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Future space-based gravity wave (GW) experiments such as the Big Bang Observatory (BBO), with

their excellent projected, one sigma angular resolution, will measure the luminosity distance to a large

number of GW sources to high precision, and the redshift of the single galaxies in the narrow solid angles

towards the sources will provide the redshifts of the gravity wave sources. One sigma BBO beams contain

the actual source in only 68% of the cases; the beams that do not contain the source may contain a spurious

single galaxy, leading to misidentification. To increase the probability of the source falling within the

beam, larger beams have to be considered, decreasing the chances of finding single galaxies in the beams.

Saini et al. [T. D. Saini, S. K. Sethi, and V. Sahni, Phys. Rev. D 81, 103009 (2010)] argued, largely

analytically, that identifying even a small number of GW source galaxies furnishes a rough distance-

redshift relation, which could be used to further resolve sources that have multiple objects in the angular

beam. In this work we further develop this idea by introducing a self-calibrating iterative scheme which

works in conjunction with Monte Carlo simulations to determine the luminosity distance to GW sources

with progressively greater accuracy. This iterative scheme allows one to determine the equation of state of

dark energy to within an accuracy of a few percent for a gravity wave experiment possessing a beam width

an order of magnitude larger than BBO (and therefore having a far poorer angular resolution). This is

achieved with no prior information about the nature of dark energy from other data sets such as type Ia

supernovae, baryon acoustic oscillations, cosmic microwave background, etc.
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I. INTRODUCTION

A remarkable property of our Universe is that it is
accelerating. The cause of cosmic acceleration is presently
unknown and theorists have speculated that it might be due
to the presence of the cosmological constant, an all perva-
sive scalar field called quintessence, a Born-Infeld-
type scalar called the Chaplygin gas, etc. It has also been
suggested that modifications to the gravity sector of the
theory, such as extra dimensional ‘‘braneworld’’ models or
fðRÞ theories, might be responsible for cosmic accelera-
tion. Establishing the nature and cause of cosmic accelera-
tion is clearly a paramount objective of modern cosmology
[1,2]. Standard candles in the form of type Ia supernovae
(SNIa) and standard rulers such as baryon acoustic oscil-
lations observed in the clustering of galaxies have played a
key role in garnering support for the accelerating universe
hypothesis. Standard candles rely on an accurate determi-
nation of the luminosity distance to infer the expansion
history and to make a case for cosmic acceleration. As
pointed out in Refs. [3–7] a complementary probe of the
expansion history is available in the form of gravitational
radiation emitted from compact binary objects such as

neutron star-neutron star (NS-NS) binaries, neutron star-
black hole binaries, or black hole-black hole binaries.
Indeed, it appears that if the underlying physics behind

gravitational radiation emitted by a NS-NS binary is well
understood, then the luminosity distance to a given red-
shift, DL, can be established to a(n) (intrinsic) precision of
about 2% [8], making this binary an excellent standard
siren. However, for a single source the dominant uncer-
tainty is due to weak lensing, which is 2–3 times this
precision. What is needed additionally, to determine
DLðzÞ, is the source redshift of the compact binary emitting
gravitational radiation, and the main systematic uncer-
tainty in this case is the possible misidentification of the
galaxy hosting the binary object (see, e.g., Refs. [5–7]).
The proposed space-borne gravity wave (GW) observatory

Laser Interferometer Space Antenna (LISA) [9] is expected to
achieve an angular resolution of about 10, and the volume
bounded by this angle is expected to contain roughly
30 objects at z ’ 1 [5]. Its replacement evolved Laser
Interferometer Space Antenna (eLISA) will have a consider-
ably lower angular resolution (several degrees) and will there-
fore contain far more objects within its field of view [10].
Thus, unless the galaxy hosting the binary system can be
unambiguously identified by the electromagnetic afterglow of
the merger event [11], the large number of objects within the
eLISA beam will compound the problem of host identifica-
tion. Even in the complete absence of electromagnetic
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afterglow fromGW sources, it seems possible to obtain useful
cosmological information: In a key paper, MacLeod and
Hogan [12] showed that by considering all the galaxies inside
the error box as equally likely sources of a given GW emis-
sion, the Hubble parameter can be measured to an accuracy of
better than a percent. Their argument is based on observations
of stellar mass black holes inspiralling into massive black
holes, the so-called extreme mass ratio inspiral. These events
would be dominant at z < 1 where the weak lensing uncer-
tainty is small. Since galaxies are strongly clustered, and the
sources are equally likely to happen in galaxies irrespective of
their clustering, cluster redshifts would dominate the averag-
ing procedure inside the error box, thereby providing statisti-
cal information about the host redshift. Our paper builds upon
this earlier work [12] and shows how one can iteratively
pin down the DL-z relationship even in the absence of an
electromagnetic afterglow from GW sources.

Clearly, then, the major source of uncertainty in determin-
ing DLðzÞ using standard sirens is caused by the misidenti-
fication of the galaxy hosting the standard siren, and the
chances for this to happen increase with the number of
galaxies within the observational beam. Since gravity wave
standard sirens have enormous potential for ascertaining the
nature of dark energy, it would clearly be very desirable to
minimize this source of systematics. Luckily, one expects a
substantial improvement in the directional sensitivity of next
generation GW experiments. Indeed, space observatories
such as DECIGO [4], the Big Bang Observer (BBO) [13]
and ASTROD [14], currently in the planning stage, are likely
to have a directional sensitivity of a few arc seconds or better,
in which case one might expect only a single galaxy to fall
within the field of view for a large fraction of observing
directions [15]. These space-based observatories are
expected to measure the equation of state of dark energy to
an unprecedented accuracy [15,16]. Although BBO and
DECIGO experiments are, in reality, at a conceptual stage,
for the purpose of this paper we treat the above-mentioned
characteristics as a generic stand-in for a future highly ad-
vanced gravitational-wave mission and use the label BBO/
DECIGO as a convenient abbreviation for such a mission.

Interestingly, even in the absence of an electromagnetic
signature, the source galaxy of the GW signal can still be
singled out from amongst the several galaxies lying within
the observational beam if its redshift is consistent with the
luminosity distance derived from an approximately known
cosmology. Utilizing this idea ([17], hereafter S3) sug-
gested an iterative scheme to identify the source galaxy
of the (unresolved) GW signal. At the start of the iterative
scheme, reliably identified GW sources—called ‘‘gold
plated’’ (GP) sources, following Ref. [15]—give a
first estimate of the relationship between the luminosity
distance and redshift (henceforth called the DZ relation1).

The expected number of GP sources depends crucially on
the directional sensitivity of the experiment: Good direc-
tional sensitivity will result in a large number of GP
sources, whereas the opposite will be true for an experi-
ment with poor sensitivity. The reason for this is simple:
An experiment with good sensitivity will frequently have a
single galaxy within its beam, and optical followups could
establish its redshift.
However, even if one commences with fewer GP

sources, one can still improve the DZ relation iteratively
as follows. For poor directional sensitivity (large angular
uncertainty) most GW signals would be unresolved since
several galaxies would fall within the (large) angular beam.
However, even in this case, a (rough) DZ relation derived
from GPs can single out one particular galaxy—the one
which is most consistent with the DZ relation—to be the
source. This increases the resolved set, thereby improving
the DZ relation, and this procedure can now be used
iteratively. As more and more sources are resolved, the
estimate for the DZ relation improves and eventually satu-
rates at the point when uncertainty in the redshift of the
source is dominated by instrumental and lensing scatter
rather than by our empirical knowledge of DLðzÞ.
S3 investigated the efficacy of this method analytically,

using the ensemble average of statistical quantities at each
step of the iteration. Analytically, the iteration scheme
yields a recursion relation of the form Njþ1 ¼ fðNjÞ,
where Nj is the number of resolved sources at the jth

step of the iteration. The limiting number of resolved
sources is then obtained by solving N ¼ fðNÞ, which is
reached after an infinite number of essentially infinitesimal
improvements. In practice, we expect the iterations to
freeze much sooner due to Poisson fluctuations since the
number of resolved sources at each step of the iteration is,
in reality, a rapidly decreasing random number, and is
therefore not expected to change monotonically.
A crucial aspect of this method is the definition of the

error box into which we expect the source to fall. The data
only inform us that the source of the GW signal falls within
a solid angle with a given probability; and the measured
noisy luminosity distance to the source, along with the DZ
relation, informs us that the source redshift falls within a
redshift interval with a given probability. Therefore, given
an error box we cannot be certain that the true source of the
GW signal lies within it. S3 used one sigma BBO beams
with a one sigma redshift range (inferred from noise in the
measured luminosity distance) to define the error box.
However, the assumption of localizing the source galaxy
within the one sigma error box is fraught with difficulties:
If we assume Gaussian noise, then the one sigma error box
contains the true source only in 68% of the cases; the
leftover 32% tail will either contain no galaxy or a non-
source galaxy. In the case when the error box is empty there
is no problem since it leads to an unresolved source;
however, if the error box contains the wrong galaxy, with

1Note that the DZ relation should coincide with DLðzÞ for
idealized measurements.
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a redshift different from the true source, the inclusion of
this DZ pair in the GP set will bias the DZ relation. The
misidentified sources are a problem in general, but more
seriously, their specific impact on the iterative process is to
drive the inferred cosmology away from its true value be-
cause a biased DZ relation would deem nonsources as being
closer to the biased DZ relation, causing the number of
misidentifications to increase with iterations and thereby
increasing the bias. On the other hand, choosing a larger
error box to decrease the chances of misidentification in-
creases the number of galaxies falling inside the error box,
thereby decreasing the chance of resolving the GW signal.
Clearly, the size of the error box needs to be chosen in a
manner that ensures that misidentifications remain small but
not at the cost of resolving as many sources as possible. A
useful recipe is to start with the smallest error box, implying
the largest number ofmisidentified sources and increasing its
size until the bias becomes smaller than the random errors.

On average, the BBO/DECIGO one sigma angular beam
would not contain the true source in 32% of the cases but
may contain a nonsource galaxy, leading to misidentifica-
tion. The only way to ensure that beams do contain the
true source galaxy is to consider larger beams and regard
all galaxies falling in, for example, n��BBOðzÞ beam
(n� few) to be potential sources. This ensures that there
are very few beams which do not contain the true source.
However, as mentioned above, this will decrease the total
resolved set and therefore should affect the inferred cos-
mological constraints. Surprisingly, the dark energy equa-
tion of state can be reconstructed remarkably well even for
n as large as n ¼ 10, as we demonstrate in this paper.

Our main motivation for the present work is to inves-
tigate the above issues in detail through Monte Carlo simu-
lation of data and to explore choices for the error box that
lead to a well-determined DZ relation with minimal bias.

II. SELF-CALIBRATION WITH MONTE CARLO
SIMULATED DATA

A realistic Monte Carlo simulation mimicking the out-
come of the BBO/DECIGO experiment requires a careful
consideration of the astrophysical aspects of the problem.
First, we have to assume something about the type of
galaxies that would host NS-NS binary systems, and their
abundance, to derive the rate of NS-NS merger events as a
function of redshift. The number of resolved sources as a
function of redshift decides how well the DZ relation is
established, which in turn decides the precision with which
one can reconstruct the properties of dark energy. A de-
tailed prescription for sources of GW signals is presently
not well known and depends on theories of stellar and
galactic evolution, and in this work we continue to use
the rates used in Eq. (2) of Ref. [15]. However, the main
issue we are investigating here is the efficacy of identifi-
cation of the source galaxies for GW signals using the DZ
relation. Therefore, this prescription is entirely adequate

for our purposes. We believe that the achievable precision
on cosmology quoted in our paper is likely to be fairly
representative.
For localizing the source galaxy, the prime uncertainty is

due to the presence of other galaxies in the error box;
therefore, it is also necessary to assume something about
the spatial distribution of galaxies. If the galaxies are clus-
tered in redshift, then identification of the source galaxy
becomes relatively more difficult. It is well known that
galaxies cluster in a complex manner, with the clustering
depending both on galaxy type and redshift. Using the two-
point correlation function, S3 gave an estimate of the effect
of clustering on the number of galaxies that are expected to
fall within an error box. Basically, the net effect is to
increase the number of galaxies in the vicinity of the actual
source galaxy since the source galaxy is more likely to lie in
a clustered environment. Although it is desirable to simulate
data taking into account the clustering of galaxies, this turns
out to be a difficult task. For the purposes of the present
paper we shall neglect this effect and use the approximation
that galaxies are distributed uniformly and randomly at each
redshift (our method is described in greater detail below). As
our previous analysis of the two-point correlation function
indicates [17], this will lead to slightly optimistic estimates
of the final achievable cosmological constraints.

A. Simulating data

The simulated data described below has, for each GW
signal, an associated redshift of the source galaxy, redshifts
of some (or none) nonsource galaxies, the angular beam
size at the source redshift, and the noisy distance estimate
along with an estimate for the error in the distance. We call
this data, collectively associated with a single source, a
pencil. We mentioned earlier that if one considers only one
sigma angular resolution, then not all BBO beams will
contain the source galaxy. In our simulation each pencil,
by construction, contains a galaxy at the source redshift.
Since a one sigma angular beam, on average, contains the
source in 68% of the cases, this amounts to assuming the
total number of simulated sources to be about 50% higher.
Of the 32% of beams that do not contain the true source, a
small percentage could contain a nonsource galaxy which
would mistakenly be deemed a gold plated source. In our
prescription these misidentified sources are not taken into
account. As we demonstrate later, even if we choose an
angular beam of size 10��BBO, our method succeeds in
resolving the redshifts of enough GW sources so that the
implied constraints on dark energy are only marginally
worse than what one obtains for a one sigma beam. Such
large angular beams are almost certainly going to contain
the source galaxy; therefore, this prescription does not lead
to any distortion in our conclusions for larger beam sizes.
However, the results quoted for smaller angular beams
would appear to contain a smaller bias than would be the
case had we included the misidentified sources.
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To populate nonsource galaxies in the beams we divide
the redshift range into a large number of redshift bins.
Following Ref. [15], we consider sources up to z ¼ 5. As
mentioned earlier, we ignore the clustering of galaxies;
therefore, we assume that galaxies are distributed uniformly
and randomly in each redshift bin �zbin. The mean number
of galaxies, �n, lying within the beam at a given redshift bin
depends on the size of the bin �zbin and the angular size of
the beam ��ðzÞ, and is given by [15,18,19]

�nðzÞ ’ 4N�

hðzÞ ffiffiffiffi
�

p rðzÞ exp ½�r4ðzÞ���ðzÞ�zbin; (1)

where we have assumed a small�zbin, so the linear approxi-
mation in this equation suffices. Here rðzÞ ¼ R

z
0 dz=hðzÞ is

the c=H0 normalized coordinate distance, hðzÞ ¼ HðzÞ=H0,
and N� ¼ 1000 arcmin�2 is the projected number density
of galaxies consistent with the Hubble Ultra Deep Field
[20]. Given �n, the probability that there are k galaxies in
the bin is given by

Pr ðkÞ ¼ �nk exp ð� �nÞ=k!: (2)

Using a Poisson random generator we then populate each
redshift bin with nonsource galaxies. The one sigma BBO
angular resolution, ��BBO, ranges from 1 to 100 arcsec2,
and for this work we have adopted the redshift dependence
of the BBO beam for NS-NS mergers from Fig. 4 of
Ref. [15]. For the BBO beam most of these bins do not
contain any nonsource galaxies since �n � 1. In principle,
the redshift distribution of GW sources can differ from
that of galaxies due to the redshift-dependent rate of NS-
NS mergers, which we have adopted from Eq. (2) of
Ref. [15]. Note that the NS-NS rate peaks at z ¼ 1, which
is close to where the galaxy density peaks, so these two
distributions are similar to each other (also see Fig. 4).

To complete the specification of data we also need a
noisy estimate of the luminosity distance to the GW
source. The dimensionless standard deviation �mðzÞ=DL

is partly due to the fact that the luminosity distance to a
GW source cannot be measured to better than about 2%
relative accuracy (due to random instrumental noise),
partly due to weak lensing. The uncertainty due to template
fitting could be, at least, comparable to that due to instru-
mental error [21]; however, in this work we do not include
this in our analysis. The dominant uncertainty is due to
lensing. Lensing produces an asymmetric distribution of
magnifications: A majority of the GW sources are demag-
nified but a tiny fraction of them are highly magnified. If
the redshifts of the highly magnified sources are resolved
independently, then it is possible to handle them statisti-
cally; if not, then such sources would either lead to mis-
identifications or not be resolved at all. However, for our
purposes we set aside this complication2 and assume that

the distribution is described by a symmetric Gaussian
distribution with a dimensionless standard deviation
�wlðzÞ ¼ 0:042z, which is derived from the results of
Ref. [22]. We add to the lensing standard deviation a fixed
random instrumental/template noise with the dimension-
less standard deviation given by �inst ¼ 0:02, to obtain the
standard error in the luminosity distance �m given through

�m

DL

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
wl þ �2

inst

q
: (3)

Using a Gaussian random number generator with this
standard deviation, we then assign a noisy distance
measurement to each galaxy.

III. USING THEDZRELATION TO INCREASE THE
NUMBER OF RESOLVED SOURCES

If a pencil contains only a single galaxy (i.e., nonsource
galaxies are absent in the beam), then the host galaxy is
obviously identified (note that, by construction, all pencils
contain the source galaxy), and so it can be used to portray
the DZ relation at the redshift of the source (gold plated
source). However, as mentioned earlier, the luminosity
distance to a GP source has a nonzero random error due
to lensing scatter and measurement noise. So using a GP
source one can identify the DZ relation at the redshift of the
source only to within a finite accuracy.
If the number of GPs is comparable to the total number

of GW signals, then we need go no further, but as noted
above, this will happen only if beams at all redshifts are
very narrow. The BBO one sigma angular resolution is
sufficiently narrow for this to be the case. However, since
roughly a third of BBO beams will not contain the true
source and might also contain a spurious one—thereby
biasing the DZ relation—we shall consider beams of larger
size,3 to ensure that they more certainly contain the source
galaxy. For larger beams the number of GPs could be much
smaller than the total number of GW signals; in fact, LISA
and eLISA beams are so large that they would have no GPs.
At this stage we have a number of GPs that can be used

to further resolve the pencils that have more than a single
source galaxy within them. To see how this can be done
note that the nonsource galaxies would typically have
redshifts different from that of the source galaxy. For a
given pencil, the (noisy) DZ relationship inferred from the
GPs provides the probability distribution for the expected
source redshift, PðzÞ, for the signal. Clearly, the galaxy in a
pencil that is closest to the peak of this distribution is more
likely to be the actual source galaxy. The Appendix in S3
gives a detailed Bayesian method for determining this
probability distribution using a linear fitting function

2The asymmetry induced by lensing will be incorporated in a
followup work.

3It could also happen that the gravity wave observatory that is
finally launched would have a beam width which is larger than
that of BBO, in which case the above considerations would
apply.
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(linear in parameters of the model) for the luminosity
distance. According to this method, the GP sources are
used to infer the DZ relation by fitting them to a linear
model for the DZ relation, namely,

DLðz;hÞ ¼
XN
i

hifiðzÞ ¼ hTf; (4)

where h are the N parameters of the model, fi are N
arbitrary functions of redshift, and we have defined f ¼
ff1ðzÞ; f2ðzÞ; . . . ; fNðzÞg. The number of terms in the fitting
function is decided by the quality of data: Better quality
data require larger N to adequately fit data. Moreover, the
choice of functional form of fi should ensure that the
fitting function, for some values of parameters h, is able
to mimic the behavior of the target DZ relation.

After constructing an appropriate fitting function, the
model is fitted to the resolved sources and the errors on the
parameters of the fitting function are obtained. They are
described by the Gaussian distribution

PðhÞ ¼ 1

ð2�ÞN=2
ffiffiffiffiffiffiffiffiffiffiffi
detC

p exp

�
� 1

2
ðhT � hT

0 ÞC�1ðh� h0Þ
�
;

(5)

where C is the covariance matrix and h0 are the best fit
parameters. This fit is then used to infer the posterior
probability distribution for the unknown source redshift
given the noisy luminosity distance to the GW signal.
The resulting expression is straightforward but compli-
cated, and is given by Eq. (A6) of S3.

The Chebyshev polynomials provide a flexible and con-
venient linear fitting function for the luminosity distance,

DLðz;hÞ ¼
XN
I¼1

hIChebIðzÞ; (6)

where ChebIðzÞ is the Ith order Chebyshev polynomial.
Depending on the quality of data, the order of fit N can be
set at a valuewhere the fit becomes good (in terms of the �2

test). The reason for choosing Chebyshev polynomials over
ordinary polynomials is that the numerical value of these
polynomials remains bounded in the range (�1, 1), within
the range of the fit. This ensures that the statistical errors on
the coefficients hi remain similar for all orders I. This is
extremely important for translating them to errors on red-
shift through PðzÞ, where the covariance matrix needs to be
numerically well behaved for inversion.

We find that this linear model works well most of the
time. But in a few high redshift cases the inferred redshift
peak fails to fall reasonably close to the true source red-
shift. This happens because noise in the data affects the fit
adversely, especially at high redshifts where the number of
resolved sources is small. The polynomial fit is in some
sense local and does not respect the expectation of mono-
tonicity. Therefore, it tries to overfit any local feature
produced by noise; this produces artifacts that need to be

handled individually, making it difficult to automate the
process.
Due to limitations of a linear Chebyshev polynomial

based fit, we considered other alternatives. It is clear that
a physics based model for the luminosity distance does not
have these limitations. However, a crucial unknown is the
physics governing the behavior of dark energy, which is
crucial for determining the luminosity distance. The un-
known physics of dark energy is usually encapsulated in
the form of a fluid model for dark energy, with an equation
of state, p ¼ w�. The unknown function w is then thought
of as a function of redshift wðzÞ and can be parametrized in
terms of a suitably versatile fitting function.4 For our work
we follow the reconstruction procedure which incorporates
the Chevallier-Polarski-Linder (CPL) fitting function [23]
for wðzÞ given below:

DLðzÞ
1þ z

¼ c

H0

Z 1þz

1

dx

HðxÞ ; (7)

where

H2ðzÞ ¼ H2
0½�Mð1þ zÞ3 þ�DE�2;

�DE ¼ ð1��MÞ exp
�
3
Z z

0

1þ wðzÞ
1þ z

dz

�
;

wðzÞ ¼ pDE=�DE ¼ w0 þ w1z

1þ z
;

(8)

with� cold dark matter (CDM) corresponding tow0¼�1,
w1 ¼ 0. The CPL ansatz produces reasonable fits if dark
energy has a slowly varying equation of state.
However, from the perspective of the iterative scheme

which we develop in this paper, this fitting function has a
problem: It depends nonlinearly on the model parameters
�M, w0 and w1. The posterior probability PðzÞ for the
source redshift can be analytically obtained only if the
luminosity distance depends linearly on its parameters
(see the Appendix of S3). A possible remedy is to (i) use
the fitting functions (7) and (8), to the simulated data to
obtain the best fit parameters ð�M0; wi0Þ and (ii) linearize
(7) in�M andwi through a Taylor expansion about the best
fit parameters:

DLinearðz;�iÞ �DLðz;�i0Þ þ
X3
i

ð�i � �i0Þ@DLðz;�iÞ
@�i

; (9)

where, for brevity, f�ig � f�M;w0; w1g; the derivatives are
evaluated at the best fit parameters �i0. This function is
linear in parameters �i and can be used to analytically
marginalize over the model parameters to obtain PðzÞ.
If the original fit is tight, in the sense that the errors on
parameters �i are small, then the linearized fitting function
DLinearðz; �iÞ serves as a close approximation to the
original.

4In other approaches it is also possible to work with a fitting
function for the Hubble parameter HðzÞ as discussed in Ref. [2].

RECONSTRUCTING THE PROPERTIES OF DARK ENERGY . . . PHYSICAL REVIEW D 87, 083001 (2013)

083001-5



It turns out that a further simplification that makes our
task much simpler is possible. The posterior probability
distribution given in Eq. A9 of S3 is not a simple Gaussian
distribution. The distribution has a peak at the redshift that
the best fit model predicts for the measured noisy distance
to the GW signal, but its redshift dependence can be
complicated. It is, however, possible to systematically ex-
tract its leading local behavior to obtain the Gaussian
distribution

PðzÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�z

exp

�
�ðz� z0Þ2

2�2
z

�
; (10)

where �z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2

m þ �2
cÞ

p
=D0

L; the standard error �m is
from Eq. (3), and �c is the cosmology error defined
in the last section of the Appendix in S3; D0

L ¼
@DLðz; �i0Þ=@zjz¼z0 ; the parameter z0 is the best fit redshift

inferred for the GW signal and is computed from the
prescription given there, but basically it is the redshift
inferred for the noisy distance estimate via the best fit
model DLðz;�i0Þ. Note that due to noise in the measured
luminosity distance, z0 need not coincide with the true
source redshift.

In Fig. 1 we plot a comparison of PðzÞ produced by the
local Gaussian approximation (10) and the more exact
expression (A9) of S3 (both distributions are produced by
using a Chebyshev polynomial based fit). We find that the
Gaussian approximation agrees very well at all redshifts.
In fact, the agreement becomes better with an increase
in the number of resolved sources because the error bars
on parameters become smaller, and (A9) of S3 starts
approaching a Gaussian distribution. Therefore, the local
Gaussian approximation is adequate for our purposes.

A. Error box

The local approximation for PðzÞ in (10) is convenient in
that it enables us to define the error box for the source
location in terms of the variance �z of the local approxi-
mation Eq. (10). Note that this task would be considerably
more complicated had we used (A9) of S3, which is not
described by a few simple parameters as the Gaussian
distribution is. To define our error box, let us first choose
the beam size in which we expect the source to lie as

��ðzÞ ¼ n��BBO; (11)

where ��BBO is the redshift-dependent one sigma resolu-
tion of the BBO experiment. The beam has been chosen as
a multiple of the BBO resolution to ensure a high proba-
bility for the source to fall inside the beam. (This also
accommodates the possibility that, as in the case of
LISA ! eLISA, the space mission which finally flies has
a larger beam width than BBO.) Similarly, we can define
the redshift range in which the source is likely to lie as

�z ¼ 2m�z; (12)

which is centered at the peak of the probability distribution
PðzÞ. For simplicity, the redshift range has been chosen to
be a multiple of the one sigma range obtained from PðzÞ.

B. Iterative scheme

We generate pencils with different values of n in (11).
As mentioned above, larger values of n increase the chan-
ces of the true source of the gravity wave signal lying
within the beam, but have the obvious side effect that the
number of nonsources in the beam also goes up. Clearly,
with a larger number of nonsources in each beam, the
number of GPs in the set goes down; therefore, n cannot
be chosen too large, or there will be no GPs with which to
start our iterative process. The GPs are used to derive an
initial estimate of the luminosity distance which is used to
infer PðzÞ. Knowing PðzÞ we repeat the process of going
through each pencil and checking whether any (single)
galaxy is present in the redshift range z0 �m�z < z <
z0 þm�z, where z0 corresponds to the peak of PðzÞ.
Galaxies inside pencils where this test succeeds are re-
ferred to as resolved galaxies and are added to the burgeon-
ing inventory of sources. This process is repeated until
there is no further increase in the number of resolved
sources and the iterative method saturates. Now the final
value of the luminosity distance is used to determine
wðzÞ—the equation of state of dark energy—using (7) and
(8). Our self-calibrating iterative scheme is summarized
below (convergence being reached after N steps):

N ð1Þ
GP ! Dð1Þ

L ðzÞ ! Pð1ÞðzÞ
Pð1ÞðzÞ ) N ð2Þ

GP ! Dð2Þ
L ðzÞ ! Pð2ÞðzÞ . . .

PðN�1ÞðzÞ ) N ðNÞ
GP ! DðNÞ

L ðzÞ ! wðzÞ:
(13)

 0  0.5  1  1.5  2  2.5

Redshift (z)

P
(z

)

FIG. 1. This figure shows the posterior probability distribution
PðzÞ produced by a linear model for DL using the Chebyshev
polynomials (6). The solid line shows the exact expression for
PðzÞ given by (A9) of S3, while the dotted line shows the
approximate expression for PðzÞ, given by (A12) of S3, and
which is used in this paper—see (10). The two methods of
determining PðzÞ agree very well.
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Note that, as more resolved sources are added, the shape of
PðzÞ becomes peakier and narrower (smaller �z), which
helps in picking new resolved sources from amongst con-
tender galaxies. This practice, outlined in (13), is continued
until convergence is reached and no new source galaxies
can be added to the resolved sample.

Let us illustrate this with an example. Suppose that of the
1000 pencil beams that have been generated only 30 have a
single galaxy falling within them and the remaining beams
contain two or more galaxies. Then we can safely assume
that these 30 galaxies host GW sources and, using optical
and IR observations, determine their redshifts. This estab-

lishes for us our initial DZ relationship, namely, Dð1Þ
L ðzÞ in

(13), where N ð1Þ
GP ¼ 30. Next, knowing Dð1Þ

L ðzÞ we deter-

mine the probability distribution function, Pð1ÞðzÞ �
Pð1ÞðzjDð1Þ

L Þ, through (10). Clearly, our knowledge of PðzÞ
will inform us which of the two or more candidate galaxies
(in each of the additional 970 beams) is a potential gravity
wave source, since this galaxy would lie closer to the peak of
PðzÞ than its companions. Including the resolved galaxy, and
others like it, will establish an enlarged sample, and this
procedure will be followed iteratively (for N steps) until no
new resolved galaxies can be added, at which point we say
that convergence has been reached and the final value of

wðzÞ is determined from DðNÞ
L ðzÞ using (7) and (8). If the

error box is small (small n and m) then it follows that the
chances of resolving a GW signal increase since it is more
likely that we will find only a single galaxy within the error
box. However, a very small error box would also imply that
the probability of the true source galaxy lying within it is
small, leading to a larger number of misidentifications in this
case. Misidentifications have the pernicious effect of biasing
the DZ relation away from its true value, resulting in a
positive feedback on the chances of misidentifications dur-
ing later iterations and converting the biasing of the DZ
relation into a runaway process. In the other extreme case
when the error box is very large, the possibility of misiden-
tification goes down and the chances of resolving GW
signals go down as well, resulting in a decrease in the quality
of constraints obtained for cosmology. Clearly, then, an
optimum value for the error box should be such that the
constraints on cosmology are tightest while at the same time
the bias is below the statistical scatter.

IV. RESULTS

At commencement, a small number of GP sources is
required in order to obtain the zeroth order cosmology to
start our iterative process of statistical resolution of GW
sources. The probabilistic expectation value of the number
of GP sources for a given number of total sources and the
beam size can be estimated as follows: Dividing the red-
shift range into a large number of bins, the mean number of
galaxies �nðziÞ in a redshift bin can be estimated through
Eq. (1) using the angular beam ��ðzsÞ, where zs is the

redshift of the source galaxy, and �zbin, where zi is the
redshift of the bin.
It is worth noting that the probability for a source to be a

GP source depends on the angular resolution with which
the source can be resolved; therefore, the angular resolu-
tion of the beam is evaluated at zs, thereby making �nðziÞ a
function of zs, which we notate explicitly below. As men-
tioned earlier, the BBO angular resolution which we have
used is taken from Fig. 4 of Ref. [15], corresponding to NS-
NS mergers. Our prescription puts the actual source galaxy
in each pencil; therefore, the probability that the pencil
contains no other galaxy can be obtained from the proba-
bility that the redshift bin at zi is empty, which is Pr ð0Þ ¼
exp ½� �nðzi; zsÞ� [see Eq. (2)]. Clearly, a pencil will give a
GP source if all bins are empty,5 giving a probability

Pr ðzs;Gold PlatedÞ ¼ exp

�
�X

zi

�nðzi; zsÞ
�
: (14)

In the expression for �nðzi; zsÞ [Eq. (1)], we see that it is
proportional to the bin size �zbin. The probability
Pr ðzs;Gold PlatedÞ, however, is understood to be obtained
in the limit of infinitesimal bin size, in which case the
sum in the above expression will be replaced with an
integration.
For a small enough bin size, defining fs as the fraction of

GW sources at redshift zs, the fraction of gold plated GW
sources at zs is given by

fGPðzsÞ ¼ fsðzsÞ exp
�
�X

zi

�nðzi; zsÞ
�

(15)

and the total number of GPs by

NGP ¼ NTotal

X
zs

fsðzsÞ exp
�
�X

zi

�nðzi; zsÞ
�
: (16)

Figure 2 shows the number of gold plated gravity wave
sources as a function of the total number of GW sources
obtained for the BBO angular beam. As predicted by (16),
the theoretical expectation that NGP / NTotal is found to be
true in our simulations. We find that even for a small total
number of sources (�1000) the GP set is large enough
(�100). The left panel of Fig. 3 plots the function
fBBOGP ðzsÞ. We find that the distribution is independent of

the total number of sources, in accordance with theoretical
expectations. It is important to note that the distribution of
sources in redshift is wide enough for obtaining a good
startingDZ � DLðzÞ relation. Note also that the peak of the
redshift distribution fGP of GPs (at z� 0:3) does not
coincide with the peak of the galaxy distribution (z� 1).
This is due to the fact that there is an additional redshift
dependence because of the redshift-dependent beam size
[15]. The BBO angular resolution is better at smaller

5Recall that according to our prescription an empty pencil
beam is redefined so as to contain the source galaxy.
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redshifts; however, the number of sources first increases,
peaks at z� 1, and then decreases with the redshift; the net
effect therefore is to shift the peak of the GP redshift
distribution to a lower redshift.

For larger (than BBO) angular resolution, the number of
GPs decreases since the beam, in many cases, becomes too
large to accommodate only a single galaxy. This effect can
be estimated in terms of the function fnBBOGP ðzÞ for��ðzÞ ¼
n��BBOðzÞ, which can be easily shown to be given by

fnBBOGP ðzsÞ ¼ fsðzsÞ exp
�
�n

X
zi

�nBBOðzi; zsÞ
�

¼ fBBOGP ðzsÞ�n�1ðzsÞ; (17)

�ðzsÞ � exp

�
�X

zi

�nBBOðzi; zsÞ
�
: (18)

We find that at each redshift, the number of GPs predicted
for the n��BBOðzÞ beam is smaller than that for the
��BBOðzÞ beam by a redshift-dependent multiplicative
factor�n�1ðzsÞ. The right panel of Fig. 3 plots the function
�ðzÞ. We see that for z > 0:1, �< 1 is a small fraction;
therefore, this factor decreases very rapidly with n. The
multiplicative factor increases with n for z < 0:1, but since
the fraction of sources is small at small redshifts, this does
not cause an abnormal increase in GPs at low redshifts with
increasing n. Although, mathematically speaking, this fac-
tor blows up for large values of n, at a large enough n the
Poisson statistic will cease to hold, making this argument
invalid.
We simulated 300000 pencils corresponding to three

years of cumulative BBO data. The resolved samples were
fitted, at various stages of iteration, with the nonlinear model
for DLðzÞ described by (7) in which the CPL equation of
state (8) has been used. The model was linearized over the
polynomial coefficients and the local approximation dis-
cussed earlier was then used to derive PðzÞ. The fiducial
model chosen for all our simulations was a flat �CDM
model with �m ¼ 0:3. In all cases (described below) the
iterations freeze out after about ten steps, implying that
convergence had been reached; i.e., N ¼ 10 in (13).
In the left panel of Fig. 4 we plot the total number of

resolved GW sources obtained at the end of our iterative
run with n ¼ 1 in (11) and m ¼ 1, 2, 3 in (12). It is
interesting that the number of resolved GW sources is
comparable to the total number of GW sources for m¼1
and is only slightly worse for m ¼ 2, 3. The inset in the
right panel shows the distribution of misidentified sources
(the redshift has been identified incorrectly). Recall that
n ¼ 1 corresponds to the 1� angular resolution for BBO
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FIG. 2. This plot shows the number of gold plated sources
(at the commencement of our iteration) as a function of total
number of events. Note the excellent agreement between the
theoretical prediction in Eq. (16) (dashed line) and the simula-
tion (filled hexagons).
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FIG. 3. The left panel displays the distribution of gold plated sources with redshift, with the total number of GW sources being
300000, 30000, 3000, from left to right. The right panel is a plot of the function �ðzsÞ [Eq. (18)]. As discussed in the text, these two
plots can be combined to obtain the fractional number of GPs for an n� BBO beam (nBBO) at a given redshift by multiplying the
numerical value in the left panel and the numerical value in the right panel raised to the power n� 1.
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and, as pointed our earlier, this implies that roughly a third
of all beams will not contain any GW sources at all.
However, in our simulations we ensure that all pencils do
contain the true source; therefore, Fig. 4 does not include
the effect of misidentification of sources due to small beam
size. The other important cause for misidentifications is the
choice of an allowed redshift range that is too small, which
is what the inset in Fig. 4 illustrates (the number of mis-
identified sources increases as m decreases). The fraction
of misidentified sources peaks at z� 1 because, as men-
tioned earlier, the BBO beam monotonically becomes
wider at larger redshift and so has a larger number of
nonsource galaxies falling into it; therefore, the expected
peak redshift for misidentifications is expected to be larger
than the peak redshift of the galaxy distribution (albeit only
slightly).

In Fig. 5 we plot the constraints on w0 and w1 obtained
with n ¼ 1 and m ¼ 1, 2, 3. This figure includes the
misidentified sources in order to illustrate how these sources
can bias the cosmology. Although the centers of the three
one sigma regions (corresponding to three different values
of m) predict a nonzero variation in dark energy (nonzero
w1), the fiducial �CDM model (w0 ¼ �1, w1 ¼ 0) does
fall within the one sigma contour. Also note that larger
values of m, corresponding to fewer misidentifications, are
more consistent with the fiducial �CDM model. Note also
that, although the 1� contour increases slightly for larger
m, this effect is pretty marginal.
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FIG. 4. The left panel shows the normalized distribution of resolved GW sources at the end of the iteration. The solid line is the redshift
distribution of all sources assuming BBO resolution; dashed lines show the redshift distribution of resolved sources obtained after
assuming that the source lies within 1� of the peak in the probability distribution PðzÞ defined in (10). In other words, the dashed
histogram corresponds to n ¼ 1 in (11) and m ¼ 1 in (12). The dark gray area shows the same but for a 2� allowed region for sources,
corresponding to m ¼ 2 in (12). Finally, the light gray area reflects a 3� allowed region for sources and corresponds to m ¼ 3 in (12).
Note that the number of resolved GW sources is comparable to the total number of GW sources for m ¼ 1 and is only slightly worse for
m ¼ 2, 3. The right panel discusses the issue of source misidentification. Clearly, by restricting GW sources to lie within anm� region of
the peak of the probability distribution PðzÞ, we open up the possibility of source misidentification which is larger for smaller m. This is
clearly revealed in the inset to the right panel (the shading scheme is the same as in the left panel). We see from this panel that fewer
sources are misidentified for 3� (light gray) than for 1� (dashed). The main panel on the right shows the distribution of resolved sources
after misidentified sources have been identified. Thereafter, misidentified sources do not play any role in the iterative scheme which, in
the case of the dashed region, coincides with the solid line corresponding to the redshift distribution of all GW sources.

FIG. 5. Constraints on w0 and w1 with misidentified sources
included in the resolved sample. The beam size is fixed at the one
sigma angular resolution of BBO, corresponding to n ¼ 1 in
(11), while the redshift range in which the source is expected to
lie is given by (12), namely, �z ¼ 2m�z. The lined region
corresponds to m ¼ 1, dark gray to m ¼ 2, and light gray to
m ¼ 3 in (12). In all three cases the fiducial �CDM model
(w0 ¼ �1, w1 ¼ 0) is included within the one sigma contour,
but the fit improves for m ¼ 2, 3, corresponding to a decrease in
uncertainty of the source redshift.
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This may not be as surprising as it appears. The BBO
beam is so narrow that the probability of finding a galaxy
within it is small. The one sigma redshift range corre-
sponding to m ¼ 1 would contain the source galaxy in
roughly 68% of the pencils, while in the remaining cases
most pencils would not contain any galaxy at all.
Therefore, the total number of misidentifications would
be small, and their main role would be in biasing the
DZ relation and not so much in controlling the tightness
of the fit. This is illustrated in Fig. 6, which is identical to
Fig. 5 in all respects other than the fact that here we
have removed the misidentified sources. The agreement
with the fiducial model is slightly better in this case
(especially for m ¼ 2). The scatter in the best fit value
is due to the slightly different number of resolved
sources in the three cases; however, all three regions are
consistent with each other. Figure 7 isolates the effect
of including or excluding the misidentified sources. It is
clear from this figure that biasing, due to choosing too
narrow a redshift range for the source redshift, is present
but is smaller than the statistical errors on cosmological
parameters.
In Fig. 8 we plot the constraints obtained by choosing

different beam sizes but keeping the redshift error box at

FIG. 6. Same as Fig. 5 but after misidentifications have been
removed in the resolved sample. The beam size is fixed at the
one sigma angular resolution of BBO, corresponding to n ¼ 1 in
(11). The lined region corresponds to m ¼ 1, dark gray to
m ¼ 2, and light gray to m ¼ 3 in (12). In all three cases the
fiducial �CDM model (w0 ¼ �1, w1 ¼ 0) is included within
the one sigma contour. Note that form ¼ 2 (dark gray) the fit has
improved substantially in comparison with Fig. 5.

FIG. 7. This figure shows the effect of including and excluding
misidentified GW sources. The beam size is kept at the BBO one
sigma angular resolution corresponding to n ¼ 1 in (11) and the
redshift uncertainty of the source is two sigma: m ¼ 2 in (12). In
this figure the dashed region shows the fit with misidentified
sources included and the gray region shows the fit after mis-
identified sources have been excluded. As expected, the one
sigma contour is in better agreement with the fiducial �CDM
model (w0 ¼ �1, w1 ¼ 0) if misidentified sources have been
excluded from the sample.

FIG. 8. In this figure we illustrate the effect of increasing the
beam width on the reconstruction of the equation of state of dark
energy. The uncertainty in source redshift remains fixed at m ¼
1 in (12) while the beam width increases as n ¼ 1, 2, 3, 10 in
(11), which corresponds to 1�, 2�, 3� and 10� times the BBO
value. White corresponds to n ¼ 1, dark gray to n ¼ 2, dashed
to n ¼ 3 and light gray to n ¼ 10. Increasing the beam size
decreases the overall number of resolved GW sources using
which wðzÞ is reconstructed, and therefore slightly increases
the area of the one sigma contour. It is interesting that the
fiducial �CDM model (w0 ¼ �1, w1 ¼ 0) lies within the 1�
contour for all values of n.
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one sigma, corresponding to m ¼ 1 in (12). The beam size
chosen for different one sigma regions is n ¼ 1, 2, 3, 10 in
(11), and we find that the area under the one sigma con-
fidence level increases with n. This is due to the fact that
the total number of GPs decreases with increasing beam
size. For this figure the misidentified sources were included
in the determination of cosmological parameters. We find
that even for n ¼ 10, which is large enough to ensure that
the true source would almost certainly fall within the beam,
the constraints are sufficiently narrow, with very little bias,
even though, as Fig. 9 illustrates, the total number of
resolved sources in this case is smaller than what one finds

for n ¼ 1, 2, 3 (compare with Fig. 4), and the number of
misidentifications is large, due to the fact that we have
chosen m ¼ 1 in (12).
The left panel of Fig. 10 plots the distribution of

resolved sources for n ¼ 10 and m ¼ 3, corresponding to
the largest error box that we have considered. The number
of resolved sources has decreased substantially; however,
on the positive side, the number of misidentifications is
much smaller than in Fig. 9. Note also that there are almost
no resolved sources beyond z ¼ 1. The reason for this is
the large source-redshift error at high redshift, which, when
taken together with the fact that we are allowing the source
to fall in the three sigma redshift range, makes it very
difficult to resolve sources. The right panel of the same
figure shows the constraints obtained on cosmology. As
expected, the constraints are poorer due to a lack of sources
beyond z ¼ 1.
The main reason for choosing large n is to ensure

that each beam contains the true source at a greater proba-
bility. Our results show that for n ¼ 10 and m ¼ 1 the
number of resolved sources is sufficient to give good
constraints on cosmology; however, the number of
misidentifications is large. The bias thus produced is not
large and it would seem that this configuration may give us
good unbiased constraints on cosmology. However, since
our fiducial model has only two parameters, it is possible
that the bias may make determining cosmology more
difficult for more complicated dark energy models.
Therefore, it is necessary to keep the misidentifications
small. It is difficult to make general statements regarding
the optimum configuration for n and m for a more com-
plicated dark energy model; however, our results suggest
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FIG. 9. The normalized distribution of resolved sources at the
end of our iteration. The solid line is the redshift distribution of
all sources. The total fraction of resolved (light gray) and
misidentified (dark gray) sources is plotted as a function of
redshift for n ¼ 10 in (11) and m ¼ 1 in (12).
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FIG. 10. The left panel displays the distribution of resolved sources (light gray) and misidentified sources (dark gray) for n ¼ 10 in
(11) and m ¼ 3 in (12). (Note the lack of resolved sources beyond z ¼ 1.) The right panel shows confidence contours for the equation
of state of dark energy with n ¼ 10 and m ¼ 1 (light gray) and m ¼ 3 (dark gray), respectively.
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that the range 3 � n � 6 and 2 � m � 3 may work in
most cases.

V. CONCLUSIONS

To conclude, we would like to underscore the important
point that our self-calibrating scheme works very well even
if none of the gravity wave sources have observable
electromagnetic signatures. Indeed, if the beam width is
not too large (� 10 times BBO), then the presence of only
a few gold plated sources (those whose redshift has been
independently established), in conjunction with the itera-
tive procedure presented here, allows us to determine the
equation of state of dark energy to an accuracy of a few
percent—see Fig. 8. The two main issues investigated in
this work are the application of ideas presented in S3 to
simulated data and the misidentification of GW sources.
Our simulations simplify the details in two respects: First,
we do not include the effect of clustering; second, we
model the lensing scatter as a symmetric Gaussian distri-
bution. (We shall assess the effects of asymmetry induced
my lensing as well as the effects of clustering in a com-
panion paper.) We find that the method works quite well on
simulated data and the iterations saturate after a small
number of steps.

We showed that misidentified sources might, in
general, bias the determination of the DZ relation and
would lead to a runaway process by which the DZ
relation would move away systematically from the true

cosmological DZ relation, thus biasing the estimation of
the cosmological parameters. In our simulations, the
effect of biasing is present but is found to be small.
We have shown that increasing the allowed redshift
range for the GW source reduces this bias even further,
without significantly affecting the cosmological constraints
(due to a reduction in the number of resolved sources).
A further positive conclusion is that the method works
even for larger beam sizes, thereby addressing the con-
cern that not all beams contain the source galaxy.
In our simulations the asymmetric lensing scatter

has been modeled as a symmetric Gaussian distribution.
Lensing scatter has a large number of demagnified
sources and a small number of compensating large magni-
fications. As mentioned in Ref. [15], highly magnified
sources show up as outliers in the DZ plot and can
be either removed from the sample or, in the method
that we propose, can be handled by choosing a small
value of m. As our results show, the bias due to misidenti-
fications is relatively small, so this choice would not cause
significant distortions in the estimates of cosmological
parameters.
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