� ~v�Þ þ 1ffiffiffiffi



p @

@�
ð ffiffiffiffi



p

~EÞ;
(3.2)

ffiffiffiffi



p
~r�

� ~Effiffiffiffi



p
�
¼ � ffiffiffiffi



p @

@�

� ~Bffiffiffiffi



p
�
; (3.3)

where ~Eð ~x; �Þ and ~Bð ~x; �Þ are
~E ¼ a2

ffiffiffiffi



p
~e; ~B ¼ a2

ffiffiffiffi



p
~b: (3.4)

The fields ~e and ~b are introduced from the corresponding
field strengths, i.e., Yi0 ¼ �a2ei and Yij ¼ �a2�ijkb

k. The

gauge action is canonical in terms of ~E and ~B and not in

terms of ~e and ~b. Furthermore the systemofEqs. (3.1)–(3.3),
in the absence of electromagnetic sources, is invariant under

the generalized duality transformation ~E ! � ~B, ~B ! ~E

and
ffiffiffiffi



p ! 1=
ffiffiffiffi



p
[26,27] (see also the second paper quoted

in Ref. [25]).
Electromagnetic duality is a relevant symmetry for infla-

tionary magnetogenesis. There are, in short, two possibil-
ities for inflationary magnetogenesis. In bouncing models
(see, e.g., Refs. [28,29]) the Universe evolves from weak
gravitational coupling to strong gravitational coupling. In
conventional inflationary models the Universe evolves
from strong gravitational coupling to weak gravitational
coupling. In the case of conventional models of slow roll
inflation (such as the one described in this paper) there is a
strong gravitational coupling in the past, the background is
geodesically incomplete and, if we go back in time, we
shall sooner or later hit a singularity either in the curvature
or in the geodesics. In this case successful magnetogenesis
occurs when 
 increases and the question of this paper was
to establish the maximal rate of increase compatible with
the predominance of the adiabatic mode of curvature
perturbations.

If we identify 1=
 with the gauge coupling, the increase
of 
 implies a decrease of the gauge coupling which would
imply a gauge couplingOð1Þ at the onset of the inflationary
phase. If we go back in time and if we assume a monotonic
evolution of 1=
, then the gauge coupling can get strong,
exactly as it happens with the gravitational coupling. There
is nothing wrong with this dynamics for different reasons.
First, the preinflationary initial conditions are unsettled
even without gauge fields. Second, the evolution of 1=

can be nonmonotonic as suggested in the past. Third, if 	
is a spectator field (and not the dilaton) 
 must not be
necessarily identified with the inverse gauge coupling.

To summarize, in conventional magnetogenesis the
strong coupling is at the beginning while weak coupling
occurs at the end, close to reheating. In bouncing

magnetogenesis the situation is reversed and the strong
coupling occurs at the end of inflation. There is no surprise
with this kind of behavior: as the production of a flat
spectrum of curvature perturbations demands a strong
gravitational coupling in the past, similarly a quasiflat
magnetic field spectrum is realized in the case of a decreas-
ing gauge coupling. There are some who would like to start
with weak gauge coupling when the gravitational coupling
is strong [30] (see last paper in Ref. [21] for a rebuttal of
this kind of conjecture). This is impossible, as repeatedly
stressed in the past, exactly because of electromagnetic
duality. The punch line of this discussion can be summa-
rized by saying that the potential drawbacks of magneto-
genesis coincide with the potential drawbacks of
conventional models of inflation which are, typically, not
geodesically complete in their past history.

B. Evolution of the power spectra

Let us start by recalling the notion of stochastically
distributed Fourier modes in the case of the electric and
magnetic fields, i.e.,

hBið ~q; �ÞBjð ~p; �Þi ¼ 2�2

q3
PBðq; �ÞPijðq̂Þ�ð3Þð ~qþ ~pÞ; (3.5)

hEið ~q; �ÞEjð ~p; �Þi ¼ 2�2

q3
PEðq; �ÞPijðq̂Þ�ð3Þð ~qþ ~pÞ; (3.6)

where Pijðq̂Þ ¼ ð�ij � q̂iq̂jÞ (with q̂i ¼ qi=j ~qj); the con-

ventions for the Fourier transform are

Bið ~x; �Þ ¼ 1

ð2�Þ3=2
Z

d3kBið ~k; �Þe�i ~k� ~x;

Eið ~x; �Þ ¼ 1

ð2�Þ3=2
Z

d3kEið ~k; �Þe�i ~k� ~x:
(3.7)

From the Fourier transforms defined in Eq. (3.7), the
magnetic and electric power spectra defined in Eqs. (3.5)
and (3.6) [i.e., PBðq; �Þ and PEðq; �Þ] have dimensions of a
length to the �4 power (i.e., of an energy density) while

their square roots [i.e., PBðq; �Þ1=2 and PEðq; �Þ1=2] have
dimensions of a field intensity. This simple observation
implies, in particular, that the magnetic power spectrum is
assigned with the same conventions used to define the
power spectra of curvature perturbations and widely used
in all the literature both on the theoretical side as well as on
the observational side (see, for instance, Refs. [7,31–34]
for a randomly selected sample of papers where these
conventions are adopted). Defining with ns and nB the
spectral indices of curvature fluctuations and of the mag-
netic field fluctuations, the scale-invariant limits occur for
ns ¼ 1 and for nB ¼ 1.
There are some who assign the power spectra of curva-

ture perturbations in such a way that the scale-invariant
limit is ns ¼ 1 while, on the contrary, the power spectra
of magnetic fields are given in such a way that their
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scale-invariant limit would correspond to nB ¼ �3 (and
not to nB ¼ 1). It seems deliberately confusing to use
different conventions for the power spectra of scalars and
of vectors. In this paper we shall adhere to the conventions
expressed by Eqs. (3.5) and (3.6) which have several prac-

tical advantages since PBðq; �Þ1=2 is measured directly in
gauss or in Tesla.

The evolution equations (3.1)–(3.3) are equivalent to the
following set of equations obeyed by the power spectra of
Eqs. (3.5) and (3.6):

@PB

@�
¼ 2FPB � qPEB; (3.8)

@PE

@�
¼ �2ðF þ 4�	cÞPE þ qPEB; (3.9)

@PEB

@�
¼ 2qðPB � PEÞ � 4�	cPEB; (3.10)

where 	c denotes the Ohmic conductivity, F ¼ ffiffiffiffi



p
=

ffiffiffiffi



p 0
is the growth rate and PEB is the cross-correlation spectrum
defined implicitly by the following equation:

h ~E � ~r� ~Bi þ h ~B � ~r� ~Ei ¼ 2
Z

dqPEBðq; �Þ: (3.11)

The cross-correlation spectrum provides the physical dif-
ference between a stochastic collection of gauge fields
[described by Eqs. (3.5) and (3.6)] and their quantum
analog which will be discussed in a moment [see
Eqs. (3.17)]. Conducting initial conditions [25] correspond,
in Eqs. (3.6)–(3.8), to the limit PEB ! 0 where the mag-
netic fields are amplified and the electric fields suppressed
either at the same rate or even exponentially depending on
the value of the protoinflationary conductivity. In quantum
mechanical terms the canonical normal modes are field
operators defined as5

B̂ið ~x; �Þ ¼ � i

ð2�Þ3=2 �mni

X
�

Z
d3kkme

�
n ½fkð�Þâ ~k;�e

�i ~k� ~x

� f�kð�Þây~k;�ei
~k� ~x�; (3.12)

Êið ~x; �Þ ¼ 1

ð2�Þ3=2
X
�

Z
d3ke�i ½gkð�Þâ ~k;�e

�i ~k� ~x

þ g�kð�Þây~k;�ei
~k� ~x�; (3.13)

where the evolution of the mode functions is given by

f0k ¼ F fk � gk; g0k ¼ �F gk � 4�	cgk þ k2fk;

(3.14)

and the possibility of conducting initial conditions has
been included for comparison. In the absence of sources,

as already mentioned after Eqs. (3.1)–(3.3) and (3.14) are
invariant under generalized duality transformations stipu-
lating that fk ! gk=k, gk ! �kfk and F ! �F .
In terms of the mode functions, the Fourier components

of B̂ið ~x; �Þ and Êið ~x; �Þ are respectively

B̂ ið ~q; �Þ ¼ �i�mni

X
�

e�nqm½â ~q;�fqð�Þ þ ây� ~q;�f
�
qð�Þ�;

(3.15)

Ê ið ~q; �Þ ¼
X
�

e�i ½â ~q;�gqð�Þ þ ây� ~q;�g
�
qð�Þ�: (3.16)

It can be immediately checked that Eqs. (3.15) and (3.16)
obey the stochastic averages defined earlier in Eqs. (3.5)
and (3.6); for instance, in the case of the magnetic field
operator,

h0jB̂ið ~q; �ÞB̂jð ~p; �Þj0i ¼ 2�2

q3
PBðq; �ÞPijðq̂Þ�ð3Þð ~qþ ~pÞ;

PBðq; �Þ ¼ q5

2�2
jfqð�Þj2; (3.17)

in full analogy with Eq. (3.5). It can be easily argued that
Eqs. (3.6) and (3.8)–(3.10) are similarly satisfied with

PEðq; �Þ ¼ q3

2�2
jgqð�Þj2;

PEBðq; �Þ ¼ q4

2�2
½f�qð�Þgqð�Þ þ fqð�Þg�qð�Þ�;

(3.18)

where PEðq; �Þ denotes the power spectrum of the electric
fields and PEBðq; �Þ is the spectrum of the cross correlation
between electric and magnetic fields. To have compatibil-
ity between the evolution equations of the power spectra
[i.e., Eqs. (3.8)–(3.10)] and the evolution equations of the
mode functions [i.e., Eq. (3.14)] the cross-correlation spec-
trum is essential. Using the power spectra defined earlier
the average magnetic and electric energy densities are

��Bð�Þ ¼ 1

4�a4

Z dq

q
PBðq; �Þ;

��Eð�Þ ¼ 1

4�a4

Z dq

q
PEðq; �Þ:

(3.19)

Backreaction problems are avoided if ��B and ��E are
smaller than the background energy density 3H2 �M2

P.
Moreover the contribution of the electric and magnetic
fields to the evolution equations of ’ and 	 must be
subleading. These requirements are, however, less severe
than the ones stemming from the predominance of the
adiabatic mode discussed in Sec. VI.

5Note that eð�Þi ðk̂Þ (with � ¼ 1, 2) are two mutually orthogonal
unit vectors which are also orthogonal to k̂; furthermoreP

�e
ð�Þ
i ðk̂Þeð�Þi ðk̂Þ ¼ Pijðk̂Þ.
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C. Fluctuations of the energy-momentum tensor

The normalized fluctuations of the energy density are

��Bð ~x; �Þ ¼
Z d3q

ð2�Þ3=2 ��Bð ~q; �Þe�i ~q� ~x;

��Eð ~x; �Þ ¼
Z d3q

ð2�Þ3=2 ��Eð ~q; �Þe�i ~q� ~x;
(3.20)

where

��Bð ~q; �Þ ¼ 1

8�a4ð�Þ
Z d3k

ð2�Þ3=2
�
Bið ~k; �ÞBið ~q� ~k; �Þ

� 4�2

k3
PBðk; �Þ�ð3Þð ~qÞ

�
;

��Eð ~q; �Þ ¼ 1

8�a4ð�Þ
Z d3k

ð2�Þ3=2
�
Eið ~k; �ÞEið ~q� ~k; �Þ

� 4�2

k3
PEðk; �Þ�ð3Þð ~qÞ

�
: (3.21)

The fluctuations of the electric and magnetic pressures are

�pBð ~x; �Þ ¼ ��Bð ~x; �Þ
3

; �pEð ~x; �Þ ¼ ��Eð ~x; �Þ
3

:

(3.22)

Finally, the electric and magnetic anisotropic stresses are

�ðBÞ
ij ð ~x; �Þ ¼ 1

ð2�Þ3=2
Z

d3q�ðBÞ
ij ð ~q; �Þe�i ~q� ~x;

�ðEÞ
ij ð ~x; �Þ ¼ 1

ð2�Þ3=2
Z

d3q�ðEÞ
ij ð ~q; �Þe�i ~q� ~x;

(3.23)

where

�ðBÞ
ij ð ~q; �Þ ¼ 1

4�a4

Z d3k

ð2�Þ3=2
�
Bið ~k; �ÞBjð ~q� ~k; �Þ

� �ij

3
Bmð ~k; �ÞBmð ~q� ~k; �Þ

�
; (3.24)

�ðEÞ
ij ð ~q; �Þ ¼ 1

4�a4

Z d3k

ð2�Þ3=2
�
Eið ~k; �ÞEjð ~q� ~k; �Þ

� �ij

3
Emð ~k; �ÞEmð ~q� ~k; �Þ

�
: (3.25)

It is practical to introduce the scalar projections of the
electric and magnetic anisotropic stresses

r2�Bð ~x; �Þ ¼ @i@j�
ij
ðBÞð ~x; �Þ;

r2�Eð ~x; �Þ ¼ @i@j�
ij
ðEÞð ~x; �Þ

(3.26)

entering the evolution equations of the scalar modes of the
geometry. The stochastic averages of the variables defined in
Eqs. (3.20), (3.21), and (3.23)–(3.25) are all vanishing: using
Eqs. (3.5) and (3.6) it is possible to show that h��Bð ~x; �Þi ¼ 0
and that h��Eð ~x; �Þi ¼ 0. The second-order correlations of

the energy density fluctuations and of the anisotropic stresses
are defined as

h��Xð ~q; �Þ��Xð ~p; �Þi ¼ 2�2

q3
QXðq; �Þ�ð3Þð ~qþ ~pÞ;

(3.27)

h�Xð ~q; �Þ�Xð ~p; �Þi ¼ 2�2

q3
QX�ðq; �Þ�ð3Þð ~qþ ~pÞ;

(3.28)

whereX ¼ B,E leading, overall, to four independent spectra

QBðq; �Þ ¼ q3

128�3a8

Z
d3k

PBðk; �Þ
k3

� PBðj ~q� ~kj; �Þ
j ~q� ~kj3 ��ðk; qÞ; (3.29)

QEðq; �Þ ¼ q3

128�3a8

Z
d3k

PEðk; �Þ
k3

� PEðj ~q� ~kj; �Þ
j ~q� ~kj3 ��ðk; qÞ; (3.30)

QB�ðq; �Þ ¼ q3

288�3a8ð�Þ
Z

d3k
PBðk; �Þ

k3

� PBðj ~q� ~kj; �Þ
j ~q� ~kj3 ��ðk; qÞ; (3.31)

QE�ðq; �Þ ¼ q3

288�3a8ð�Þ
Z

d3k
PEðk; �Þ

k3

� PEðj ~q� ~kj; �Þ
j ~q� ~kj3 ��ðk; qÞ: (3.32)

The functions ��ðk; qÞ and ��ðk; qÞ are defined as

��ðk; qÞ ¼ 1þ ½ ~k � ð ~q� ~kÞ�2
k2j ~q� ~kj2 ; (3.33)

��ðk; qÞ ¼ 1þ ½ ~k � ð ~q� ~kÞ�2
k2j ~q� ~kj2

þ 6

q2

�
~k � ð ~q� ~kÞ � ½ ~k � ð ~q� ~kÞ�3

k2j ~q� ~kj2
�

þ 9

q4

�
k2j ~q� ~kj2 � 2½ ~k � ð ~q� ~kÞj�2

þ ½ ~k � ð ~q� ~kÞ�4
k2j ~q� ~kj2

�
: (3.34)

The functions ��ðk; qÞ and ��ðk; qÞ coincide for magnetic

and electric degrees of freedom since both ~E and ~B are

solenoidal fields: ~B is solenoidal because of the absence of
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magnetic monopoles while ~E is solenoidal because the pro-
toinflationary plasma is globally neutral and any electric
charge asymmetry is absent. The explicit expressions of the
power spectra of Eqs. (3.29)–(3.32) are presented and dis-
cussed inAppendixB in the case of amonotonic growth rate.

D. Energy-momentum tensor evolution

Instead of computing ��B, ��E and the other relevant
components from the field variables, it is practical to
deduce the evolution equations obeyed by these quantities.
The various components of the energy-momentum tensor
can be written, in real space, as

Z 0
0 ¼ ��B þ ��E þ ��B þ ��E; (3.35)

Z 0
i ¼ �ð ~E� ~BÞi

4�a4
; �Zi

0 ¼
ð ~E� ~BÞi
4�a4

; (3.36)

Zj
i ¼ �ð �pE þ �pBÞ�j

i � ð�pE þ �pBÞ�j
i þ�ðEÞj

i þ�ðBÞj
i :

(3.37)

Using Eqs. (3.35)–(3.37) and the explicit expression of the
covariant derivative, Eq. (1.6) demands, in components,

@�ð��E þ ��BÞ þ 4H ð��E þ ��BÞ

¼ 2F ð��B � ��EÞ � P� ~J � ~E

a4
; (3.38)

@�Pþ 4HP¼�
~r� ð ~J� ~BÞ

a4

�r2½�pBþ�pE�ð�Bþ�EÞ�; (3.39)

where P ¼ ~r � ~S denotes the three-divergence of the

Poynting vector ~S ¼ ð ~E� ~BÞ=ð4�a4Þ. In Eq. (3.39) the
terms @i½ð@i
Þ=
�ð��B � ��EÞ and @i
@

ið��B � ��EÞ=

have been neglected since they couple spatial gradients of
the growth rate and magnetic inhomogeneities. These
terms are of higher order in the present description.
Furthermore, using standard vector identities6 Eq. (3.39)
can be recast in the following form:

@�Pþ 4HP¼�
~r � ð ~J� ~BÞ

a4

þ
~r � ½ð ~r� ~BÞ � ~B� þ ~r � ½ð ~r� ~EÞ � ~E�

4�a4
:

(3.40)

The evolution of the difference between ��B and ��E can
be obtained directly from Eqs. (3.1)–(3.3):

@�ð��B � ��EÞ þ 4H ð��B � ��EÞ

¼ 2F ð��E þ ��BÞ �
~B � ~r� ~Eþ ~E � ~r� ~B

4�a4
þ ~E � ~J

a4
:

(3.41)

The system of Eqs. (3.38)–(3.41) can be studied in various
approximations (subleading spatial gradients, large con-
ductivity limit and so on and so forth). In the most naive
case Pð ~x; �Þ simply scales as a�4. This can be easily under-
stood since, up to spatial gradients, the evolution of P does
not depend on the growth rate. Conversely, the time de-
rivative of P is proportional to the Laplacians of the
pressures and of the anisotropic stresses.
In the subsequent sections we shall be interested in

determining the curvature perturbations induced by the
gauge field fluctuations. Instead of discussing the evolution
of the field intensity it will be simpler to solve directly for
the components of the energy-momentum tensor itself. We
must, at this point, distinguish the evolution of the gauge
fields which are inside the Hubble radius from the evolu-
tion of the modes whose wavelength is larger than the
Hubble radius. For the large-scale modes, as soon as the
Universe reheats, the conductivity increases and this pro-
cess can be modeled both analytically and numerically
(see, e.g., Ref. [25] and references therein). The large-scale
modes of the magnetic fields will remain unaffected and,
later on, their corresponding energy-momentum tensor will
be covariantly conserved. The modes which are inside the
Hubble radius will experience a different evolution (see,
for instance, Ref. [35] for an interesting attempt). In spite
of their typical wavelengths all the modes will follow the
conservation of the magnetic flux and of the magnetic
helicity. It can happen that, thanks to the peculiar nature
of the various phase transitions, the correlation scale of
the modes whose wavelengths are shorter than the Hubble
radius will increase at a rate which is different.
Unfortunately the electroweak phase transition, for the
allowed values of the Higgs mass (i.e., around 125 GeV)
is not strongly first order and it is probably a crossover. It
will be anyway interesting to study more closely this
dynamics by appreciating, however, that the ratio between
the thermal and the magnetic diffusivity (i.e., the so-called
Prandtl number) is not Oð1Þ but rather Oð106Þ at the
electroweak time [36] (see also Ref. [5] for a general
discussion). Later on the kinetic turbulence dies faster
than the magnetic turbulence so that, around decoupling,
the kinetic Reynolds number will be much smaller than 1
while the magnetic Reynolds number will still be Oð1017Þ
[36]. The evolution of sub-Hubble modes is therefore
rather different from the typical simulations of magnetic
turbulence [where the Prandtl number is Oð1Þ� so that, it
seems that the best guiding principles, even for modes
inside the Hubble radius, are the global conservation
laws. The evolution of hydromagnetic nonlinearities can
certainly play a role, around decoupling, in determining the

6Given a solenoidal vector field Ci, (such as ~B or ~E) the

product @iCj@
jCi can be expressed as ~r � ½ð ~r� ~CÞ � ~C� þ

r2C2=2.
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thermal diffusion of magnetic fields which seems to be
larger than expected [37]. In this kind of regime, earlier
results on the dynamics of charged fluids endowed with
weak kinetic turbulence have been revisited (see
Refs. [36,37]) with the aim of building a perturbative
expansion in powers of the kinetic Reynolds number.

IV. QUASINORMAL MODES

The evolution of the scalar modes of the geometry, of the
inflaton and of the spectator field are all coupled to the
scalar inhomogeneities of the gauge sector. This system
will now be reduced to the evolution of its quasinormal
modes whose equations are coupled but, most importantly,
decoupled from all the other perturbation variables. The
considerations of the present section and of Appendix A
can be easily generalized to various situations involving,
for instance, more than one spectator field.

A. Uniform curvature hypersurfaces

The scalar fluctuations of the four-dimensional metric
are parametrized by four different functions whose number
can be eventually reduced by specifying (either completely
or partially) the coordinate system:

�sg00 ¼ 2a2�; �sgij ¼ 2a2ðc�ij � @i@j�Þ;
�sg0i ¼ �a2@i�; (4.1)

where �s denotes the scalar mode of the corresponding
tensor component; the full metric (i.e., background plus
inhomogeneities) is given, in these notations, by
g��ð ~x; �Þ ¼ �g��ð�Þ þ �sg��ð ~x; �Þ where, as already men-

tioned prior to Eqs. (2.14)–(2.17) �g��ð�Þ ¼ a2ð�Þ���. For

infinitesimal coordinate shifts � ! �� ¼ �þ �0 and xi !
�xi ¼ xi þ @i� the functions �ð ~x; �Þ, �ð ~x; �Þ, c ð ~x; �Þ and
�ð ~x; �Þ introduced in Eq. (4.1) transform as7

� ! �� ¼ ��H �0 � �00; c ! �c ¼ c þH �0;

(4.2)

� ! �� ¼ �þ �0 � �0; � ! �� ¼ �� �: (4.3)

In the uniform curvature gauge two out of the four func-
tions of Eq. (4.1) are set to zero [8–10]:

� ¼ 0; c ¼ 0; � ¼ �ð ~x; �Þ; � ¼ �ð ~x; �Þ:
(4.4)

Starting from a gauge where � and c do not vanish, the
perturbed line element can always be brought in the form
(4.4) by demanding �� ¼ 0 and �c ¼ 0 in Eqs. (4.2) and
(4.3). If � � 0 and c � 0, the uniform curvature gauge

condition can be recovered by fixing the gauge parameters
as � ¼ � and �0 ¼ �c =H . This choice guarantees that,
in the transformed coordinate system, �c ¼ �� ¼ 0.
A convenient gauge choice is essential for a sound treat-

ment of problems involving the presence of anisotropic
stresses. The conformally Newtonian gauge is known to be
unsuitable for the analysis of perturbative systems where
the anisotropic stresses play an important role. Similar
caveats arise in the discussion of the Einstein-Boltzmann
hierarchy whenever the entropic initial conditions are
dominated by the anisotropic stresses as it happens in the
neutrino sector. Both points have been addressed long ago
when discussing the initial conditions for the magnetized
CMB anisotropies [38] (see also Ref. [12] and references
therein). Other gauges are also suitable for the treatment of
magnetized inhomogeneities but we shall not discuss them
here. As already mentioned in Sec. I, to avoid lengthy
digressions the full set of evolution equations has been
presented and discussed in Appendix A.

B. The decoupled system

Consider, to begin with, the evolution equations for the
fluctuations of the inflaton (i.e., �’) and of the spectator

field (i.e., �	) which are reported in Eqs. (A20) and (A21).
Recalling that �	 ¼ r2�	 and �’ ¼ r2�’, from the

momentum constraint of Eq. (A9) (neglecting a generic
fluid contribution which is anyway irrelevant during the
inflationary phase) the following relation holds:

�� ¼ 4�G

��
’0

H

�
�’ þ

�
	0

H

�
�	

�
� 4�Ga2

H
P: (4.5)

During inflation the three-divergence of the Poynting vec-
tor P decreases always as a�4 so the predominant contri-
bution to the curvature perturbations on uniform curvature
hypersurfaces is given by the first two terms of Eq. (4.5).
There is, however, an important proviso: the time deriva-
tive of �� (i.e., �0

�) appearing in Eqs. (A20) and (A21)

leads to a term going as P0 ¼ @�P containing the
Laplacians of the magnetic and electric energy density
fluctuations [see Eq. (3.39)]. It is advisable, as usual, to
assess the relative weight of different terms not at the
beginning, but rather at the end of the derivation.
In the gauge (4.4), the curvature perturbations on co-

moving orthogonal hypersurfaces, customarily denoted by
R, coincides with � up to the background dependent
coefficients,

R ¼ � H 2

H 2 �H 0 �: (4.6)

Defining �R ¼ r2R and recalling Eq. (4.6), we have,
from Eq. (4.5),

7The slow roll parameter � must not be confused with the
parameter of the gauge transformation. These two variables
never appear together either in the preceding or in the following
discussion so that no confusion is possible.
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�R ¼ �
�

H’0

’02 þ 	02 �’ þ H	0

’02 þ 	02 �	

�
þ Ha2

’02 þ 	02 P:

(4.7)

The equations describing the dynamics of the quasinor-
mal modes are obtained by eliminating ��, �

0
� and r2��

from Eqs. (A20) and (A21). Equation (4.5) gives �� in

terms of �’, �	 and P. The combination ð�0
� þr2��Þ

can then be obtained, after some algebra, from the explicit
expression of �0

� and from the Hamiltonian constraint of

Eq. (A18) [see also Eq. (A8)].
Thus, as discussed in Appendix A, Eqs. (A23) and (A25)

can be inserted into Eqs. (A20) and (A21) and the resulting
system becomes

�00
’ þ 2H�0

’ �r2�’ þA’’�’ þA’	�	 þ S’ ¼ 0;

(4.8)

�00
	 þ 2H�0

	 �r2�	 þA		�	 þA	’�’ þS	 ¼ 0:

(4.9)

The coefficientsA’’,A		 andA’	 ¼ A	’ depend on

the background and are

A ’’ ¼ a2
@2V

@’2
þ 1

�M2
P

�
2a2

@V

@’

�
’0

H

�
þ

�
2þ H 0

H 2

�
’02

�
;

(4.10)

A’	 ¼ A	’ ¼ 1
�M2
P

�
a2

@V

@’

�
	0

H

�
þ @W

@	

�
’0

H

�

þ
�
2þ H 0

H 2

�
’0	0

�
; (4.11)

A		 ¼ a2
@2W

@	2
þ 1

�M2
P

�
2a2

@W

@	

�
	0

H

�
þ

�
2þ H 0

H 2

�
	02

�
;

(4.12)

where, comparing with the expressions of Appendix A, the
four-dimensional Planck mass defined in Eq. (2.5) has been
introduced by trading 8�G for 1= �M2

P. The source terms S’

and S	 appearing in Eqs. (4.8) and (4.9) are

S’ ¼ a2

2 �M2
P

�
’0

H

��
P0 � 2

�
H 0

H
þ a2

’0
@V

@’

�
P

þr2ð��B þ ��EÞ
�
þ a2




@


@’
r2ð��B � ��EÞ;

S	 ¼ a2

2 �M2
P

�
	0

H

��
P0 � 2

�
H 0

H
þ a2

	0
@W

@	

�
P

þr2ð��B þ ��EÞ
�
þ a2




@


@	
r2ð��B � ��EÞ;

which are expressible in a slightly different form by using
the evolution equations of’,	 together with the governing

equation for P, i.e., respectively, Eqs. (2.16), (2.17), and
(3.39). The result of this manipulation, neglecting the
spatial gradients of 
 is

S’ ¼ a2

2 �M2
P

�
’0

H

��
2

�
’0

H

�0�H
’0

�
PþV EB

�

þ a2




@


@’
r2ð��B � ��EÞ; (4.13)

S	 ¼ a2

2 �M2
P

�
	0

H

��
2

�
	0

H

�0�H
	0

�
PþV EB

�

þ a2




@


@	
r2ð��B � ��EÞ; (4.14)

where V EB is defined as

V EB ¼ 2

3
r2ð��B þ ��EÞ þ r2ð�B þ�EÞ

�
~r � ð ~J � ~BÞ

a4
: (4.15)

The system of equations derived here is the starting point
for the determination of the power spectra of curvature
perturbations to be analyzed in the forthcoming sections.

V. MAGNETIZED POWER SPECTRA
OF THE SCALAR MODES

A. Simplifying approximations

The solution of Eqs. (4.8) and (4.9) during a phase of
slow roll expansion determines the large-scale power spec-
tra of curvature perturbations. The expressions of the co-
efficients of Eqs. (4.10)–(4.12) can be simplified in the
limits �	 � �’ and � ’ � � 1 and it can be shown, for

instance, that

A ’’ ¼ z00’
z’

þ a00

a
� A’	; z’ ¼ a’0

H
: (5.1)

The second inequality appearing in Eq. (5.1) is derived by
appreciating thatA’	 can be recast in the following form:

A’	 ¼ H2a2

2 �M2
P

��
_	

H

��
V;’

H2

�
þ

�
_’

H

��
W;	

H2

�

þ
�
3þ _H

H2

��
_’

H

��
_	

H

��
; (5.2)

and by using known identities of the slow roll dynamics.8

For similar reasons A		 must be smaller than
ðH 2 þH 0Þ. Neglecting the subleading terms in
Eqs. (4.13) and (4.14) S’ and S	 become

S ’ ¼ a2

�MP

r2 �S’; S	 ¼ a2

�MP

r2 �S	; (5.3)

8In particular recall that ðV;’=H
2Þ ¼ 3

ffiffiffi
2

p ffiffiffi
�

p
�MP and that

_’=H ¼ ffiffiffi
2

p
�MP

ffiffiffi
�

p
; furthermore the subdominance of 	 stipulates

that _	 � H �MP.
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where the two dimensionless variables �S’ and �S	 have

been introduced

�S’ ¼
��

’0

3 �MPH
þ �MP




@


@’

�
��B

þ
�

’0

3 �MPH
� �MP




@


@’

�
��E

�

þ ’0ð�B þ�EÞ
2 �MPH

; (5.4)

�S	¼
��

	0

3 �MPH
þ �MP




@


@	

�
��B

þ
�

	0

3 �MPH
� �MP




@


@	

�
��E

�
þ	0ð�Bþ�EÞ

2 �MPH
: (5.5)

The terms containing the Ohmic current shall be neglected
and the whole effect of conducting initial conditions will
be simply encoded in the further suppression of the electric
components as explained in Appendix B.

Introducing then the rescaled variables q’ ¼ a�’ and

q	 ¼ a�	 and recalling that �’ ¼ r2�’ and �	 ¼
r2�	, the Laplacians can be eliminated from the left-
and right-hand sides of Eqs. (4.8) and (4.9) so that the
resulting equations assume the following simplified form9:

q00’ �r2q’ � z00’
z’

q’ þ a3

�MP

�S’ð ~x; �Þ ¼ 0; (5.6)

q00	 �r2q	 � a00

a
q	 þ a3

�MP

�S	ð ~x; �Þ ¼ 0: (5.7)

In the class of models introduced in Eqs. (2.21)–(2.23) the
slow roll parameters are given by � ¼ � ¼ 1=� with � �
1 and z’ / að�Þ. Thus the coefficients A’	 and A		

become

A’	 ¼ � 2
ffiffiffi
2

p ð3�� 1Þ
�2

ffiffiffiffi
�

p ð1� �Þ2
�
M
�M2
P

�
2
;

A		 ¼ 2ð3�� 1Þ
ð1� �Þ2�2

�
1� 2

�

�
M
�M2
P

�
2
�
;

(5.8)

which are both suppressed in the limit � � 1 (i.e., � � 1).
The coefficient A’	 is further suppressed because

M � �MP, as implied by the subdominant nature of 	.
This example illustrates concretely the nature of the gen-
eral approximations analyzed in this section.

B. Primary and secondary power spectra

In Fourier space Eqs. (5.7) and (5.8) become

q00’ þ
�
k2 � z00’

z’

�
q’ ¼ � a3

�MP

�S’ð ~k; �Þ; (5.9)

q00	 þ
�
k2 � a00

a

�
q	 ¼ � a3

�MP

�S	ð ~k; �Þ; (5.10)

and their corresponding solutions are

q’ð ~k; �Þ ¼ qð1Þ’ ð ~k; �Þ � 1
�MP

Z �

��
a3ð�0Þ �S’ðk; �0Þ

�Gð’Þ
k ð�0; �Þd�0; (5.11)

q	ð ~k; �Þ ¼ qð1Þ	 ð ~k; �Þ � 1
�MP

Z �

��
a3ð�0Þ �S	ðk; �0Þ

�Gð	Þ
k ð�0; �Þd�0; (5.12)

where Gð’Þ
k ð�0; �Þ and Gð	Þ

k ð�0; �Þ denote the Green’s func-

tion obtained from the appropriately normalized mode
functions of the corresponding homogeneous equations.
Denoting with Fðk; �Þ and F�ðk; �Þ the two independent
solutions of the homogeneous equation, the corresponding
Green’s function is

Gkð�0; �Þ ¼ Fðk; �0ÞF�ðk; �Þ � Fðk; �ÞF�ðk; �0Þ
Wð�0Þ ; (5.13)

where Wð�0Þ ¼ ½F0ðk�0ÞF�ðk; �0Þ � F�0ðk; �0ÞFðk; �0Þ� is
the Wronskian of the solutions. The explicit form of the
mode functions for q’ and q	 are

F’ðk; �Þ ¼
N ’ffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffiffiffi�k�
p

Hð1Þ
� ð�k�Þ; � ¼ 3þ �þ 2�

2ð1� �Þ ;

(5.14)

F	ðk; �Þ ¼ N 	ffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffiffiffi�k�
p

Hð1Þ
~� ð�k�Þ; ~� ¼ ð3� �Þ

2ð1� �Þ :
(5.15)

The expression of the Green’s function depends on the
indices � and ~� of the corresponding Hankel functions
[39,40]. Since � � 1 and � � 1, the Bessel indices� and
~� can be expanded in powers of the slow roll parameters
and � ’ 3=2þ 2�þ � and ~� ¼ 3=2þ �. Consequently,
to leading order in the slow roll expansion � ’ ~� ¼ 3=2
and this explains why, in this limit, the explicit expressions

of Gð’Þ
k ð�0; �Þ and Gð	Þ

k ð�0; �Þ coincide:

Gkð�0; �Þ ¼ 1

k

�
�0 � �

k�0�
cos ½kð�0 � �Þ�

�
�

1

k2�0�
þ 1

�
sin ½kð�0 � �Þ�

�
: (5.16)

9Note that the pump field of Eq. (5.7) is not given by z00	=z	
(with z	 ¼ a	0=H ). This lack of symmetry is ultimately related
to the subdominant nature of 	.
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Recalling that qð1Þ’ ð ~k; �Þ and qð1Þ	 ð ~k; �Þ denote the solutions
of the homogeneous equations (5.9) and (5.10) the primary
power spectra can be computed from Eqs. (5.14) and (5.15):

hqð1Þ’ ð ~k; �Þqð1Þ’ ð ~p; �Þi ¼ 2�2

k3
P’ðk; �Þ�ð3Þð ~kþ ~pÞ;

P’ðk; �Þ ¼ k3

2�2
jF’ðk; �Þj2;

(5.17)

hqð1Þ	 ð ~k; �Þqð1Þ	 ð ~p; �Þi ¼ 2�2

k3
P	ðk; �Þ�ð3Þð ~kþ ~pÞ;

P	ðk; �Þ ¼ k3

2�2
jF	ðk; �Þj2:

(5.18)

After integration over �0 the final expression can be written
as

q’ð ~k; �Þ ¼ qð1Þ’ ð ~k; �Þ � �MP½c’�Bð ~k; �Þ
þ d’�B�ð ~k; �Þ�að�Þ; (5.19)

q	ð ~k; �Þ ¼ qð1Þ	 ð ~k; �Þ � �MP½c	�Bð ~k; �Þ
þ d	�B�ð ~k; �Þ�að�Þ; (5.20)

where the sources have been evaluated to leading order in
k� and

�Bð ~k; �Þ ¼ ��Bð ~k; �Þ
3H2 �M2

P

; �B�ð ~k; �Þ ¼ �Bð ~k; �Þ
3H2 �M2

P

:

(5.21)

The solutions (5.19)–(5.21) neglect the decreasing electric
modes since they are immaterial for the scales that had
the longest time to grow and got larger than the Hubble
radius between the last 65 and 53 e-folds of inflationary
expansion (see also the beginning of Sec. VI). The rate of
decrease of the electric modes is discussed in Appendix B
for the interested reader. The coefficients appearing in
Eqs. (5.19) and (5.20) are slowly varying functions of �,

c’ ¼ mðf; �Þ
�

1

3 �MP

�
’0

H

�
þ �MP




�
@


@’

��
;

d’ ¼ mðf; �Þ’
0 �MP

2H
;

(5.22)

c	 ¼ mðf; �Þ
�

1

3 �MP

�
	0

H

�
þ �MP




�
@


@	

��
;

d	 ¼ mðf; �Þ	
0 �MP

2H
;

mðf; �Þ ¼ 3ð1� �Þ2
ð1� 2fÞð4� 2f� 3�Þ :

(5.23)

The function mðf; �Þ depends on the slow roll parameter
and on the growth rate in Hubble units, i.e., f ¼ F =H . In
the scale-invariant case (i.e., f ¼ 2, see Appendix B)
mð2; �Þ ! 1=ð3�Þ. In the pure de Sitter case and for exactly
scale-invariant spectrum the integration over �0 would lead
to logarithms of the conformal time coordinate which are
absent in the quasi—de Sitter case. Equations (5.22) and
(5.23) can be written in more explicit terms as

c’ ¼ mðf; �Þ
� ffiffiffiffiffiffi

2�
p
3

þ �’

�
; d’ ¼ mðf; �Þ

ffiffiffi
�

p
2

;

(5.24)

c	 ¼ mðf; �Þ
�
2�

3

�
M
�MP

�
þ �	

� �MP

M

��
;

d	 ¼ mðf; �Þ M�MP

�:
(5.25)

The results of Eqs. (5.24) and (5.25) assume a simple
parametrization of 
ð’;	Þ, i.e.,


ð’;	Þ ¼ 
� exp
�
�’

’
�MP

þ �	

	

M

�
;

�	 þ �’ffiffiffiffiffiffi
2�

p ¼ ð1� �Þ
�

f:
(5.26)

The second relation of Eq. (5.26) holds, strictly speaking, in
the case of power-law inflation where � ¼ �. It can be
argued, however, that it remains valid in more general cases
where � ’ �.

C. Curvature perturbations

The curvature perturbations on comoving orthogonal
hypersurfaces can be expressed in terms of Eqs. (5.19) and
(5.20)

Rð ~k; �Þ 	 � z’ð�Þq’ð ~k; �Þ þ z	ð�Þq	ð ~k; �Þ
z2’ð�Þ þ z2	ð�Þ

’ �q’ð ~k; �Þ
z’ð�Þ � q	ð ~k; �Þ z	ð�Þ

z2’ð�Þ
; (5.27)

as it follows from Eqs. (4.5)–(4.7) by recalling that
z’ ¼ a’0=H and z	 ¼ a	0=H . The second equality of

Eq. (5.27) follows in the limit z’=z	 ¼ ’0=	0 � 1when	

is subdominant. The power spectrum of curvature pertur-
bations is defined as

hRð ~k; �ÞRð ~p; �Þi ¼ 2�2

k3
PRðk; �Þ�ð3Þð ~kþ ~pÞ: (5.28)

Bearing in mind Eqs. (3.27)–(3.29) and (5.17)–(5.20), can
be inserted into Eq. (5.27) so that the explicit expression of
PRðk; �Þ becomes
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P Rðk; �Þ ¼ k3

2�2z2’
jF’ðk; �Þj2 þ k3

2�2z2	
jF	ðk; �Þj2

�
z	
z’

�
4

þ C2’	ð�ÞQBðk; �Þ
H4 �M4

P

þD2
’	ð�ÞQB�ðk; �Þ

H4 �M4
P

:

(5.29)

This expression shows that the power spectrum of curva-
ture perturbations depends on the first-order correlations of
the inflaton fluctuations as well as on the second-order
correlations of the gauge fields whose related power spec-
tra can be found in Appendix B.

The first two contributions to PRðk; �Þ appearing in
Eq. (5.29) are the adiabatic contribution given by the
inflaton and a generalized entropic contribution associated
with the spectator field. Both C’	ð�Þ and D’	ð�Þ are

slowly varying functions of � [i.e., C0’	ð�Þ’D’	ð�Þ’0]

and are defined as

C 2
’	ð�Þ ¼

�M2
Pa

2ð�Þ
9z2’ð�Þ

�
c’ þ

�
z	
z’

�
c	

�
2
;

D2
’	ð�Þ ¼

�M2
Pa

2ð�Þ
9z2’ð�Þ

�
d’ þ

�
z	
z’

�
d	

�
2
:

(5.30)

What matters, for the present considerations, are those
typical scales that had the longest time to grow and that left
the Hubble radius at the onset of the inflationary phase
even if, as we shall see, the beginning of inflation is
essentially a free parameter related to the total number of
inflationary e-folds. The various contributions to the power
spectrum must be compared in the limit where the relevant
scales are larger than the Hubble radius, i.e.,

P adðk; �Þ ¼ k3

2�2z2’
jF’ðk; �Þj2

¼ Kð�Þ
8�2�

�
H
�MP

�
2
�
k

aH

�
nad�1

; (5.31)

P entrðk; �Þ ¼ k3

2�2z2	
jF	ðk; �Þj2

�
z	
z’

�
4

¼ Kð ~�Þ
4�2�

�
H
�MP

�
2
�
M
�MP

�
2
�
k

aH

�
nentr�1

; (5.32)

where, generically, KðzÞ ¼ 22z�1�2ðzÞ=� so that
Kð3=2Þ ¼ 1 and10

nad � 1 ¼ 3� 2� ¼ �6�þ 2 ��;

nentr � 1 ¼ 3� 2 ~� ¼ �2�:
(5.33)

Barring the dependence of the spectral index on the slow
roll corrections, we can clearly see that P entrðk; �Þ 

�ðM= �MPÞ2P adðk; �Þ. Since � < 1 and M � �MP the
entropic contribution is strongly suppressed. If taken into

account this component will lead to the kind of mixed
initial conditions for CMB anisotropies often discussed
in the literature [31,41–43] also in the presence of large-
scale magnetic fields [12].
In the simplest situation the total energy-momentum

tensor of the system is conserved both before and after
the transition between inflation and radiation [44,45].
When the stress tensor undergoes a finite discontinuity
on a spacelike hypersurface the inhomogeneities are
matched by requiring the continuity of the induced three
metric and of the extrinsic curvature on that hypersurface.
On uniform curvature hypersurfaces the continuity of the
extrinsic curvature is guaranteed by the continuity of ��

and ��. This implies also the continuity of R as it can be

explicitly verified by solving the evolution equation of R
[see Eq. (A31)] valid in the postinflationary epoch. After
the end of inflation the growth rate is zero and the evolution
of curvature perturbations can be followed by means of a
certain set of global variables. This discussion closely
follows the considerations developed in Ref. [7].
In concluding this section it is appropriate to remark that

Eqs. (4.8), (4.9), (5.9), and (5.10), even if deduced in a
specific gauge, have a gauge-invariant meaning. The
gauge-invariant generalization of the quasinormal modes
discussed in this section is given by

qðgiÞ’ ¼ a�’ þ z’c ; qðgiÞ	 ¼ a�	 þ z	c : (5.34)

Under the gauge transformation discussed prior to Eq. (4.2)
�’ and �	 transform as �’ ! ��’ � ’0�0 and�	 ! ��	 �
	0�0. Thanks to Eq. (4.2) the quantities defined in
Eq. (5.34) are left invariant.
The variables of Eq. (5.34) are the scalar field analog of

the quantum excitations of an irrotational and relativistic
fluid first discussed by Lukash [46] (see also Refs. [47–49])
right after one of the first formulations of inflationary
dynamics [50]. The canonical normal mode identified in
Ref. [46] is invariant under infinitesimal coordinate trans-
formations as required in the context of the Bardeen formal-
ism [51] (see also Ref. [47]). The subsequent analyses of
Refs. [49,50] follow the same logic of Ref. [46] but in the
case of scalar field matter; the normal modes of
Refs. [46,52,53] coincide with the (rescaled) curvature
perturbations on comoving orthogonal hypersurfaces

[54,55]. In the present case, as already pointed out, q
ðgiÞ
’ is

only a quasinormal mode and becomes a truly normal mode
only in the case when the spectator component vanishes.

VI. GROWTH RATE OF MAGNETIC
INHOMOGENEITIES

According to the requirements spelled out in Ref. [7],
the predominance of the standard adiabatic mode over the
magnetized contributions leads to a specific bound on the
magnetic field intensity. This logic will now be applied to
the curvature perturbations induced during the inflationary

10Recall Eqs. (5.14) and (5.15) and also the well-known rela-
tions among the slow roll parameters, i.e., � ¼ �� ��.
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phase with the purpose of deriving accurate constraints on
the growth rate of magnetized inhomogeneities in Hubble
units.

A. Predominance of the adiabatic solution

Demanding that the adiabatic component is dominant
against the entropic and the magnetic contributions,
Eq. (5.29) implies

P adðk; �Þ> C2’	ð�ÞQBðk; �Þ
H4 �M4

P

þD2
’	ð�ÞQB�ðk; �Þ

H4 �M4
P

; (6.1)

having imposed M � �MP and, consequently, P adðk; �Þ �
P entrðk; �Þ. The limit of Eq. (6.1) must be applied for the
scales that experienced the largest amplification. For in-
stance the galactic scale crossed the Hubble radius about
53 e-folds prior to the end of inflation and had, therefore,
less time to be amplified in comparison with the scales that
left the horizon just at the beginning of inflation.

The bound of Eq. (6.1) is more constraining if imposed
on the scales that crossed the Hubble radius just after the
onset of inflation. Since the duration of inflation is un-
known it is reasonable to take the total number of infla-
tionary e-folds Nt as a free parameter bounded from below
by Nmax denoting the maximal number of e-folds that are
accessible to our present observations (i.e., Nt � Nmax ).
The value of Nmax is derived by fitting the event horizon of
the inflationary phase inside the present Hubble radius11

eNmax ¼ ð2��AR�R0Þ1=4
�
MP

H0

�
1=2

�
Hr

H

�
��1=2

; (6.2)

where the exponent � controls the expansion rate during an
intermediate phase ending at a putative scale Hr possibly
much smaller than the Hubble rate during inflation denoted
by H.

The parameters characterizing the dominant adiabatic
component have been fixed to the values suggested by the
best fit to the WMAP9 data [32] analyzed in terms of the
vanilla �CDM model12; this corresponds, in particular, to
nad ¼ 0:972 and AR ¼ ð2:41� 0:10Þ � 10�9. Different
data sets, like for instance the WMAP7 data [33,34] would
imply nad ¼ 0:963 and AR ¼ ð2:43� 0:11Þ � 10�9.
These differences are immaterial for the present
considerations.

For consistency with big-bang nucleosynthesis Hr, in
Eq. (6.2) can be, at most, 10�44MP corresponding to a
reheating scale occurring just prior to the formation of
the light nuclei. If �� 1=2> 0 (as it happens if � ¼ 2=3
when the postinflationary background is dominated by
dust) Nmax diminishes in comparison with the case when

H ¼ Hr. Conversely if �� 1=2< 0 (as it happens in � ¼
1=3 when the postinflationary background is dominated by
stiff sources) Nmax increases. If Hr ¼ H (or if � ¼ 1=2)
there is a sudden transition between the inflationary and the
postinflationary regimes and, in this case, we have approxi-
mately Nmax ’ 64þ 0:25 ln �.
In the case of a standard postinflationary history Nmax

coincides with the number of e-folds necessary to address
the conventional drawbacks of the hot big bang model
[56,57]. Whenever Nt >Nmax the redshifted value of the
inflationary event horizon exceeds the present value of the
Hubble radius. If Nt ¼ Nmax the scales which were still
larger than the Hubble radius around matter-radiation
equality left the inflationary Hubble radius about Nmax

e-folds prior to the end of inflation at least for a standard
postinflationary history. Consequently the most constrain-
ing bound derivable from Eq. (6.1) is achieved by demand-
ing a typical number of e-folds close to Nmax for comoving
scale of the order of qp denoting the pivot wave number at

which the amplitude of the curvature power spectrum is
commonly assigned when analyzing the temperature and
polarization anisotropies [32–34].
Using the results of Appendix B and of Sec. V, Eq. (6.1)

can be phrased as in terms of f (i.e., the growth rate of the
magnetized inhomogeneities expressed in Hubble units).
Besides the growth rate in Hubble units and the total
number of e-folds, the parameter � measures the Hubble
rate in Planck units13 and is given by � ¼ H= �MP. If the
adiabatic mode is the only source of inhomogeneity then
there is a specific relation between �, � and the amplitude
of curvature perturbations at the pivot scale qp. In the latter

case and using the WMAP9 [32] data we have14

� ¼ H
�MP

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�AR

p
;

AR ¼ ð2:41� 0:10Þ � 10�9:
(6.3)

In what follows � will be taken as a free parameter. The
values of � are assigned independently of the values of � in
all the figures of this section except for Fig. 3 holding in the
case of Eq. (6.3) where � / ffiffiffi

�
p

. The inequality (6.1) cannot
be simply inverted in terms of f or in terms of the slow roll
parameters. Equation (6.1) can instead be written as

Kð�Þ
8�2�

�2

�
qp
aH

�
nad�1

>Mðf; �; �; �’; �	;MÞ�4eNtgBðf;�Þ;

(6.4)

where the function Mðf; �; �; �’; �	;MÞ is

11For numerical estimates we recall that h20�R0¼4:15�10�5;
the present value of the Hubble rateH0 ¼ 100h0 Mpc�1 km= sec
in Planck units is H0 ¼ 1:22� 10�6ðh0=0:7ÞMP.
12�CDM is an acronym where � stands for the dark energy
component while CDM stands for the cold dark matter
component.

13Some authors denote with � a further slow roll parameter
containing four derivatives of the inflaton potential. The
notations used here are different and, with this remark, no
confusion is possible.
14To avoid confusion we remind that we used throughout �MP ¼
MP=

ffiffiffiffiffiffiffi
8�

p
. Some authors prefer to use MP instead of �MP and, in

this case, the analog of Eq. (6.3) reads ðH=MPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��AR

p
.
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C 2
’	ðf; �; �; �’; �	;MÞCBðf; �ÞLBðf; �; qpÞ
þD2

’	ðf; �; �; �’; �	;MÞCB�ðf; �ÞLB�ðf; �; qpÞ:
(6.5)

As already mentioned the various contributions to Eq. (6.5)
can be found in Eqs. (5.30), (B16), (B18), and (B19).

B. Illustration of the constraints

Whenever the growth rate exceeds a critical value (for a
given duration of the inflationaryNt and for a fixed value of
the other parameters), the inequalities of Eqs. (6.1)–(6.4)
are first saturated and then violated. With the aim of an
accurate determination of the critical rate, the attention
shall be first focused on the case �’ ¼ 0; in this case, as

discussed in Sec. V, the growth of the magnetic inhomo-
geneities is only due to the spectator field. In Fig. 1 the
values ofNt are illustrated for different rates f as a function
of �. The allowed region in the parameter space is below
the various curves of the two plots. The vertical and
horizontal dashed lines in the left plot of Fig. 1 correspond
to a value f ¼ 2:3 (for � ’ 0:01) forbidding any reasonable
duration of the inflationary phase since Nt must be smaller
than about 35. Larger values of f would be even more
constraining for Nt; we conclude that the range of physical
values is 2 � f < 2:3. For f < 2 the growth rate is not
constrained by the predominance of the adiabatic mode
since the magnetic energy density decreases (rather than
increases) for typical wavelengths larger than the Hubble
radius.

In Fig. 1 (plot at the right) the region of parameter space
2:05 � f � 2:15 is more accurately scrutinized. As the
vertical and horizontal dashed lines indicate, for f ’ 2:15
and � ’ 0:01 we are really on the borderline of the allowed
region: as soon as f > 2:15, the total number of allowed
e-folds drops below 60 that is insufficient to address and
solve, for instance, the horizon problem of the conven-
tional hot big bang model [56,57].
The same point is analyzed within a complementary per-

spective in Fig. 2. A value f ¼ 2:2 in the left plot of Fig. 2
corresponds roughly to Nt ’ 30 (for � ¼ 0:1). This means
that the achievable number of e-folds cannot be as large as
Nmax : even for smaller values of � it turns out that Nt � 50.
In the right plot of Fig. 2 the bounds on the growth rate are

illustrated for f ¼ 2:15 but in the plane ð�;NtÞ. The line
Nt ¼ 60 crosses the dashed line (corresponding to � ¼
0:01) for � ’ 10�5 �MP. Smaller values of � would corre-
spond to inflationary phases occurring at low curvature. In
this case Nt can be larger (for the same range of growth
rates) but the adiabatic mode will not be able to account for
the observed temperature and polarization anisotropies
probed by direct CMB observations. The constraints set
by the growth of the inhomogeneities are stronger than the
ones simply implied by the backreaction. Given a growth
rate f of themagnetic fieldwe have to demand ð ��E þ ��BÞ<
3H2 �M2

P; the latter condition, already discussed in Sec. II can
bewritten explicitly in the case of a monotonic growth rate:

H4

32�2

Z xmax

xmin

dxx4½jHð1Þ
� ðxÞj2 þ jHð1Þ

��1ðxÞj2�< 3H2M2
P;

(6.6)
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FIG. 1 (color online). The bound on the growth rate is illustrated by plotting the total number of e-folds as a function of the slow roll
parameter. The allowed region in the parameter space is below each of the various curves corresponding to different values of f. In
these plots as well as in Fig. 2 we have set M ¼ 10�4 �MP.
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where � ¼ 1=2þ fð1þ �Þ for � < 1 and where xmin ¼
kmin � while xmax ¼ kmax �. The integration can be sepa-
rated in the region x > 1 (where the energy density de-
creases as a�4) and the region x < 1 where the magnetic
energy density increases while the electric energy density
still decreases. By demanding that kmin ¼ 1=�min is the first
scale leaving the Hubble radius at the onset of inflation and
that kmax ¼ 1=�max is the last scale leaving the Hubble
radius at the end of inflation, the net growth of the energy
density can be constrained. The results are illustrated in
Fig. 3 in the usual plane ðNt; �Þ.

The results of Fig. 3 are less restrictive than the require-
ments obtained from the growth of the inhomogeneities.

For instance, the full line of the right plot of Fig. 1 has a
maximum for Nt ’ 140 while the full line of the right plot
of Fig. 3 seems to allow for more than 200 e-folds.
Backreaction effects can very well be under control but
the inhomogeneities may grow larger than the adiabatic
contribution. If we commit ourselves to a specific scenario,
the magnetic energy density must not affect the equation
of the spectator field. Adopting the parametrization
previously discussed, this condition would demand
�	=Mð ��B � ��EÞ< 3H _	 implying

�	ð ��B � ��EÞ
3H2 �M2

P

<
M
�MP

< 1: (6.7)
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FIG. 2 (color online). The bound on the growth rate is illustrated in the planes ðNt; fÞ and ðNt; �Þ. As in Fig. 1, the allowed region in
the parameter space lies below the corresponding curve.
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FIG. 3 (color online). The constraints stemming from the requirement that the energy density of the amplified magnetic field is
subdominant in comparison with the energy density of the background geometry. The values of � have been fixed as in Eq. (6.3).
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Let us consider, as an example, the case �’ ¼ 0. In this

case �	 is directly expressible in terms of f and � accord-
ing to Eq. (5.26). The condition (6.7) can then be plotted for
different values of Nt, � and f with the same logic leading
to Figs. 1 and 2. As it can be explicitly seen the inequalities
(6.7) are satisfied with M ¼ 1:5� 10�2 �MP for Nt ’ 65
and 10�4 < �< 10�2. We therefore conclude that the
predominance of the adiabatic mode represents a more
constraining criterion than the simple backreaction
requirements.

Let us now recall that the case �	 ¼ 0, according to
some considerations, would be less plausible since, in this
case, the inflaton would be directly coupled to the gauge
fields and the flatness of the potential might be in danger. In
spite of these caveats, in Fig. 4 the case �	 ¼ 0 is illus-
trated and should be compared with Fig. 1 (obtained in the
case �’ ¼ 0). Provided f � 2:15 and 0:001 � � � 0:1 the
total number of e-folds is larger than 65. Conversely, larger
values of the growth rate (i.e., f > 2:2) constrain the
number of e-folds to be smaller than 65 and are therefore
not acceptable.

C. Concluding remarks

The bounds on the growth rate can be also translated
into constraints on the magnetic spectral index entering
the phenomenological discussion of the effects of prede-
coupling magnetic fields on the temperature and polar-
ization anisotropies. The magnetic spectral index defined
in Ref. [58] gives the slope of the magnetic field spec-
trum, i.e., PB / knB�1. The relation between f and nB is
nB ¼ 5� 2fð1þ �Þ. The bounds on f derived in this

section then imply a lower bound on nB > 0:6� 4:4�. It
is interesting to notice that the results of Ref. [58] are
compatible with this limit: in a frequentistic perspective
the analysis of the temperature and polarization correla-
tions in the magnetized �CDM scenario implies that
values nB < 0:9 are excluded to 95% confidence level.
The present findings suggest that a nearly scale-invariant
magnetic field spectrum induced by inflationary magneto-
genesis is compatible with the range 2 � f < 2:2 pinned
down by requiring the predominance of the adiabatic
mode during conventional inflation as argued some time
ago in different contexts (see, for instance, Refs. [21,25]).
In the nearly scale-invariant case the amplitude of the
physical magnetic power spectrum is of the order of
1:44� 10�11 G at the epoch of the gravitational collapse
of the protogalaxy.15
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FIG. 4 (color online). The bound on the growth rate is illustrated in the plane (Nt; �). This figure is the analog of Fig. 1 but in the case
�	 ¼ 0.

15This estimate holds in the nearly scale-invariant limit (i.e.,
f ! 2) and for AR ¼ 2:41� 10�9. The dependence on the
slow roll parameter � introduces a weak scale dependence in the
estimate. We assume here � � 0:001. This is roughly the bound
on � obtainable from the analysis of the WMAP9 data [32] in
combination with all the other large-scale data and in the light of
the �CDM scenario supplemented by a tensor component. In
this case the maximal value of rT (i.e., the tensor to scalar ratio)
is rT ¼ 0:13 implying � ¼ 0:0081.
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APPENDIX A: EVOLUTION EQUATIONS IN
UNIFORM CURVATURE GAUGE

The main set of governing equations used to derive
various results discussed in the bulk of the paper will be
illustrated in detail. With the gauge choice (4.4) the coor-
dinate system is totally fixed without the need of further
conditions: because of this property the functions �ð ~x; �Þ
and �ð ~x; �Þ bear an extremely simple relation to one of the
conventional sets of gauge-invariant variables. In the gauge
(4.4) the inhomogeneities of the energy-momentum tensors

T�
� ð’Þ, T�

� ð	Þ and T �
�ð�; pÞ are, respectively,

�sT
0
0ð’Þ ¼ ��’; �sT

i
0ð’Þ ¼ �’02

a2

�
@i�’

’0 þ @i�

�
;

�sT
j
i ð’Þ ¼ ��p’�

j
i ; (A1)

�sT
0
0ð	Þ ¼ ��	; �sT

i
0ð	Þ ¼ �	02

a2

�
@i�	

	0 þ @i�

�
;

�sT
j
i ð	Þ ¼ ��p	�

j
i ; (A2)

�sT 0
0 ¼ ��; �sT

j
i ¼ ��p�j

i ;

�sT i
0 ¼ ðpþ �Þvi;

(A3)

where �’ and �	 denote, respectively, the fluctuations of

the inflaton ’ and of the spectator field 	; vi denotes the
three-velocity of the fluid in the gauge (4.4). The explicit
expressions of ð��’; �p’Þ and of ð��	; �p	Þ are,16

respectively,

��’ ¼ 1

a2

�
��’02 þ �0

’’
0 þ a2

@V

@’
�’

�
;

�p’ ¼ 1

a2

�
��’02 þ �0

’’
0 � a2

@V

@’
�’

�
;

(A4)

��	 ¼ 1

a2

�
��	02 þ �0

		
0 þ a2

@W

@	
�	

�
;

�p	 ¼ 1

a2

�
��	02 þ �0

		
0 � a2

@W

@	
�	

�
:

(A5)

The fluctuations of the Einstein tensor G�
� ¼

R�
� � R��

�=2, always in the gauge (4.4), are instead:

�sG0
0 ¼

2

a2
½�Hr2�� 3H 2��;

�sGi
0 ¼

2

a2
@i½�H�þ ðH 0 �H 2Þ��;

(A6)

�sG
j
i ¼

1

a2
f½�2ðH 2 þ 2H 0Þ�� 2H�0�

� r2ð�þ �0 þ 2H�Þg�j
i

þ 1

a2
@i@

jð�0 þ 2H�þ�Þ: (A7)

The combination of Eqs. (A1)–(A3) with Eqs. (A6) and
(A7) implies that the (00) and ð0iÞ components of the
perturbed Einstein equations with mixed indices become17

H r2�þ 3H 2� ¼ �4�Ga2½��t þ ��B þ ��E�;
(A8)

ðH 0 �H 2Þr2��Hr2� ¼ 4�Ga2½ðpþ �Þ�þ P

þ ðp’ þ �’Þ�’
þ ðp	 þ �	Þ�	�; (A9)

where ��t ¼ ��þ ��’ þ ��	 and

�’ ¼ ��’

’0 ���; �	 ¼ ��	

	0 ���;

�ð ~x; �Þ ¼ @iv
i: (A10)

In Eq. (A10) the following practical notations

�’ ¼ r2�’; �	 ¼ r2�	; �� ¼ r2� (A11)

have been introduced. The (ij) component of the perturbed
Einstein equations reads�
�ðH 2 þ 2H 0Þ��H�0 � 1

2
r2ð�þ �0 þ 2H�Þ

�
�j
i

þ 1

2
@i@

j½�þ �0 þ 2H��
¼ 4�Ga2f�½�pt þ �pB þ �pE��j

i þ�ðEÞj
i þ�ðBÞj

i g;
(A12)

where, in full analogy with Eq. (A10), the total pressure
fluctuation �pt has been defined:

�pt ¼ �pþ �p’ þ �p	: (A13)

The separation of the traceless part from the trace in
Eq. (A12) implies the following pair of relations,

ðH 2 þ 2H 0Þ�þH�0 þ 1

3
r2ð�þ �0 þ 2H�Þ

¼ 4�Ga2ð�pt þ �pB þ �pEÞ; (A14)

@i@
j½�þ �0 þ 2H�� � 1

3
r2½�þ �0 þ 2H���j

i

¼ 8�Ga2½�ðEÞj
i þ�ðBÞj

i �; (A15)

16To avoid lengthy notations we wrote ��’ and ��	 (instead of
�s�’ and �s�	), �� (instead of �s�) and similarly for the
corresponding pressures; this notation is fully justified and
unambiguous once the scalar nature of the fluctuations has
been established, as specified by the general formulas written
above.

17Equations (A8) and (A9) are commonly referred to as,
respectively, the Hamiltonian and the momentum constraints.
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that can be further simplified by recalling Eq. (3.26):

ðH 2 þ 2H 0Þ�� þH�0
�

¼ 4�Ga2½r2ð�pþ �p’ þ �p	Þ � r2ð�E þ�BÞ�;
(A16)

�0
� þ 2H�� þ �� ¼ 12�Ga2ð�E þ�BÞ: (A17)

In Eq. (A17) the same notations established in Eq. (A11)
have been employed. During inflation the perturbative
variables necessary to describe the evolution of the
whole system are then given by ��, ��, �’ and �	.

Neglecting the fluid sources, the Hamiltonian and mo-
mentum constraints of Eqs. (A8) and (A9) can then be
written as

Hr2�� þ 3H 2��

¼ �4�Ga2½r2ð��’ þ ��	Þ þ r2ð��B þ ��EÞ�;
(A18)

ðH 0 �H 2Þ�� �H��

¼ 4�Ga2
�
P� 1

a2
½’0�’ þ 	0�	 þ ð’02 þ 	02Þ���

�
:

(A19)

The evolution equations of �’ and of �	 are derived

from the perturbed version of Eqs. (2.6) and (2.7),

�00
’ þ 2H�0

’ �r2�’ þ @2V

@’2
a2�’ þ 2

@V

@’
a2��

� ’0ð�0
� þr2��Þ ¼ a2




@


@’
r2ð��E � ��BÞ; (A20)

�00
	 þ 2H�0

	 �r2�	 þ @2W

@	2
a2�	 þ 2

@W

@	
a2��

� 	0ð�0
� þr2��Þ ¼ a2




@


@	
r2ð��E � ��BÞ: (A21)

The system of Eqs. (A20) and (A21) can be reduced to a set
of quasinormal modes whose evolution equations are mu-
tually coupled but decoupled from all other perturbation
variables. The sum of these quasinormal modes, weighted
by coefficients that depend on the geometry, gives the
curvature perturbations as explained in Eqs. (4.6)–(4.15)
and (5.1)–(5.27).

The evolution equations for �’ and �	 can be de-

coupled from the remaining perturbation variables as fol-
lows. From Eq. (A9), neglecting the fluid component, we
obtain an expression for ��; a derivation with respect to

the conformal time coordinate will give �0
�. The final

result of this step is

��¼4�G

��
’0

H

�
�’þ

�
	0

H

�
�	

�
�4�Ga2

H
P; (A22)

�0
�¼4�G

��
’0

H

�
�0

’þ
�
’0

H

�0
�’þ

�
	0

H

�
�0

	þ
�
	0

H

�0
�	

�

�4�Ga2

H

�
P0 þ

�
2H �H 0

H

�
P

�
: (A23)

From the Hamiltonian constraint of Eq. (A8), always
during the inflationary phase, we can obtain r4� ¼
r2�� and eliminate, in the derived expression, ��

through Eq. (A22). This algebraic step leads to three
typical terms: the first one contains the dependence on
�’ and �	; the second term contains �0

’ and �0
	; the

third term depends on P, P0 and ð��B þ ��EÞ. The full
expression of r2�� is

r2�� ¼ �4�G

���
2H þH 0

H

��
’0

H

�
þ a2

H
@V

@’

�
�’

þ
��

2H þH 0

H

��
	0

H

�
þ a2

H
@W

@	

�
�	

�

� 4�G

��
’0

H

�
�0

’ þ
�
	0

H

�
�0

	

�

þ 4�Ga2

H

��
2H þH 0

H

�
P�r2ð��B þ ��EÞ

�
:

(A24)

By then summing up term by term Eqs. (A23) and (A24)
the term ð�0

� þr4�Þ that appears in Eqs. (A20) and

(A21) can be explicitly obtained:

r2��þ�0
�¼�4�G

��
2

�
2HþH 0

H

��
’0

H

�
þ2

a2

H
@V

@’

�
�’

þ
�
2

�
2HþH 0

H

��
	0

H

�
þ2

a2

H
@W

@	

�
�	

þ a2

H

�
P0�2

H 0

H
Pþr2ð��Bþ��EÞ

��
:

(A25)

With the aid of Eq. (A25) and of the other equations
derived in this appendix, Eqs. (A20) and (A21) reduce to
Eqs. (4.8) and (4.9). As anticipated these equations are
mutually coupled but decoupled from all other perturba-
tions variables.
After a transition regime, in the postinflationary

phase, the coupling of the sources to the growth rate
of the magnetic and electric fields disappears. The cova-
riant conservation equation of energy-momentum tensor
reduces to

��0
t þ ðpt þ �tÞ�t þ 3H ð�pt þ ��tÞ ¼ 0; (A26)

while the equation for the three-divergence of the total
fluid velocity becomes
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ð�t þ ��Þ0 þ ½p0
t þH ðpt þ �tÞ�

ðpt þ �tÞ ð�t þ ��Þ

þ r2�pt

ðpt þ �tÞ þ�� ¼ 0: (A27)

Using Eq. (A26) and recalling that � ¼ ð��t þ ��B þ
��EÞ=½3ð�t þ ptÞ� the evolution of � becomes

� 0 ¼ � H
ðpt þ �tÞ�pnad þ H

pt þ �t

�
c2st � 1

3

�
ð��B þ ��EÞ

� P

3ðpt þ �tÞ �
~J � ~E

3ðpt þ �tÞa4
� �t

3
; (A28)

where �pnad ¼ �pt � c2st��t. Similarly, the evolution
equation for R can be almost immediately obtained by
subtracting Eq. (A8) (multiplied by c2st) from Eq. (A14) and
by recalling the relation of � to R. The result for the
evolution equation of R is

R 0¼ �R þ H 2c2str2�

4�Ga2ðpt þ �tÞ
; (A29)

where �R is defined as

�R ¼ �H�pnad

ðpt þ �tÞ þ
H

ðpt þ �tÞ
��

c2st � 1

3

�
ð��B þ ��EÞ

þ�E þ�B

�
: (A30)

By taking the first derivative of Eq. (A29), the dependence
on r2� can be eliminated using the Hamiltonian and the
momentum constraints; the final result is as follows: by
means of the other equations we get

R00 þ 2
z0t
zt
R0 � c2str2R ¼ �0

R þ 2
z0

z
�R

þ 3a4

z2
ð�E þ�BÞ; (A31)

where zt ¼ ða2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt þ �t

p Þ=ðH cstÞ. The variable ztR is, up
to a sign, the normal mode of an irrotational and relativistic
fluid discussed by Lukash [46] (see also Refs. [47,48]) with
the difference of the source term containing the depen-
dence on the gauge inhomogeneities. Both Eqs. (A28) and
(A29) have been discussed in Ref. [7]. Note that, from the
definition of R in terms of � and from the Hamiltonian
constraint it turns out, as expected, that � �R / �� (see,

in particular, the second paper of Ref. [12]). So, with some
caveats, the evolution of � can be traded from the evolution
of R.

APPENDIX B: SECOND-ORDER CORRECTIONS

The power spectra of the electric and magnetic fields
measure the first-order correlation properties of the
corresponding fluctuations. The power spectra of the en-
ergy densities and of the anisotropic stresses are a measure

of the second-order correlation properties of the electric
and magnetic fields. To compute the power spectra intro-
duced in Eqs. (3.29)–(3.32) an explicit expression for the
magnetic power spectra PBðq; �Þ, PEðq; �Þ and PEBðq; �Þ is
needed. In an exact de Sitter phase of expansion and for
F ¼ 2H ¼ �2=� the solution of Eqs. (3.8)–(3.10) for the
evolution of the power spectra with the correct boundary
conditions is given by18

PBðk; �Þ ¼ 9þ 3k2�2 þ k4�4

4��4
; PEðk; �Þ ¼ k2 þ k4�2

4�2�2
;

PEBðk; �Þ ¼ � kð3þ 2k2�2Þ
2�2�3

: (B1)

The same result can be obtained directly from Eq. (3.14)
and from the related solutions in terms of the mode func-
tions. In this case the wanted power spectra are

QBðq; �Þ ¼ H8

2048�7

Z d3k

k3
q3

p3
½9þ 3k2�2 þ k4�4�

� ½9þ 3p2�2 þ p4�4���ðq; kÞ; (B2)

QEðq; �Þ ¼ H8

2048�7

Z
d3k

q3�4

kp
ð1þ k2�2Þ

� ð1þ p2�2Þ��ðq; kÞ; (B3)

QB�ðq; �Þ ¼ H8

4608�7

Z d3k

k3
q3

p3
½9þ 3k2�2 þ k4�4�

� ½9þ 3p2�2 þ p4�4���ðq; kÞ; (B4)

QE�ðq; �Þ ¼ H8

4608�7

Z
d3k

q3�4

kp
ð1þ k2�2Þ

� ð1þ p2�2Þ��ðq; kÞ; (B5)

where p ¼ j ~q� ~kj and the functions ��ðq; kÞ and

��ðq; kÞ have been defined in Eqs. (3.33) and (3.34).
Even if the expressions of Eqs. (B2)–(B5) are reasonably
simple, it is interesting to bring them to an even simpler
(though approximate) form. In particular Eqs. (B2)–(B5)
are equivalent to the following set of approximate
expressions:

QBðq; �Þ ¼ H8

2048�7

�
IBðqÞ

�
a�
a

�
8
#ðq�H Þ

þOBðqÞ#ðH � qÞ
�
; (B6)

18Recall that during a de Sitter stage of expansion the confor-
mal time coordinate is negative so that all the power spectra of
Eq. (B1) are positive definite.
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QEðq; �Þ ¼ H8

2048�7

�
IEðqÞ

�
a�
a

�
8
#ðq�H Þ

þOEðqÞ
�
a�
a

�
4
#ðH � qÞ

�
; (B7)

QB�ðq; �Þ ¼ H8

4608�7

�
IB�ðqÞ

�
a�
a

�
8
#ðq�H Þ

þOB�ðqÞ#ðH � qÞ
�
; (B8)

QEðq; �Þ ¼ H8

4608�7

�
IE�ðqÞ

�
a�
a

�
8
#ðq�H Þ

þOE�ðqÞ
�
a�
a

�
4
#ðH � qÞ

�
; (B9)

where the Heaviside’s step function has been introduced.
The factorization of the time dependence has been
achieved by expanding the integrands in powers of k�
and p� and by consistently keeping the leading terms in
the expansion. The resulting expressions depend on four
integrals over the momenta which can be accurately regu-
larized and computed:

IBðqÞ ¼
Z

d3kkpq3��ðq; kÞ;

OBðqÞ ¼ 81
Z d3k

k3
q3

p3
��ðq; kÞ;

IEðqÞ ¼
Z

d3k
q3k2p2

kp
��ðq; kÞ;

OEðqÞ ¼
Z

d3k
q3

kp
��ðq; kÞ;

IB�ðqÞ ¼
Z

d3kkpq3��ðq; kÞ;

OB�ðqÞ ¼ 81
Z d3k

k3
q3

p3
��ðq; kÞ;

IE�ðqÞ ¼
Z

d3k
q3k2p2

kp
��ðq; kÞ;

OE�ðqÞ ¼
Z

d3k
q3

kp
��ðq; kÞ:

(B10)

Note that IXðqÞ andOXðqÞ simply denote the modes of the
quantity X which are, respectively, inside or outside the
Hubble radius at the corresponding epoch as specified by
the Heaviside theta functions appearing in Eqs. (B6)–(B9).

The energy spectra of the electric and magnetic parts
behave differently outside the Hubble radius. While inside
the Hubble radius QBðq; �Þ ¼ QEðq; �Þ ’ H8a�8, outside
the Hubble radius QBðq; �Þ ’ H8 is almost constant and
QEðq; �Þ ’ H8a�4 is sharply decreasing. The same kind of
conclusion, with slightly different numerical coefficients,
also holds for QB�ðq; �Þ and QE�ðq; �Þ. This means that
outside the Hubble radius (which is the most delicate

regime from the point of view of the effects on the scalar
adiabatic modes), the magnetic components dominate
against the electric ones provided the magnetic power
spectrum is nearly scale invariant.
The conclusions drawn so far hold in the case of quan-

tum mechanical initial conditions. This means that the
power spectra of the electric and magnetic fields satisfy
the corresponding equations for F ¼ �2=� and 	c ¼ 0.
In the case of conducting initial conditions, the situation is,
in some sense, even simpler since electric fields are further
suppressed at the level of the initial conditions. This means
that, from the relevant equations of the power spectra
PEBðq; �Þ ’ 0 and outside the Hubble radius OBðq; �Þ ’
H8a4f�8 while OEðq; �Þ ’ ðq=	cÞ8H8a�4f�8 where f ¼
F =H ; f ¼ 2 in the case of an exactly scale-invariant
spectrum.
The spectra of Eqs. (B2)–(B5) are derived in the absence

of slow roll corrections, i.e., in the case of a pure de Sitter
dynamics. In the quasi—de Sitter case, the evolution equa-
tions of fkð�Þ and gkð�Þ inherit a dependence on the slow
roll parameters which enter directly the energy spectra.
Slow roll corrections are then essential to derive realistic
spectra and realistic bounds on the inflationary growth rate
of the magnetic inhomogeneities.
For typical wavelengths larger than the Hubble radius

the second-order spectra including the slow roll corrections
are given by

QBðq; �Þ ¼ OBðq; �; fÞ
�
a

aex

�
gBð�;fÞ

;

QB�ðk; �Þ ¼ OB�ðq; �; fÞ
�
a

aex

�
gBð�;fÞ

;
(B11)

QEðq; �Þ ¼ OEðq; �; fÞ
�
a

aex

�
gEð�;fÞ

;

QE�ðq; �Þ ¼ OE�ðq; �; fÞ
�
a

aex

�
gEð�;fÞ

;

(B12)

where gBð�; fÞ and gEð�; fÞ are
gBð�; fÞ ¼ 4f� 8þ 4�f;

gEð�; fÞ ¼ 4f� 12þ 2f�:
(B13)

The amplitudes appearing in Eqs. (B11) and (B12) are

O Xðq; �; fÞ ¼ H8CXðf; �ÞLXðf; �; qÞ
�
q

qp

�
mXð�;fÞ�1

;

(B14)

where X coincides either with the magnetic (i.e., B, B�) or
with the electric (i.e., E, E�) labels. In the parametrization
of Eq. (B14) the flat spectrum of the X power spectrum
arises for mX ¼ 1 and the various indices corresponding to
the four components are given by
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mBð�; fÞ ¼ mB�ð�; fÞ ¼ 9� 4fð1þ �Þ;
mEð�; fÞ ¼ mE�ð�; fÞ ¼ 13� 4fð1þ �Þ: (B15)

The functions CXðf; �Þ are given, respectively, by

CBðf; �Þ ¼ 24fð1þ�Þ

1024�7
�4½fð1þ �Þ þ 1=2�;

CB�ðf; �Þ ¼ 4

9
CBðf; �Þ;

(B16)

CEðf; �Þ ¼ 24fð1þ�Þ�2

4096�7
�4½fð1þ �Þ � 1=2�;

CE�ðf; �Þ ¼ 4

9
CEðf; �Þ:

(B17)

The functions LXðf; �; qÞ are

LBðf; �; qÞ ¼ 8½fð1þ �Þ þ 1�
3½4fð1þ �Þ � 5�½4� 2fð1þ �Þ�
� 8

3½4� 2fð1þ �Þ�
�
q

q0

�
2fð1þ�Þ�4

þ 4

5� 4fð1þ �Þ
�

q

qmax

�
4fð1þ�Þ�5

; (B18)

LB�ðf; �; qÞ ¼ 2½17� 2fð1þ �Þ�
15½4fð1þ �Þ � 5�½4� 2fð1þ �Þ�
� 2

3½4� 2fð1þ �Þ� ð
q

q0
Þ2fð1þ�Þ�4

þ 7

5� 4fð1þ �Þ ð
q

qmax

Þ4fð1þ�Þ�5; (B19)

LEðf; �; qÞ ¼ 8fð1þ �Þ
3½6� 2fð1þ �Þ�½4fð1þ �Þ � 9�
� 8

3½6� 2fð1þ �Þ�
�
q

q0

�
2fð1þ�Þ�6

þ 4

9� 4fð1þ �Þ
�

q

qmax

�
4fð1þ�Þ�9

; (B20)

L E�ðf; �; qÞ ¼ 2½18� fð1þ �Þ�
15½4fð1þ �Þ � 9�½6� 4fð1þ �Þ�
� 2

3½6� 2fð1þ �Þ�
�
q

q0

�
2fð1þ�Þ�6

þ 7

5½9� 4fð1þ �Þ�
�

q

qmax

�
4fð1þ�Þ�9

:

(B21)

The comoving scale qp ¼ 0:002 Mpc�1 is the usual pivot

scale at which the power spectra of the scalar curvature
are assigned. The value of q0 has been chosen 0:001qp
while qmax can be estimated from the transition scale
between inflation and radiation and it is of the order

of 1024ð�ARÞ1=4Mpc�1. The results reported in
Eqs. (B16)–(B21) follow after lengthy but straightfor-
ward algebra from Eqs. (3.29)–(3.32). Consider, for in-
stance, the second-order correlations of the magnetic
energy density. From Eq. (3.29) the explicit expression
of QBðq; �Þ can be written as

QBðq;�Þ ¼ H8

8192�7

Z 1

�1
dy

Z umax

u0

du

u
s3u5j~s� ~ujjHð1Þ

� ðuÞj2

� jHð1Þ
� ðj~s� ~ujÞj2��ðu; s; yÞ; (B22)

where y ¼ cos# is one of the angular variables arising
from the integration over the comoving three-momentum
and where the following dimensionless vectors have been
introduced

~s ¼ ~q

aH
; ~u ¼

~k

aH
; j~s� ~uj ¼ j ~q� ~kj

aH
: (B23)

In Eq. (B22) Hð1Þ
� ðzÞ denotes the Hankel function (of

generic argument z) coming from the solution of the
mode equations including the slow roll corrections. In a
specific model, such as the ones discussed in Sec. V, F
will assume a specific dependence on the scale factor and
we shall focus on the case of a monotonic dependence.
The Bessel index � of Eq. (B23) will then depend both on
f and on the slow roll parameter. This happens since the
mode equation for fkð�Þ [which is the one relevant for
Eqs. (3.29) and (B22)] can be written as19

f00k þ ½k2 �F 2 �F 0�fk ¼ 0;

F 2 þF 0 ¼ a2H2½f2 þ fð1þ �Þ�: (B24)

In the present investigation we preferentially considered
models compatible with the conventional inflationary
scenario, where 
 depends on a spectator field and it
slowly increases during the quasi—de Sitter stage at a
rate which we ought to constrain. If the slow roll parame-
ters are all constant (as it happens in the case of mono-
mial inflationary potentials, for instance) then aH is
given by Eq. (2.20) and, to first order in �, � ’ fþ 1=2þ
f�. The integration over y in the class of integrals repre-
sented by Eq. (B22) can be performed explicitly, after
some algebra, when the given wavelengths are either
larger or smaller than the Hubble radius. In connection
with the lengthy algebra, Eqs. (3.33) and (3.34) imply
that, in Eq. (B23), ��ðu; s; yÞ depends on y ¼ cos#;

the same holds for ��ðu; s; yÞ in the other integrals
involving electric and magnetic anisotropic stresses.
Using this strategy all the explicit expressions reported
in Eqs. (B18)–(B20) can be obtained after radial
integration.

19Note that the mode function fkð�Þ cannot be confused with f;
the wave number has been always written explicitly. With this
caveat potential confusion is avoided.
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