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Coalescing binary black holes (BBHs) are among the most likely sources for the Laser Interferometer

Gravitational-Wave Observatory (LIGO) and its international partners Virgo and KAGRA. Optimal

searches for BBHs require accurate waveforms for the signal model and effectual template banks that

cover the mass space of interest. We investigate the ability of the second-order post-Newtonian TaylorF2

hexagonal template placement metric to construct an effectual template bank, if the template waveforms

used are effective one-body waveforms tuned to numerical relativity (EOBNRv2). We find that by

combining the existing TaylorF2 placement metric with EOBNRv2 waveforms, we can construct an

effectual search for BBHs with component masses in the range 3M� � m1, m2 � 25M�. We also show

that the (computationally less expensive) TaylorF2 post-Newtonian waveforms can be used in place of

EOBNRv2 waveforms when M & 11:4M�. Finally, we investigate the effect of modes other than the

dominant l ¼ m ¼ 2mode in BBH searches. We find that for systems with ðm1=m2Þ � 1:68 or inclination

angle � � 0:31 or � � 2:68 radians, there is no significant loss in the total possible signal-to-noise ratio

due to neglecting modes other than l ¼ m ¼ 2 in the template waveforms. For a source population

uniformly distributed in spacial volume, over the entire sampled region of the component-mass space, the

loss in detection rate (averaged over a uniform distribution of inclination angle and sky-location/

polarization angles) remains below �11%. For binaries with high mass ratios and 0:31 � � � 2:68,

including higher-order modes could increase the signal-to-noise ratio by as much as 8% in Advanced

LIGO. Our results can be used to construct matched-filter searches in Advanced LIGO and Advanced

Virgo.

DOI: 10.1103/PhysRevD.87.082004 PACS numbers: 04.80.Nn, 04.25.Nx, 04.30.Db

I. INTRODUCTION

Over the last decade, there has been tremendous
progress towards the first direct detection of gravitational
waves. Construction of the Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) is underway,
with completion scheduled for 2014 [1]. Similar upgrades
to the French-Italian Virgo detector [2] have commenced
and construction of the Japanese KAGRA detector has
begun [3]. When these second-generation gravitational-
wave detectors reach design sensitivity, they will increase
the observable volume of the universe by a thousandfold or
more [4], compared to the first-generation detectors.

The inspiral and merger of binary black holes (BBHs)
are expected to be an important source for detection by
aLIGO [5]. The rate of BBH coalescences that will be
observed by aLIGO at design sensitivity is estimated to
be between 0:2 yr�1 and 1000 yr�1 [6]. Accurate knowl-
edge of the gravitational-wave signals generated by BBHs
is crucial for detecting and extracting information about
these sources. To provide such waveforms, the effective
one-body (EOB) model [7] has been calibrated to numeri-
cal simulations of black hole (BH) mergers [8–15]. A new
EOB waveform family (called EOBNRv2) has been re-
cently proposed that incorporates information from several
nonspinning BBH simulations, with black hole ring-down
quasinormal modes [16,17] attached to provide a complete

BBHwaveform [15]. The EOBNRv2 waveform is believed
to be sufficiently accurate to search for nonspinning BBH
signals in the aLIGO sensitive band (10–1000 Hz).
Past searches for BBHs [18–22] used matched filtering

[23,24] to search for coalescing compact binaries. These
searches divided the BBH mass space into a low-mass
region with M ¼ m1 þm2 & 25M� and a high-mass re-
gion with M * 25M�. In this paper, we focus attention on
BBH systems with component masses between 3M� &
m1,m2 & 25M�, which encompasses the mass distribution
of black hole candidates observed in low-mass X-ray
binaries [25]. aLIGO will be able to detect coalescing
BBH systems with component masses m1 ¼ m2 ¼ 25M�
to a maximum distance of up to�3:6 Gpc. Since we do not
know a priori the masses of BBHs that gravitational-wave
detectors will observe, searches use a bank of template
waveforms which covers the range of BBH component
masses of interest [26,27]. This technique is sensitive to
the accuracy of the waveform templates that are used as
filters and the algorithm used to place the template wave-
forms [28]. An accurate template bank is required as input
for matched filter searches in the Fourier domain [24], as
well as newer search algorithms such as the singular value
decomposition [29].
In this paper, we investigate three items of importance to

advanced-detector BBH searches. First, we study the ac-
curacy of template placement algorithms for BBH searches
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using EOBNRv2 waveforms. Optimal template placement
requires a metric for creating a grid of waveforms in the
desired region of parameter space [30]; however, no ana-
lytic metric exists for the EOBNRv2 waveform. In the
absence of such a metric, we construct a template bank
using the second-order post-Newtonian hexagonal place-
ment algorithm [31–34]. This metric is used to place
template grid points for the aLIGO zero-detuning high-
power sensitivity curve [35] and we use EOBNRv2 wave-
forms at these points as search templates. We find that the
existing algorithm works well for BBHs with component
masses in the range 3M� � m1, m2 � 25M�. For a tem-
plate bank constructed with a minimal match of 97% less
than 1.5% of nonspinning BBH signals have a mismatch
greater than 3%. We therefore conclude that the existing
bank placement algorithm is sufficiently accurate for non-
spinning BBH searches in this mass region. Second, we
investigate the mass range in which the (computationally
less expensive) third-and-a-half-order TaylorF2 post-
Newtonian waveforms [26,36–44] can be used without
significant loss in event rate, and where full inspiral-
merger-ring-down EOBNRv2 waveforms are required.
We construct a TaylorF2 template bank designed to lose
no more than 3% of the matched filter signal-to-noise ratio
and use the EOBNRv2model as signal waveforms.We find
that for nonspinning BBHs with M & 11:4M�, the
TaylorF2 search performs as expected, with a loss of no
more than 10% in the event rate. For higher masses larger
event rate losses are observed. A similar study was per-
formed in Ref. [45] using an older version of the EOB
model and our results are quantitatively similar. We there-
fore recommend that this limit be used as the boundary
between TaylorF2 and EOBNRv2 waveforms in Advanced
LIGO searches. Finally, we investigate the effect of modes
other than the dominant l ¼ m ¼ 2mode on BBH searches
in aLIGO. The horizion distance of aLIGO (and hence the
event rate) is computed considering only the dominant
mode of the emitted gravitational waves, since current
searches only filter for this mode [6]. However, the inclu-
sion of sub-dominant modes in a gravitational-wave tem-
plate could increase the reach of aLIGO [46,47]. If we
assume that BBH signals are accurately modeled by the
EOBNRv2 waveform including the five leading modes, we
find that for systems with ðm1=m2Þ � 1:68 or inclination
angle � � 2:68 or � � 0:31 radians, there is no significant
loss in the total possible signal-to-noise ratio due to ne-
glecting modes other than l ¼ m ¼ 2 in the template
waveforms, if one uses a 97% minimal-match bank placed
using the hexagonal bank placement algorithm [31–34].
However, for systems with mass ratio ðqÞ � 4 and 1:08 �
� � 2:02, including higher-order modes could increase the
signal-to-noise ratio by as much as 8% in aLIGO. This
increase in amplitude may be offset by the increase in the
false-alarm rate from implementing searches which also
include sub-dominant waveformmodes in templates, so we

encourage the investigation of such algorithms in real
detector data.
The remainder of this paper is organized as follows. In

Sec. II we review the gravitational waveform models used
in this study. In Sec. III we present the results of large-scale
Monte Carlo signal injections to test the effectualness of
the template banks under investigation. Finally, in Sec. IV
we review our findings and recommendations for future
work.

II. WAVEFORMS AND TEMPLATE
BANK PLACEMENT

A. Waveform approximants

The dynamics of a BBH system can be broadly divided
into three regimes. (i) The early inspiral, when the separa-
tion between the black holes is large and their velocity is
small, can be modeled using results from post-Newtonian
(PN) theory [48]. The gravitational-wave phasing of non-
spinning binaries is available up to 3.5PN order [38–44].
(ii) Accurately modeling the late inspiral and merger re-
quires the numerical solution of the Einstein equations
[49–55]. (iii) The final ring-down phase can be modeled
using a superposition of quasinormal modes (QNMs)
which describe the oscillations of the perturbed Kerr black
hole that is formed from the coalescence [16,17].
Numerical simulations of BBH systems are computa-

tionally expensive, and results are only available for a
relatively small number of binary systems (see, e.g.,
Ref. [56]). The EOB model [7] provides a framework for
computing the gravitational waveforms emitted during the
inspiral and merger of BBH systems. By attaching a QNM
waveform and calibrating the model to numerical relativity
(NR) simulations, the EOB framework provides for accu-
rate modeling of complete BBH waveforms (EOBNR).
The EOBNR waveforms can be computed at relatively
low cost for arbitrary points in the waveform parameter
space [8–15]. In particular, the EOB model has recently
been tuned against high-accuracy numerical relativity
simulations of nonspinning BBHs of mass ratios q ¼
f1; 2; 3; 4; 6g, where q � m1=m2 [15]; we refer to this as
the EOBNRv2 model, which we review the major features
of below. Throughout, we set G ¼ c ¼ 1.
The EOB approach maps the fully general-relativistic

dynamics of the two-body system to that of an effective
mass moving in a deformed Schwarzschild spacetime [7].
The physical dynamics is contained in the deformed space-
time’s metric coefficients, the EOB Hamiltonian [7], and
the radiation-reaction force. In polar coordinates ðr;�Þ, the
EOB metric is written as

ds2eff ¼�AðrÞdt2þAðrÞ
DðrÞ dr

2þr2ðd�2þsin2�d�2Þ: (1)

The geodesic dynamics of the effective mass � ¼
m1m2=M in the background of Eq. (1) is described by an
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effective Hamiltonian Heff [7,57]. The EOBNRv2 model
uses Pade resummations of the third-order post-Newtonian
Taylor expansions of the metric coefficients AðrÞ and DðrÞ,
with additional 4PN and 5PN coefficients that are cali-
brated [9–12,15] to ensure that the dynamics agrees closely
with NR simulations of comparable mass binaries.

Gravitational waves carry energy and angular momen-
tum away from the binary, and the resulting radiation-

reaction force F̂� causes the orbits to shrink. This is related
to the energy flux as

F̂� ¼ � 1

��̂

dE

dt
¼ � 1

�v3

dE

dt
; (2)

where v ¼ ð�̂Þ1=3 ¼ ð�MfÞ1=3 and f is the instantaneous
gravitational-wave frequency. The energy flux dE=dt is
obtained by summing over the contribution from each
term in the multipole expansion of the waveform, i.e.,

dE

dt
¼ �̂2

8�

X
l

X
m

��������RM hlm

��������2

: (3)

R is the physical distance to the binary and hlm are the
multipoles of the waveform when it is decomposed in a
spin-weighted spherical harmonic basis as

hþ � ih� ¼ M

R

X1
l¼2

Xm¼l

m¼�l

Ylm�2hlm; (4)

where Ylm�2 are the spin-weighted spherical harmonics, and
hþ and h� are the two orthogonal gravitational-wave
polarizations. These waveform multipoles depend on the
coordinates and their conjugate momenta, and their Taylor
expansions were resummed as products of individually
resummed factors [58],

hlm ¼ hFlmNlm; (5a)

hFlm ¼ hðN;�Þ
lm Ŝð�ÞeffTlme

i�lmð�lmÞl; (5b)

where � is 0 if (lþm) is even, and is 1 otherwise.
This factorized resummation of the waveform multipoles
ensures agreement with NR waveform multipoles [8–10].

The first factor hðN;�Þ
lm is the resummation of the Newtonian-

order contribution and the second factor Ŝð�Þeff is the source

term, given by the mass or the current moments of the
binary in the EOB formalism [58,59]. The tail term Tlm is
the resummation of the leading-order logarithmic terms
that enter into the transfer function of the near-zone multi-
polar waves to the far-zone ones [59]. The last term Nlm

attempts to capture the noncircularity of the quasicircular
orbits. While calculating the energy flux in this study we
follow exactly the prescription of Ref. [15], which calibra-
tes the coefficients of the flux so that resulting EOB
waveform multipoles reproduce their NR counterparts
with high accuracy.

We use the EOBNRv2 Hamiltonian and flux in the
equations of motion for the binary, given by

dr

dt̂
� @Ĥreal

@pr

¼ AðrÞffiffiffiffiffiffiffiffiffiffi
DðrÞp @Ĥreal

@pr�
ðr; pr�; p�Þ; (6a)

d�

dt̂
� �̂ ¼ @Ĥreal

@p�

ðr; pr�; p�Þ; (6b)

dpr�
dt̂

¼ � AðrÞffiffiffiffiffiffiffiffiffiffi
DðrÞp @Ĥreal

@r
ðr; pr�; p�Þ; (6c)

dp�

dt̂
¼ F̂�ðr; pr�; p�Þ; (6d)

where t̂ð� t=MÞ is time in dimensionless units.
To obtain the initial values of the coordinates

ðr;�; pr� ; p�Þ that the system starts out in, we use the

conditions for motion on spherical orbits derived in
Ref. [60], where they treated the case of a generic precess-
ing binary. We take their nonspinning limit to define the
initial configuration of the binary, requiring

@Ĥreal

@r
¼ 0; (7a)

@Ĥreal

@pr�
¼ 1

�

dE

dt

ð@2Ĥreal=@r@p�Þ
ð@Ĥreal=@p�Þð@2Ĥreal=@r2Þ ; (7b)

@Ĥreal

@p�

¼ �̂0; (7c)

where �̂0 ¼ �Mf0, with f0 being the starting
gravitational-wave frequency. Simplifying Eq. (7a), and
ignoring the terms involving pr� , as pr� 	 p�=r in the

early inspiral, we get a relation between p� and r,

p2
� ¼ r3A0ðrÞ

2AðrÞ � rA0ðrÞ ; (8)

where the prime(0) denotes @=@r. Substituting this into
Eq. (7c), we get the relation,

A0ðrÞ
2r
�
1þ 2�

� AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ�1

2rA
0ðrÞ

p � 1
�� ¼ �̂2

0: (9)

Thus, between Eqs. (9) and (8), we get the initial values of
ðr; p�Þ, corresponding to the initial gravitational-wave
frequency f0, and by substituting these into Eq. (7b), we
obtain the initial value of pr� . With these values, we

integrate the equations of motion to obtain the evolution
of the coordinates and momenta ½rðtÞ;�ðtÞ; prðtÞ; p�ðtÞ

over the course of the inspiral, until the light ring is reached.
In the EOB model, the light ring is defined as the local

maximum of the orbital frequency �̂. From the coordinate
evolution, we also calculate hFlmðtÞ, which is the analytic

expression for the waveform multipole without the non-
quasicircular correction factor [defined in Eq. (5b)].
While generating hFlmðtÞ from the dynamics, the values

for the free parameters in the expressions for �lm and
�lm are taken from Eqs. [38a–39b] of Ref. [15], where they
optimize these parameters to minimize the phase and
amplitude discrepancy between the respective EOB wave-
form multipoles and those extracted from NR simulations.
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The EOB ring-down waveform is modeled as a sum ofN
quasinormal modes [9,10,12,16],

hRDlm ðtÞ ¼ XN�1

n¼0

Almne
�i�lmnðt�tmatch

lm
Þ; (10)

where N ¼ 8 for the model we consider. The matching
time tmatch

lm is the time at which the inspiral-plunge and the

ring-down waveforms are attached and is chosen to be the
time at which the amplitude of the inspiral-plunge part of
hlmðtÞ peaks (i.e., tlmpeak) [9,15]. The complex frequencies of

the modes �lmn depend on the mass Mf and spin af of the

black hole (BH) that is formed from the coalescence of
the binary. We use the relations of Ref. [15], given by

Mf

M
¼ 1þ

 ffiffiffi
8

9

s
� 1

!
�� 0:4333�2 � 0:4392�3; (11a)

af
M

¼ ffiffiffiffiffiffi
12

p
�� 3:871�2 þ 4:028�3: (11b)

Using the mass and spin of the final BH, the complex
frequencies of the QNMs can be obtained from Ref. [16],
where these were calculated using perturbation theory. The
complex amplitudes Almn are determined by a hybrid-comb
numerical matching procedure described in detail in Sec. II
C of Ref. [15].

Finally, we combine the inspiral waveform multipole
hlmðtÞ and the ring-down waveform hRDðtÞ to obtain the
complete inspiral-merger-ring-down EOB waveform
hIMRðtÞ,
hIMR
lm ðtÞ¼hlmðtÞ�ðtmatch

lm � tÞþhRDðtÞ�ðt� tmatch
lm Þ; (12)

where �ðxÞ ¼ 1 for x � 0, and 0 otherwise. These multi-
poles are combined to give the two orthogonal polariza-
tions of the gravitational waveform, hþ and h�,

hþ � ih� ¼ M

R

X
l

X
m

Ylm�2ð�; 	cÞhIMR
lm ; (13)

where � is the inclination angle that the binary’s angular
momentum makes with the line of sight, and 	c is a
fiduciary phase angle. To ensure the correctness of our
results, we wrote independent code to implement the
EOBNRv2 waveform based solely on the content of
Ref. [15]. We then validated our code against the
EOBNRv2 waveform algorithm in the LSC Algorithm
Library (LAL) [61]. We find agreement between these

two implementations, giving us confidence in both our
results and the correctness of the LAL EOBNRv2 code.
Previous searches for stellar-mass BBHs with total

mass M & 25M� in LIGO and Virgo used the restricted
TaylorF2 PN waveforms [26,36,37]. Since this waveform
is analytically generated in the frequency domain, it has
two computational advantages over the EOBNRv2 model.
First, the TaylorF2 model does not require either the nu-
merical solution of coupled ODEs or a Fourier transform
to generate the frequency-domain signal required by a
matched filter. We compared the speed of generating and
Fourier-transforming EOBNRv2 waveforms to the speed
of generating Taylor F2 waveforms in the frequency do-
main, and found that the former can be Oð102Þ times
slower than the latter. Second, the TaylorF2 model can be
implemented trivially as a kernel on graphics processing
units (GPU), allowing search pipelines to leverage signifi-
cant speed increases due to the fast floating-point perform-
ance of GPU hardware. We found the generation of
TaylorF2 waveforms using GPUs to beOð104Þ times faster
than generating and Fourier-transforming EOBNRv2
waveforms on CPUs. However, the use of the TaylorF2
waveform may result in a loss in search efficiency due to
inaccuracies of the PN approximation for BBHs. To inves-
tigate the loss in search efficiency versus computational
efficiency, we use the restricted TaylorF2 waveform
described below.
The Fourier transform of a gravitational waveform hðtÞ

is defined by

~hðfÞ ¼
Z 1

�1
e�2�ifthðtÞdt: (14)

Using the stationary phase approximation [62], the Taylor

F2 waveform ~hðfÞ can be written directly in the frequency
domain as

~hðfÞ ¼ Af�7=6ei�ðfÞ; (15)

where we have kept only the leading-order amplitude
terms; this is known as the restricted PN waveform. The

amplitude A / M5=6
c =R, where Mc is the chirp mass

of the binary, Mc ¼ ðm1 þm2Þ�3=5, � ¼ m1m2=
ðm1 þm2Þ2 is the symmetric mass ratio, and R is the
distance to the binary. The Fourier phase of the waveform
at 3.5PN order is given by [24,26,36,63–66]

�ðfÞ ¼ 2�ftc �
c � �

4
þ 3

128

1

�
v�5

�
1þ

�
3715

756
þ 55

9
�

�
v2 � 16�v3 þ

�
15293365

508032
þ 27145

504
�þ 3085

72
�2

�
v4

þ
�
38645

756
� 65

9
�

��
1þ 3 log

�
v

vlso

��
�v5 þ

�
11583231236531

4694215680
� 640

3
�2 � 6848

21
�E � 6828

21
log ð4vÞ

þ
�
� 15737765635

3048192
þ 2255

12
�2

�
�þ 76055

1728
�2 � 127825

1296
�3

�
v6 þ

�
77096675

254016
þ 378515

1512
�� 74045

756
�2

�
�v7

�
;

(16)
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where v ¼ ð�MfÞ1=3 is the characteristic velocity of the
binary, and � is Euler’s constant. The initial conditions are
set by starting the waveform from a given gravitational-
wave frequency f ¼ flow, and the waveform is terminated
at the frequency of a test particle at the innermost stable
circular orbit of a Schwarzschild black hole (r ¼ 6M).

B. Bank placement metric

The noise-weighted overlap between two waveforms h1
and h2 can be written as

ðh1jh2Þ � 2
Z fmax

fmin

~h�1ðfÞ~h2ðfÞ þ ~h1ðfÞ~h�2ðfÞ
SnðfÞ df; (17)

where SnðfÞ is the one-sided power spectral density of the
detector noise. The normalized overlap between the two
waveforms is given by

ðĥ1jĥ2Þ ¼ ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p : (18)

In addition to the two mass parameters of the binary, this
normalized overlap is also sensitive to the relative phase of
coalescence 
c and to the difference in the time of coales-
cence between the two waveforms h1 and h2, tc. These two
parameters ð
c; tcÞ can be analytically maximized over to
get the maximized overlap O,

O ðh1; h2Þ ¼ max

c;tc

ðĥ1jĥ2eið2�ftc�
cÞÞ; (19)

which gives a measure of how ‘‘close’’ the two waveforms
are in the waveform manifold. The mismatch M between
the same two waveforms is written as

Mðh1; h2Þ ¼ 1�Oðh1; h2Þ: (20)

The match [Eq. (19)] can be regarded as an inner product
on the space of intrinsic template parameters, and thus one
can define ametric on this space [30,33] (at the point 	1) as

gijð	1Þ ¼ � 1

2

@2Oðhð	1Þ; hð	2ÞÞ
@	1

i@	2
j

��������	k
1
¼	k

2

; (21)

where 	1 is the set of intrinsic parameters (i.e., m1, m2 or
some combination) of the binary. Thus the mismatch be-
tween waveforms produced by systems with nearly equal
mass parameters can be given by

Mðhð	Þ; hð	þ�	ÞÞ ’ gijð	Þ�	i�	j: (22)

For the TaylorF2 approximant, hð	Þ is given by Eqs. (15)
and (16), and hence by using Eqs. (17) and (19) we can get
Oðhð	1Þ; hð	2ÞÞ as an analytic function of 	1 and 	2 (albeit
involving an integral over frequency). This gives a measure
of mismatches between neighboring points in the manifold
of the mass parameters, and hence a hexagonal two-
dimensional lattice placement can be used in the manifold
of the mass parameters (see Ref. [33] and references

therein) to construct a geometric lattice-based template
bank [30,31,33].
On the other hand, for the EOBNRv2 approximant, hð	Þ

is obtained through numerical solutions of the Hamiltonian
equations, Eq. (6). In this case, the calculation of the metric
would involve derivatives of coordinate evolution obtained
from numerically integrated equations of motion, which
could introduce numerical instabilities in the metric. So the
concept of a metric, as in Eq. (21), cannot be used in a
convenient (semi)analytic form for the construction of a
bank with the EOBNRv2 approximant.

III. RESULTS

To assess the effectualness of the template banks con-
structed here, we compute the fitting factors [28] of the
template bank, defined as follows. If hea is the waveform
emitted by a BBH system, then the fitting factor of a bank
of template waveforms (modeled using approximant X) for
this waveform is defined as the maximum value of maxi-
mized normalized overlaps between hea and all members
hXb of the bank of template waveforms [28], i.e.,

FF ða;XÞ ¼ max
b2bank

Oðhea; hXb Þ: (23)

This quantity simultaneously quantifies the loss in recov-
ered signal-to-noise ratio (SNR) due to the discreteness of
the bank, and the inaccuracy of the template model. The
similarly defined quantity MM (minimal match) quantifies
the loss in SNR due to only the discreteness of the bank as
both the exact and the template waveform is modeled with
the same waveform model, i.e.,

MM ¼ min
a

max
b2bank

OðhXa ; hXb Þ; (24)

where a is any point in the space covered by the bank, and
X is the waveform approximant. For a detection search that
aims at less than 10%(15%) loss in the event detection rate
due to the discreteness of the bank and the inaccuracy of
the waveform model, we require a bank of template wave-
forms that has FF above 0.965 (0.947) [45,67,68].
Throughout, we use the aLIGO zero-detuning high-power
noise curve as the power spectral density for bank place-
ment and overlap calculations, and set fmin ¼ 15 Hz. The
waveforms are generated at a sample rate of 8192 Hz, and
we set fmax ¼ 4096 Hz, i.e., the Nyquist frequency.
The expectation value of the SNR for a signal, �, from a

source located at a distance D is proportional to 1=D,
which comes from the dependence of the amplitude on
the distance. In other words, the range to which a source
can be seen by the detector

Dobs ¼ ðg; gÞ
�� ; (25)

where g is the gravitational-wave strain produced by the
same source at the detector, when located at a unit distance
from the detector, and �� is the threshold on SNR required
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for detection (typically taken as �� ¼ 8). For nonprecess-
ing binaries, for which the sky-location ð	;
Þ and polar-
ization angles ðc Þ do not change over the course of
inspiral, the effective volume in which the same source
can be detected is / D3

obs [69], i.e.,

V obs ¼ kD3
obs; (26)

where the proportionality constant k comes from averaging
over various possible sky positions of the binary. The use
of discrete template banks, and lack of knowledge of the
true gravitational-wave signal model, leads to the observed
SNR �0 being lower than the optimal SNR � ¼ ðh; hÞ, i.e.,

�0 ¼ FF�; (27)

where FF is the fitting factor of the template bank em-
ployed in the search for the particular system. The observ-
able volume hence goes down as

V eff
obs ¼ kðFF �DobsÞ3: (28)

If we assume that the source population is distributed
uniformly in spacial volume in the universe, then the ratio
Veff

obs=Vobs also gives the fraction of systems within the

detector’s reach that will be seen by the matched-filtering
search. For a system with given mass parameters 	1, the
ratio of the total Veff

obs available to it for different inclina-

tions and sky locations to the total Vobs available to it for
the same samples of angles will give an estimate of the
fraction of systems with those masses (marginalized over
other parameters—they being uniformly distributed) that
will be seen by the matched-filter search. We refer to this
quantity,

�Vð	1Þ¼
P

	2
Veff

obsð	1;	2ÞP
	2
Vobsð	1;	2Þ; ¼

P
	2
FF 3ð	1;	2ÞVobsð	1;	2ÞP

	2
Vobsð	1;	2Þ ;

(29)

(where 	2 ¼ f�; 	; 
; c g are the parameters being aver-
aged over) as the volume-weighted fitting factor. It essen-
tially measures the average of the fractional observable
volume loss, weighted by the actual available observable
volume, and so simultaneously down-weights the loss in
the observable volume for binary configurations to which
the detector is relatively less sensitive to begin with. We
can give the parameter sets 	1 and 	2 different elements
than the ones shown here, i.e. 	1 � fm1; m2g, 	2 �
f�; 	;
; c g, 	1 [ 	2 ¼ fm1; m2; �; 	; 
; c g, in order to ob-
tain more information about another set of parameters 	01.

A. EOBNRv2 templates placed using
the TaylorF2 metric

In this section we measure the effectualness of the
second-order post-Newtonian hexagonal template bank
placement metric described in Ref. [32] when used to place
EOBNRv2 waveform templates for aLIGO. The same
template placement algorithm was used to place a grid of

third-and-a-half-order post-Newtonian order TaylorF2
waveforms for low-mass BBH detection searches for initial
LIGO and Virgo observations [18–22]. We construct a
template bank which has a desired minimal match of
0.97 for waveforms with component masses between
3M� � m1, m2 � 25M�. This template bank contains
10 753 template grid points in ðm1; m2Þ space for the
aLIGO noise curve, compared to 373 grid points for the
initial LIGO design noise curve. For the template wave-
forms at each grid point, we use the EOBNRv2 waveforms,
rather than TaylorF2 waveforms. Since the metric itself
was derived using second-order TaylorF2 waveforms, we
do not a priori know if this metric is a good measure to use
to place template banks for EOBNRv2 waveforms.
To test the effectualness of this template bank, we per-

form a Monte Carlo simulation over the 3M� � m1, m2 �
25M� BBH mass space to find regions where the bank
placement algorithm leads to under-coverage. We sample
90 000 points uniformly distributed in individual compo-
nent masses. For each of these points, we generate an
EOBNRv2 waveform for the system with component
masses given by the coordinates of the point. We record
the FF of the template bank for each of the randomly
generated BBH waveforms in the Monte Carlo simulation.
Since we use EOBNRv2 waveforms both to model the true
BBH signals and as matched-filter templates, any departure
in the fitting factor from unity is due to the placement of the
template bank grid.
For a bank of template waveforms constructed with a

MM of 0.97, Figs. 1 and 2 show that the FF of the bank
remains above 0.97 for �98:5% of all simulated BBH

FIG. 1 (color online). This figure shows the effectualness of a
bank of EOBNRv2 templates, placed using the 2PN-accurate
hexagonal template placement of Ref. [32], to search for a
population of BBH signals simulated with EOBNRv2 wave-
forms. The masses of the BBH population are chosen from a
uniform distribution of component masses between 3 and 25M�.
For each injection, we plot the component masses of the injec-
tion, and the fitting factor ðFF Þ.
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signals. Less than�1:5% of signals have a minimal match
of less than 0.97, with the smallest value over the 90 000
sampled points being �0:96. The diagonal features ob-
served in Fig. 1 are due to the hexagonal bank placement
algorithm and are related to the ellipses of constant chirp
mass in Fig. 4 of Ref. [32]. From these results, we conclude
that the existing template bank placement metric ade-
quately covers the BBH mass space with EOBNRv2 wave-
form templates; it is not necessary to construct a metric
specific to the EOBNRv2 model. aLIGO detection
searches can employ the second-order post-Newtonian
bank placement metric with the hexagonal placement al-
gorithms [30–34] to place template banks for EOBNRv2
waveforms without a significant drop in the recovered
signal-to-noise ratio.

B. Effectualness of TaylorF2 templates

We next explore the efficiency of using the computa-
tionally cheaper TaylorF2 waveforms to search for a popu-
lation of BBH signals with component masses between
ð3–25ÞM�. The signals from this population are modeled
with the full EOBNRv2 waveforms. We use the same
template bank placement as above; however, now we use
the third-and-a-half PN order TaylorF2 model as the tem-
plate waveforms. This model does not capture the merger
and ring-down of BBH signals, as it is terminated at the
Schwarzchild test-particle innermost stable circular orbit.
Furthermore, it diverges from the true BBH signal in the
late inspiral. It is important to determine when these effects
become important.

We sample the ð3–25ÞM� BBH component mass space
at 100 000 points by generating an EOBNRv2 waveform to

generate the ‘‘true’’ signal waveform. We generate a bank
of TaylorF2 template waveforms over the same region, and
calculate its FF for each of the sample points against the
corresponding EOBNRv2 waveform. Figure 3 shows the
distribution of the FF obtained for the TaylorF2 bank.
Clearly the TaylorF2 bank is not effectual for the entire
BBH region considered, with mismatches of up to 18%
observed. We divide the sampled component mass space
into subregions which consist of systems with total masses
below different thresholds, and compute the minimal fit-
ting factor of the bank over those. In Fig. 4, the blue (solid)

FIG. 2 (color online). This figure shows a cumulative histo-
gram of the fraction of the BBH signal space (on the y axis),
where the bank of EOBNRv2 waveforms has an FF less than
the respective values on the x axis. The EOBNRv2 bank has a
fitting factor FF below 0.97 for less than �1:5% of all
simulated signals with component masses m1, m2 between
3M� and 25M�.

FIG. 3 (color online). The fitting factor FF of a bank of
TaylorF2 waveforms, constructed with MM ¼ 0:97, for a popu-
lation of BBH systems which are modeled using EOBNRv2
signals.

FIG. 4 (color online). The (blue) curve shows the upper bound
on the total mass for the subregion over which the TaylorF2 bank
has a minimal fitting factor as given on the x axis. We observe
that the TaylorF2 bank has a minimal fitting factor of 0.965
(0.947) for the region with total masses below�11:4M�ð19M�Þ.
The minimal fitting factor is the fitting-factor value which is less
than the fitting factors of the TaylorF2 bank for � 99:75% of the
points sampled in the subregion.
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curve shows the upper limit on total mass for different
subregions against the minimal fitting factor of the
TaylorF2 bank over those. The minimal fitting factor
over a subregion is taken to be the fitting-factor value
that is less than the fitting factors for �99:75% of the
points sampled in the subregion. We find that the
TaylorF2 template bank has an FF above 0.965 (0.947)
for the region with total masses below 11:4M� (19M�). We
conclude that the TaylorF2 bank is effectual for BBH
signals below �11:4M�.

The value of our limit on total mass is in agreement with
the previous study in Ref. [45]; however, this analysis used
the EOBNRv1 model [70] and an older version of the
Advanced LIGO noise curve [45]. This agreement provides
confidence that this limit will be robust in aLIGO searches
and we propose this limit as the upper cutoff for the
computationally cheaper TaylorF2 search. To investigate
the loss in theFF due to the mismatch in the template and
signal waveform models, we also performed aMonte Carlo
simulation using a denser TaylorF2 bank withMM ¼ 0:99.
We found that by using this dense bank of third-and-a-half-
order TaylorF2 waveforms we can relax the limit on the
upper mass to �16:3M� (21:8M�) and still achieve an
FF above 0.965 (0.947) for over 99.75% of the signals
sampled in the region. However, increasing the minimal
match increases the size of the template bank from 10 753
to 29 588 templates. This is a significant increase, com-
pared to the cost of filtering with EOBNRv2 templates.

C. Effect of subdominant modes

Having established that the second-order post-
Newtonian hexagonal template bank is effectual for plac-
ing a bank of EOBNRv2 templates, we now investigate the

effect of neglecting subdominant modes in BBH searches.
The sensitivity reach of the aLIGO detectors is normally
computed assuming that the search is only sensitive to the
dominant l ¼ m ¼ 2 mode of the gravitational waveform.
For binary black hole signals, subdominant modes may
contain significant power [47]. A search that includes these
modes could, in principle, have an increased reach (and
hence event rate) compared to a search that only uses the
dominant mode. The EOBNRv2 model of Ref. [15] has
been calibrated against higher-order modes from numeri-
cal relativity simulations. We investigate the effect of
ignoring these modes in a search by modeling the BBH
signal as an EOBNRv2 signal containing the dominant
and subdominant multipoles, hlm ¼ h22, h21, h33, h44, h55
(which we call EOBNRv2HM) and computing the fitting
factor of leading-order EOBNRv2 templates placed using
the TaylorF2 metric.
We simulate a population of BBH signals by sampling

100 000 systems uniformly in the m1, m2 2 ½3; 25
M�
component-mass space. These EOBNRv2HM signals are
uniformly distributed in sky-location angles and inclina-
tion and polarization angles, which appear in the detector’s
response function to the gravitational-wave signal [71].
The template bank is again placed with a desired minimal
match of 0.97 and for each of the signal waveforms, we
calculate the FF against the entire bank of EOBNRv2
waveform templates. Figure 5 (left panel) shows the value
of the FF of the bank of EOBNRv2 waveform templates
over the sampled component-mass space. As expected, the
highest fitting factors are observed close to the equal mass
line, since when the mass ratio is close to unity, the
amplitude of the subleading waveform modes is several
orders of magnitude smaller than the amplitude of the

FIG. 5 (color online). (left) The FF of a bank of EOBNRv2 waveforms, constructed with a minimal match of 0.97 at each point in
the stellar-mass BBH component-mass region. While the templates are modeled as the dominant mode l ¼ m ¼ 2 EOBNRv2
waveforms, the signals are modeled including the subdominant waveform modes as well (EOBNRv2HM). (right) This figure shows
the upper bound on the mass ratio ðqÞ for the region where a bank of EOBNRv2 templates has a minimal fitting factor as given on the x
axis. We observe that for the region with q � 1:68ð4Þ, the minimum match of the bank is below 0.965 (0.947). From both figures, we
notice a systematic fall in the coverage of the EOBNRv2 template bank with increasing mass ratio.
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dominant mode. As the mass ratio increases, the relative
amplitude of the subleading multipoles increases, as illus-
trated by Fig. 1 of Ref. [15] and the fitting factor decreases.
This pattern is brought out further in Fig. 6 (left panel),
where we show the FF values in the mass ratio – incli-
nation angle (q� �) plane. We observe that when the
orbital angular momentum is either parallel or antiparallel
to the line of sight from the detector, the subleading multi-
poles do not contribute significantly to the signal. This is
what we would expect from Eq. (13), as the spin-weighted

harmonics are proportional to sin ð�2Þ cos ð�2Þ, except when
l ¼ m ¼ 2. Similar to Sec. III B, we divide the sampled
component-mass space into subregions bounded by
1 � q � qthreshold, and compute the minimal fitting factor
of the EOBNRv2 template bank over those. In Fig. 5 (right
panel), the blue (solid) curve shows the value of qthreshold
for each restricted subregion against the minimal fitting
factor of the bank over the same. For systems with mass
ratio q below 1.68 (4), we find that the FF of the
EOBNRv2 waveform bank is above 0.965 (0.947) over

FIG. 6 (color online). (left) The FF of a bank of EOBNRv2 waveforms, constructed with a minimal match of 0.97 at each point in
the stellar-mass BBH q� � space. While the templates are modeled as the dominant mode l ¼ m ¼ 2 EOBNRv2 waveforms, the
signals are modeled including the subdominant waveform modes as well (EOBNRv2HM). We observe a loss in fitting factors—up to
�8%—for systems with high mass ratios ðqÞ and inclination angle ð�Þ close to �=2. (right) The FF for the same population of
signals, now shown on the M� � plane. We observe the loss in fitting factors to be relatively less for more massive binaries.

FIG. 7 (color online). (left) This figure shows �Vð	1 ¼ fm1; m2gÞ in the component-mass space [see Eq. (29)]. This gives the fraction
of the total observable volume that is visible to a search which uses the leading order l ¼ m ¼ 2 EOBNRv2 waveform template bank,
placed with the 2PN-accurate TaylorF2 bank placement metric. For a population of signals that is distributed uniformly in spacial
volume, this is equivalent to the fraction of the maximum possible event observation rate that we get with the use of a discrete bank of
matched filters. We observe that the loss in event observation rate, averaged over all parameters (uniformly distributed) but 	1 ¼
fm1; m2g, does not exceed�11% for any region of the component-mass space. (right) This figure shows �Vð	1 ¼ fq; �gÞ over the q� �
plane. We note that the maximum averaged loss in the detection rate is for systems with high mass ratios and � 2 ½1:08; 2:02
, and can
go as high as �20% for such systems.
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99.75% of this restricted region. These results demonstrate
that the effect of ignoring subdominant modes does not
cause a significant loss in the total possible signal-to-noise
ratio if the mass ratio is less than 1.68. A similar analysis
over the range of possible inclination angles shows that the
EOBNRv2 waveform bank has fitting factors above 0.965
(0.947) for systems with 2:68ð2:02Þ � � � �, and 0 � � �
0:31ð1:08Þ (see Fig. 6, left panel).

Fitting factors as low as 0.92 are observed for systems
with high mass ratios and inclination angle close to �=2.
As these are also binary configurations to which the detec-
tor is relatively less sensitive [47], fitting factors alone do
not answer the question of where in the parameter space we
lose the most in terms of the detection rate. To address this
question, we compute the volume-weighted fitting factors
�V of the EOBNRv2 template bank, over the sampled BBH
parameter space. This gives us an estimate of the expected
loss in the detection rate if the source population is dis-
tributed uniformly in spacial volume and uniformly in
intrinsic and extrinsic source parameters. Figure 7 (left
panel) shows �V calculated in bins over the component-
mass space. In this figure, the color of each bin in the
component-mass plane corresponds to—for a population
that has all other parameters, i.e., the inclination angle and
sky/polarization angles uniformly distributed over their
possible ranges—the averaged loss in the detection rate
incurred due to the use of a bank of leading-order l ¼ m ¼
2 EOBNRv2 templates, placed using the 2PN bank place-
ment metric. We observe that the maximum loss incurred
goes up to only �10%–11%, which is within our accept-
able threshold. Looking at Fig. 6 (left panel), the maximum
loss in the fitting factor occurs for systems with inclination
angles close to �=2, but (for the same mass ratio) these get
averaged out with systems with inclinations close to 0 or�,
which leads to the low averaged detection-rate losses we
observe in Fig. 7 (left panel). The right panel of Fig. 7
shows the same quantity, �V, calculated over bins in the
mass ratio–inclination angle plane. As expected, we ob-
serve that, letting all other parameters be distributed uni-
formly over their possible ranges, systems with high mass
ratios and inclination angles close to �=2 will incur (aver-
aged) losses in observation volume of up to �20%.

These results suggest that a search that includes higher-
order modes could achieve a nontrivial increase in sensi-
tivity over leading-order mode templates, only in detecting
systems with high q and 1:08 � � � 2:02. However, an
algorithm that includes subdominant modes could have an
increased false-alarm rate (background) over a search that
includes only the leading-order mode, and hence the over-
all gain in search efficiency might not be significant.

IV. CONCLUSIONS

We used the TaylorF2 second-order post-Newtonian
hexagonal placement algorithm of Refs. [32–34] to con-
struct a template bank of EOBNRv2 waveforms with MM

of 0.97. We calculated the fitting factor ðFF Þ of this bank
against�90000 simulated EOBNRv2 signals with compo-
nent masses uniformly distributed between 3M� � m1,
m2 � 25M�. We find that the FF of the template bank
is greater than 0.97 for 98.5% of the simulated EOBNRv2
signals, assuming the zero-detuning high-power noise
spectrum for aLIGO sensitivity [35]. We conclude that
the existing placement algorithm is effectual for use in
aLIGO BBH searches, assuming that EOBNRv2 is an
accurate model of BBH signals in this mass region. We
then demonstrated that the use of the computationally
cheaper third-and-a-half-order TaylorF2 waveform results
in a loss in search efficiency due to inaccuracies of the
post-Newtonian approximation, and the neglect of merger-
ring-down for BBHs with a total mass M> 11:4M�.
However, below this limit the TaylorF2 model is an accept-
able signal for BBH searches. This was done using a bank
with a MM of 0.97. By increasing the density of the bank to
0.99 MM, the limit on the total mass can be relaxed to
16:3M�, with an increase in computational cost due to the
number of templates increasing by a factor of �2:7.
Finally, we investigated the loss in the SNR incurred by
using template banks constructed using only the leading-
order mode of EOBNRv2 waveforms. We found that a
leading-order l ¼ m ¼ 2 EOBNRv2 template bank con-
structed with a MM of 0.97 is effectual to search for BBHs
for which 1 � ðm1=m2Þ � 1:68 or � � 2:68 or � � 0:31
radians, and there is no significant loss in the potential
signal-to-noise ratio for systems with q as high as 4 or
2:02 � � � 2:68 or 0:31 � � � 1:08. We also observed
that the maximum loss in the detection rate for a binary
with given mass parameters—averaging over other pa-
rameters, which are taken to be uniformly distributed
over their possible ranges—goes only to a maximum of
�10%–11%. For any given pair of binary masses, the loss
is highest when the binary is inclined at ’�=2, and can go
up to �20%, and is lower when its angular momentum is
close to being parallel or antiparallel to the line of sight
from the detector. These effects average out, and hence for
a population that is expected to have a uniform distribution
of inclination angles (and uniform distribution in spacial
volume), the average loss in the detection rate was esti-
mated to be not higher than �11%. Thus, using
EOBNRv2HM templates is unlikely to give a significant
increase in the range to which such a population of sources
can be detected. For BBHs with ðm1=m2Þ � 4 and 1:08 �
� � 2:02, detection searches could possibly gain sensitivity
by the use of EOBNRv2HM waveforms if they can be
implemented without increasing the false-alarm rate.
Our results suggest that a significant portion of the

nonspinning stellar-mass BBH parameter space can be
searched for using LIGO’s existing search algorithms.
For systems with a total mass below �11:4M� template
banks of TaylorF2 can be used without a significant loss
in the event rate. For higher-mass systems, neglecting

DUNCAN A. BROWN, PRAYUSH KUMAR, AND ALEXANDER H. NITZ PHYSICAL REVIEW D 87, 082004 (2013)

082004-10



high-order modes in an EOBNRv2 search does not cause a
substantial reduction in the maximum possible reach of
BBH searches. Finally, we note that our study does not
consider BBH systems with BH masses higher than M ¼
25M�, or the effect of black hole component spins. Future
work will extend this study for systems with spinning and/
or precessing black holes and consider the effect of non-
Gaussian transients in real detector noise.
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