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We analyze the Brownian thermal noise of a multilayer dielectric coating used in high-precision optical

measurements, including interferometric gravitational-wave detectors. We assume the coating material to

be isotropic, and therefore study thermal noises arising from shear and bulk losses of the coating materials.

We show that coating noise arises not only from layer thickness fluctuations, but also from fluctuations of

the interface between the coating and substrate, driven by fluctuating shear stresses of the coating.

Although thickness fluctuations of different layers are statistically independent, there exists a finite

coherence between the layers and the substrate-coating interface. In addition, photoelastic coefficients of

the thin layers (so far not accurately measured) further influence the thermal noise, although at a relatively

low level. Taking into account uncertainties in material parameters, we show that significant uncertainties

still exist in estimating coating Brownian noise.

DOI: 10.1103/PhysRevD.87.082001 PACS numbers: 04.80.Nn, 05.40.�a

I. INTRODUCTION

Brownian thermal noise in the dielectric coatings of
mirrors limits some high-precision experiments which
use optical metrology. This thermal noise is currently a
limit for fixed spacer Fabry-Perots used in optical clock
experiments [1] and is estimated to be the dominant noise
source in the most sensitive band of modern gravitational-
wave detectors (e.g., Advanced LIGO, GEO, Advanced
VIRGO and KAGRA) [2–6]. Recent work has indicated
the possibility of reducing the various kinds of internal
thermal noise by redesigning the shape of the optical mode
[7,8] or the structure of the multilayer coating [9,10]. In
this paper, we seek a more comprehensive understanding
of coating Brownian noise. We first identify all thermally
fluctuating physical properties (e.g., different components
of the strain tensor) of the coating that can lead to coating
Brownian noise, and calculate how each of them contrib-
utes (linearly) to the total noise; we then calculate their
individual levels of fluctuation, as well as cross correla-
tions between pairs of them, using the fluctuation-
dissipation theorem [11–13]. In this way, as we compute
the total coating Brownian noise, it will be clear how each
factor contributes, and we will be in a better position to
take advantage of possible correlations between different
components of the noise.

As a starting point, we will assume each coating layer to
be isotropic, and hence completely characterized by its
complex bulk modulus K and shear modulus �—each
with small imaginary parts related to the energy loss in
the bulk and shear motions. The complex arguments of
these moduli are often referred to as loss angles. While
values of K and � are generally known, loss angles of thin
optical layers vary significantly according to the details of
the coating process (i.e., how coating materials are applied
onto the substrate and their composition). Since the loss

angles are small, we will use K and � to denote the real
parts of the bulk and shear moduli, and write the complex
bulk and shear moduli, ~K and ~�, as

~K ¼ Kð1þ i�BÞ; ~� ¼ �ð1þ i�SÞ: (1)

Here we have used subscripts B and S to denote bulk and
shear, because these will be symbols for bulk strain and
shear strain.
Note that our definition differs from previous literature,

which used �k and �? to denote losses induced by elastic

deformations parallel and perpendicular to the coating-
substrate interface [14]. As we shall argue in
Appendix C, �k and �? cannot be consistently used as

independent loss angles of a material. Only assuming
�k ¼ �? ¼ �S ¼ �B will the previous calculation agree

with ours—if we ignore light penetration into the coating.
There is, a priori, no reason why these loss angles should
all be equal, although this assumption has so far been
compatible with existing ring-down measurements and
direct measurements of coating thermal noise [15].
Brownian thermal fluctuations of a multilayer coating

can be divided as follows: (i) thickness fluctuation of the
coating layers, (ii) fluctuation of the coating-substrate in-
terface, and (iii) refractive index fluctuations of the coating
layers associated with longitudinal (thickness) and trans-
verse (area) elastic deformations—as illustrated in Fig. 1.
Using what is sometimes referred to as Levin’s direct
approach [12] (based on the fluctuation-dissipation theo-
rem) and writing the coating Brownian noise as a linear
combination of the above fluctuations allows the construc-
tion of a corresponding set of forces acting on the coating
and calculation of the thermal noise spectrum from the
dissipation associated with the simultaneous application of
these forces. This has been carried out by Gurkovsky and
Vyatchanin [16], as well as Kondratiev et al. [17].
However, in order to obtain insights into coating noise
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that have proven useful we have chosen to calculate the
cross spectral densities for each of (i), (ii), and (iii), and to
provide intuitive interpretations of each. We will show, in
Sec. IV, that (i) and (ii) above are driven by both bulk and
shear fluctuations in the coating, in such a way that thick-
ness fluctuations of the jth layer �lj, or in transverse

locations separated by more than a coating thickness, are
mutually statistically independent, yet each �lj is corre-

lated with the fluctuation of the coating-substrate interface
zs—because zs is driven by the sum of thermal stresses in
the coating layers. We will also show that when coating
thickness is much less than the beam spot size, the only
significant contribution to (iii) arises from longitudinal
(thickness) fluctuations; see Appendix A 4 for details.

This paper is organized as follows. In Sec. II, we express
the amplitude and phase of the reflected field in terms of
fluctuations in the coating structure, thereby identifying the
various components of coating thermal noise. In Sec. III,
we introduce the loss angles of isotropic coating materials,
and use the fluctuation-dissipation theorem to calculate the
cross spectral densities of the coating thermal noise, ignor-
ing light penetration into the multilayer coating. In Sec. IV,
we discuss in detail the cross spectra of all the components
of the coating structure fluctuation, thereby obtaining
the full formula for coating thermal noise, taking light

penetration within the multilayers into account. The key
formulas summarizing the phase and amplitude noise spec-
trum are given in Eqs. (94) and (95). In Sec. V, we discuss
the effect of light penetration on coating thermal noise,
using typical optical coating structures. In Sec. VI, we
discuss the dependence of thermal noise on the material
parameters, and optimize the coating structure in order to
lower the thermal noise. In Sec. VII, we discuss how only
one combination of the two loss angles has been measured
in past experiments, and how other different combinations
can be measured using a new experimental geometry.
Finally, we summarize our main conclusions in Sec. VIII.

II. COMPONENTS OF THE COATING
THERMAL NOISE

In this section, we express the coating thermal noise in
terms of the elastic deformations of the coated substrate.

A. Complex reflectivity

As illustrated in Fig. 1, we consider a laser field nor-
mally incident (along the �z direction) onto the mirror,
with complex amplitude profile uinðx; yÞ at a fixed refer-
ence plane (dashed line in the figure) and intensity profile
Iðx; yÞ ¼ juinðx; yÞj2. Henceforth in the paper, we shall use
arrows (e.g., ~x) to denote the two-dimensional vector ðx; yÞ
in the transverse plane, and boldface letters (e.g., x) to
denote three-dimensional vectors.
Because the coating thickness is much less than the

beam spot size, the reflected field (traveling along the
þz direction) at transverse location ~x has an amplitude
given by

uoutð ~xÞ ¼ �totð ~xÞuinð ~xÞ; (2)

which only depends on the complex reflectivity �totð ~xÞ and
the complex amplitude of the incident field uinð ~xÞ, at the
same location ~x—assuming no incident light from the
substrate (i.e., s2 ¼ 0). Here �totð ~xÞ can be separated into
three factors, as

�totð ~xÞ ¼ uoutð ~xÞ
uinð ~xÞ ¼

�
uoutð ~xÞ
v2ð ~xÞ

��
v1ð ~xÞ
uinð ~xÞ

��
v2ð ~xÞ
v1ð ~xÞ

�
(3)

in which v1ð ~xÞ is the incident complex amplitude at the
coating-air interface, while v2ð ~xÞ is the reflected complex
amplitude at that interface.
The first two phase factors on the right-hand side of

Eq. (3) are gained by the light when traveling across the
gap between the fixed reference plane (see Fig. 1) and the
coating-air interface; we therefore obtain, up to a constant
phase factor,�

uoutð ~xÞ
v2ð ~xÞ

��
v1ð ~xÞ
uinð ~xÞ

�
¼ e�2ik0½�zsð ~xÞþ�N

j¼1
�ljð ~xÞ� (4)

where k0 ¼ !0=c is the wave number of the laser
(!0 is its angular frequency) in vacuum, �zsð ~xÞ is the
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FIG. 1 (color online). Drawing of a mirror coated with mul-
tiple dielectric layers. Shown here are the various fluctuations
that contribute to coating noise, i.e., fluctuations in the amplitude
and phase of the returning light caused by fluctuations in the
geometry [including layer thickness �lj, layer area stretch

ð�A=AÞj, and interface height zs of the coating-substrate con-

figuration] and in the refractive indices �njðx; y; zÞ of the layers.
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vertical displacement of the coating-substrate interface
(from its zero point), and �ljð ~xÞ is the thickness fluctuation
of the jth coating layer—both evaluated at a transverse
location ~x.

The remaining complex reflectivity v2ð ~xÞ=v1ð ~xÞ can be
determined as a function of the phase shift experienced by
the field in each layer, as well as the reflectivity of each
interface, as described in detail in Sec. V. We can write

v2=v1 ¼ �½�1ð ~xÞ; . . . ; �Nð ~xÞ; r01ð ~xÞ; . . . ; rNsð ~xÞ�: (5)

Here � is the complex reflectivity of a multilayer coating,
measured at the coating-air interface, which in turn
depends on the optical thickness �jð ~xÞ of each layer (j ¼
1; . . . ; N) and the reflectivity rp;pþ1ð ~xÞ � rpð ~xÞ of each

interface (p ¼ 0; . . . ; N, with p ¼ N þ 1 representing the
substrate, and p ¼ 0 the vacuum outside the coating).
Assembling the above Eqs. (3)–(5), we obtain

�totð ~xÞ ¼ e�2ik0½�zsð ~xÞþ�N
j¼1

�ljð ~xÞ��½f�jð ~xÞg; frpð ~xÞg�: (6)

Brownian thermal forces lead to fluctuations in both the
real and imaginary parts of this complex reflectivity.
Fluctuations in the argument of the complex reflectivity
phase modulate the outgoing light and directly produce
sensing noise. Fluctuations in the magnitude, on the other
hand, amplitude modulate the outgoing light, and produce
a ponderomotive force noise.

B. Thermal phase and amplitude noise

Brownian thermal fluctuations in coating geometry and
refractive index modify the complex reflectivity �totð ~xÞ
defined in Eq. (6). The real and imaginary parts of

� log�totð ~xÞ ¼ ��totð ~xÞ
�totð ~xÞ (7)

encode the amplitude/intensity and phase fluctuations of
the reflected light at position ~x on the mirror surface. In
particular, intensity fluctuation of the reflected light is
given by

�Ið ~xÞ
Ið ~xÞ ¼ 2

�j�totð ~xÞj
j�totð ~xÞj ¼ 2Re½� log�totð ~xÞ� (8)

while phase fluctuation is given by

��ð ~xÞ ¼ � arg ½�totð ~xÞ� ¼ Im½� log�totð ~xÞ�: (9)

In this way, if we further write

�ð ~xÞ � i�ð ~xÞ ¼ � i

2k0
�½log�tot�; (10)

with both � and � as real-valued functions of ~x, with the
dimensionality of displacement, they will represent phase
and amplitude noise, respectively. In particular, from
Eq. (9), we have

��ð ~xÞ ¼ 2k0�ð ~xÞ: (11)

Because we measure the mirror’s position through the
additional phase shift gained by the light after being re-
flected, through the relation �� ¼ 2k0�x, Eq. (11) indi-
cates that �ð ~xÞ is the displacement noise due to phase
fluctuations of the reflected light imposed by the coating.
The quantity � (which, like �, is a length) is connected to

amplitude/intensity noise via

2k0�ð ~xÞ ¼ Re½� log�tot� ¼ �Ið ~xÞ
2Ið ~xÞ : (12)

As we shall discuss in Sec. II E, � will cause a fluctuating
force on the mirror, and can eventually be converted to a
displacement noise via a dimensionless factor, although the
effect will turn out to be small for gravitational-wave
detectors.
Inserting the dependence of �tot on �, lj and zs

[cf. Eq. (6)], we obtain

�ð ~xÞ � i�ð ~xÞ ¼ ��zsð ~xÞ �
XN
l¼1

�ljð ~xÞ

�XN
j¼1

i

2k0

�
@ log�

@�j

:��jð ~xÞ
�

� XN
p¼0

i

2k0

�
@ log�

@rp
:�rpð ~xÞ

�
: (13)

The first two terms are due to the motion of the coating-air
interface at location ~x and thickness fluctuations of the
layers, while the last two terms are due to light penetration
into the coating layers (see Fig. 5). In particular, the third
term is due to fluctuations in the total phase the light gains
when propagating within the jth layer, while the fourth
term is due to the (effective) reflectivity of the pth interface
(with p ¼ 0 indicating the coating-air interface), whose
origin will be explained below.

C. Fluctuations ��j and �rp

Light propagating within the coating layers is affected
by the photoelastic effect, namely an isothermal fluctua-
tion in �njðxÞ (note here that x is a 3-D vector) due to

fluctuating Brownian stresses exerted onto the coating
materials. Assuming isotropy of the coating materials, we
can write

�njðxÞ ¼ �L
j SzzðxÞ þ �T

j ½SxxðxÞ þ SyyðxÞ� (14)

with

�L
j �

�
@nj

@ log l

�
Aj

; �T
j �

�
@nj

@ logA

�
lj

: (15)

Here L stands for longitudinal, and T stands for transverse,
and the subscripts Aj and lj indicate fixing transverse area

and longitudinal length, respectively. We have also used
the usual strain definition
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Sij � 1

2

�
@ui
@xj

þ @uj
@xi

�
(16)

where uiðxÞ, i ¼ 1, 2, 3 are components of the displace-
ment vector of the mass element at position x. Refer to
Appendix B for more details in defining the elasticity
quantities, and Appendix A 1 for more details on the
photoelastic effect.

We note that in Eq. (14) Szz is the fractional increase in
length (i.e., linear expansion) in the longitudinal direction,
while Sxx þ Syy is the fractional increase in the transverse

area. According to Appendix A 4, we can ignore the second
term representing area fluctuations in Eq. (14) when the
beam spot size is much larger than the coating thickness. In
this case, we write �j in place for �L

j , whose value can be

expressed in terms of a particular component of the pho-
toelastic tensor; see Eq. (A5).

As we discuss in Appendix A 2, the first term of Eq. (14)
causes two effects for light propagating along each direction
(i.e., þz and �z): it adds an additional phase shift, and it
backscatters a fraction of the light into the opposite direction.
As we show in Appendix A 3 [cf. Eqs. (16)–(18)], these
effects can be accounted for by modifying the phase shift
��j of each coating layer and changing the reflectivity�rj of

the interface, in the following manner:

��j ¼ k0

�
ðnj þ �jÞ�lj �

1� r2j
2rj

�j�l
c
j

þ 1þ r2j�1

2rj�1

�j�1�l
c
j�1

�
; (17)

�rj ¼ k0t
2
j�j�l

s
j: (18)

Here we have defined

�lcj ¼ �
Z lj

0
Szzðzjþ1 þ zÞ cos ð2k0njzÞdz (19)

�lsj ¼ �
Z lj

0
Szzðzjþ1 þ zÞ sin ð2k0njzÞdz (20)

for j � 1, �ls0 ¼ �lc0 ¼ 0, and

zj �
XN
n¼j

ln (21)

marks the z coordinate of the top surface of the jth layer. We
can also write

�lj ¼
Z lj

0
Szzðzjþ1 þ zÞdz: (22)

Note that

total coating

thickness
� z1 > z2 > � � �> zNþ1 � 0 (23)

Note that �rj, as well as the last two terms in ��j are due to

backscattering, and have not been considered by previous
authors.
Inserting Eqs. (17) and (18) into Eq. (13), we obtain

�ð ~xÞ � i�ð ~xÞ ¼ �zsð ~xÞ �
XN
j¼1

Z zj

zjþ1

�
1þ i�jðzÞ

2

�
uzzð ~x; zÞdz

(24)

where

�jðzÞ ¼ ðnj þ �jÞ @ log�@�j

� �j

�1� r2j
2rj

@ log�

@�j

� 1þ r2j
2rj

@ log�

@�jþ1

�

� cos ½2k0njðz� zjÞ� � t2j�j

@ log�

@rj

� sin ½2k0njðz� zjþ1Þ�; (25)

a term that accounts for all effects associated with light
penetration. Here we need to formally define

@ log�

@�Nþ1

¼ 0 (26)

because �Nþ1 does not really exist. Alternatively, we can
also write formulas separately for � and � , using only real-
valued quantities. For �, we have,

�ð ~xÞ ¼ �zsð ~xÞ �
XN
j¼1

½T �
j �ljð ~xÞ þT �c

j �lcjð ~xÞ

þT �s
j �lsjð ~xÞ�; (27)

where

T �
j ¼ 1� nj þ �j

2
Im

�
@ log�

@�j

�
(28)

T �c
j ¼ ��j

4
Im

�
@ log�

@�j

��1� r2j
rj

�

þ �j

4
Im

�
@ log�

@�jþ1

��1þ r2j
rj

�
(29)

T �s
j ¼ ��jt

2
j

2
Im

�
@ log�

@rj

�
(30)

are transfer functions from the various �l’s to the
displacement-equivalent thermal noise (see Fig. 6). For
� , we have

�ð ~xÞ ¼ X
j¼1

½T �
j �ljð ~xÞ þT �c

j �lcjð ~xÞ þT �s
j �lsjð ~xÞ� (31)

where
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T �
j ¼

nj þ �j

2
Re

�
@ log�

@�j

�
(32)

T �c
j ¼ �j

4
Re

�
@ log�

@�j

��1� r2j
rj

�

� �j

4
Re

�
@ log�

@�jþ1

��1þ r2j
rj

�
(33)

T �s
j ¼ �jt

2
j

2
Re

�
@ log�

@rj

�
(34)

For an arbitrary stack of dielectrics, � is comparable to
the part of � [cf. Eq. (25)] that involves light penetration
into the layers. In practice, however, for highly reflective
stacks, the real parts of @ log�=@�j and @ log�=@rj all

turn out to be small, and therefore fluctuations in � (which
correspond to amplitude fluctuations) should be much less
than fluctuations in � (which corresponds to phase
fluctuations).

D. Mode selection for phase noise

So far we have dealt with phase and amplitude noise as
functions at each location ~x on the mirror surface.
However, there is only one displacement noise that the
light will sense. In this and the next subsection, we show
how �ð ~xÞ and �ð ~xÞ should be converted into measurement
noise. In doing so, we recognize that only one spatial
optical mode is injected on resonance in the optical cavity,
and this mode has a complex amplitude of u0ð ~xÞ at the
mirror surface. Now suppose we have uin ¼ u0ð ~xÞ incident
on the mirror surface; we will then have uoutð ~xÞ ¼
�totð ~xÞu0ð ~xÞ, which contains not only the resonant mode,
but also other modes, which do not resonate in the cavity.

Let us select only the component of uoutð ~xÞ that is in the
resonant spatial mode that is driven; then we have a com-
plex reflectivity of

�� ¼
R
u�0ð ~xÞuoutð ~xÞd2 ~xR

u�0u0d~x
¼
R
�totð ~xÞIð ~xÞd2 ~xR

Ið ~xÞd2 ~x ; (35)

specifically for the resonant mode, and hence independent
of ~x. Here we have defined Ið ~xÞ � ju0ð ~xÞj2. Note that the
bar on top of �� represents averaging over the phase front,
instead of averaging over time.

Now, inserting Eq. (10) as definitions for �ð ~xÞ and �ð ~xÞ
into Eq. (35), we obtain the fluctuating part of ��

� ��

��
¼ 2ik0ð ��� i ��Þ; (36)

where

�� �
R
�ð ~xÞIð ~xÞd2 ~xR
Ið ~xÞd2 ~x ; �� �

R
�ð ~xÞIð ~xÞd2 ~xR
Ið ~xÞd2 ~x : (37)

Note that 2ik0 �� is the additional phase gained by the
returning light, while 2k0 �� is the relative change in ampli-
tude [see discussions in Sec. II B]. Focusing first on ��, we
note that this creates the same phase change as that gained
by the reflected light if the mirror does not deform but
instead is displaced along the beam by ��. In this way, �� is
an error in our measurement of the mirror’s displacement.

E. Conversion of amplitude noise into displacement

The amplitude thermal noise can produce a spurious
gravitational-wave signal by modulating the radiation pres-
sure acting on the mirror, which in turn drives spurious
mirror motion. Let us first consider a single-bounce sce-
nario, in which an incoming beam with intensity profile
Ið ~xÞ, unaffected by thermal noise, is reflected with an
intensity profile Ið ~xÞ þ �Ið ~xÞ, with �Ið ~xÞ induced by am-
plitude thermal noise. In this case, the mirror feels a
thermal-noise-induced recoil force of

F
single
th ¼

Z �Ið ~xÞ
c

d2 ~x: (38)

Using Eqs. (12) and (37), we obtain

Fsingle
th ¼ 4I0k0

c
�� (39)

with I0 the power incident on the mirror. If the mirror is
within a cavity, then we need to consider both the increase
in the circulating power (which we denote by Ic) with
respect to the input power, and the coherent buildup of
amplitude modulation within the cavity. We also note that
now both the incident and reflected beam contains ampli-
tude modulation, and that we must also consider the effect
of this amplitude modulation on the input mirror.
If we restrict ourselves to a single optical cavity on

resonance, then the thermal-noise force below the cavity
bandwidth is given by

Fcav
th ¼ 16k0Ic

c
ffiffiffiffiffi
Ti

p ��: (40)

Here Ic is the circulating power in the arm cavity. Suppose
both input and end mirrors have the same massM; then the
spectrum of cavity length modulation driven by the ampli-
tude thermal noise at angular frequency � is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Samp
th ð�Þ

q
¼ 2

M�2

ffiffiffiffiffiffiffiffiffiffi
SFcav

th

q
¼ 32!0Ic

m�2c2
ffiffiffiffiffi
Ti

p
ffiffiffiffiffi
S ��

q
: (41)

Note that �� has the units of displacement, and therefore the

prefactor in front of
ffiffiffiffiffi
S ��

p
in Eq. (41) is a dimensionless

conversion factor from �� to displacement noise. For
Advanced LIGO, this cannot be completely dismissed at
this stage, because

32!0Ic
m�2c2

ffiffiffiffiffi
Ti

p ¼ 18 � Ic
800 kW

� 40 kg

m
�
�
10 Hz

�=ð2	Þ
�
2
ffiffiffiffiffiffiffiffiffi
0:03

Ti

s
:

(42)
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Nevertheless, as we will show in Sec. VB, the minor
amplification factor here is not enough to make amplitude
noise significant, because � is much less than �, for the
coatings we consider.

III. THERMAL NOISE ASSUMING NO LIGHT
PENETRATION INTO THE COATING

In this section, we compute the coating Brownian noise
assuming that the incident light does not penetrate into the
coating. This means light is promptly reflected at the
coating-air interface, and therefore we should only keep
the first two terms on the right-hand side of Eq. (13), which
leads to � ¼ 0. We therefore consider only coating phase
noise �, in particular its weighted average over the mirror
surface, ��; see Eq. (37).

A. The fluctuation-dissipation theorem

The fluctuation-dissipation theorem relates the near-
equilibrium thermal noise spectrum of a generalized coor-
dinate q to the rate of dissipation in the system when a
generalized force acts directly on this coordinate. More
specifically, the thermal noise spectrum of q at temperature
T is given by [13]

SqðfÞ ¼ kBT

	2f2
Re½ZðfÞ� (43)

where f is frequency, ZðfÞ is the mechanical impedance
(inverse of admittance), or

ZðfÞ ¼ �2	ifqðfÞ=FðfÞ: (44)

Alternatively, suppose we apply a sinusoidal force

FðtÞ ¼ F0 cos ð2	ftÞ (45)

with amplitude F0 acting directly on q; Eq. (43) can also be
written as

SxðfÞ ¼ 4kBT

	f

Wdiss

F2
0

¼ 4kBT

	f

U

F2
0

� (46)

whereWdiss is the energy dissipated per cycle of oscillation
divided by 2	 (in other words, Wdiss is the average energy
loss per radian), U is the peak of the stored energy in the
system, and � is the loss angle, defined by

� ¼ Re½ZðfÞ�=Im½ZðfÞ�: (47)

It is important to note that � is in general frequency
dependent. However, for an elastic body, if the frequency is
low enough (well below the first eigenfrequency), then U
can be computed using the quasistatic approximation, be-
cause it is equal to the elastic energy stored in the equilib-
rium configuration when a constant force F0 is applied to
the system.

B. Mechanical energy dissipations in elastic media

It is straightforward to apply Eq. (46) to calculate the
thermal noise component due to fluctuation of the position
of the coating-air interface—the weighted average
[cf. Eq. (35)] of the first two terms of Eq. (13). This can
be obtained by applying a force F with a pressure profile
proportional to Ið ~xÞ to the mirror surface (coating-air inter-
face). In this case, elastic energy can be divided into bulk
energy UB and shear energy US (Chapter I of Ref. [18]),
with

Ucoating ¼ UB þUS ¼
Z
coating

�
K

2
�2 þ��ij�ij

�
dV;

(48)

where � is the expansion, and �ij is the shear tensor (see

Appendix B for details). If we give small imaginary parts to
K and �, writing

~K ¼ Kð1þ i�BÞ; ~� ¼ �ð1þ i�SÞ (49)

then Wdiss can be written as

Wdiss ¼ �BUB þ�SUS: (50)

Here we have introduced the loss angles�B and�S, which
are associated with the dissipation of expansion energy
density and the shear energy density, respectively. Note
that our way of characterizing loss differs from previous
work by Harry et al. [14], because for isotropic materials,
�B and �S are the two fundamentally independent loss
angles that characterize the dissipation of bulk and shear
elastic energy; were we to literally adopt �? and �k as

done in Ref. [14], and consider them independent from
each other, then the dissipated energy defined this way can
turn out to be negative if certain force distributions are
applied onto the mirror, which would be unphysical. See
Appendix C for more details.
Once we have introduced �B and �S, other elastic

moduli also gain small imaginary parts correspondingly.
For example, for the most widely used Young’s modulus
and Poisson’s ratio, because

K ¼ Y

3ð1� 2
Þ ; � ¼ Y

2ð1þ 
Þ (51)

we can write

~Y ¼ Yð1þ i�YÞ (52)

with

�Y ¼ ð1� 2
Þ�B þ 2ð1þ 
Þ�S

3
(53)

and

~
 ¼ 
þ i

3
ð1� 2
Þð1þ 
Þð�B ��SÞ: (54)

Since �1<
< 1=2, we have ð1� 2
Þð1þ 
Þ> 0;
therefore ~
 has a positive imaginary part as �B is greater
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than �S, and vice versa. To understand the physical mean-
ing of the imaginary part of a Poisson’s ratio, one has to
realize that the Young’s modulus and the Poisson’s ratio
together describe the elastic response of a rod. Suppose we
apply an oscillatory tension uniformly along a rod at a very
low frequency; whether the area of the rod leads or lags the
length of the rod depends on the relative magnitudes of the
bulk and shear loss angles. In the situation when the two
loss angles �B and �S are equal to each other, the
Poisson’s ratio is real, and we only need to deal with one
loss angle �Y—although there is reason to assume the
equality of these two angles.

If the coating material is made into the shape of a one-
dimensional rod, and if we only consider its elongational,
bending or torsional modes, then the Young’s modulus is
the appropriate elastic modulus associated with these
modes, and �Y is the appropriate loss angle to apply.
However, this is not directly relevant for coating thermal
noise. An elastic modulus that will actually prove useful is
that of the two-dimensional (2D) flexural rigidity of a thin
plate made from the coating material,

D ¼ Yh

12ð1� 
2Þ ¼ jDjð1þ i�DÞ (55)

where h is the thickness of the plate, with

�D ¼ ð1� 
� 2
2Þ�B þ 2ð1� 
þ 
2Þ�S

3ð1� 
Þ : (56)

As we shall see in Sec. VII A, this D is most easily
measured through the quality factor of drum modes of a
thinly coated sample—although this will not turn out to be
the combination of loss angles that appear in the thermal
noise of coated mirrors.

C. Thermal noise of a mirror coated with one thin layer

In the case where the coating thickness is much less than
the size of the mirror substrate and the beam spot size, the
elastic deformation of the substrate is not affected by the
presence of the coating. As a consequence, if we include
the elastic energy stored in the substrate Usub with loss
angle �sub, we can write

Wdiss ¼ �subUsub þ�BUB þ�SUS

�
�
�sub þ�B

UB

Usub

þ�S

US

Usub

�
Usub: (57)

With the assumption of a thin coating and a half-infinite
substrate, the total strain energy stored in the sample can be
considered asUsub. In such a way the coating adds on to the
substrate loss angle as additional, effective angles

�coated ¼ �sub þ UB

Usub

�B þ US

Usub

�S: (58)

Note that when the total coating thickness l is much less
than the beam spot size w0, we have UB=Usub 	
US=Usub 	 l=w0 
 1. Unfortunately, however, �B and

�S are found to be so much larger than the substrate loss
angle �sub that in practice coating thermal noise still
dominates over substrate thermal noise.
Now suppose we would like to measure a weighted

average of the position of the mirror surface,

q ¼ �� ¼
Z

d2 ~xwð ~xÞzð ~xÞ (59)

with [cf. Eq. (37)]

wð ~xÞ ¼ Ið ~xÞR
Ið ~xÞd2 ~x (60)

and zð ~xÞ the position of the coating-air interface at trans-
verse location ~x.
According to Sec. III A, we need to apply a pressure

profile of

fð ~xÞ ¼ F0wð ~xÞ (61)

onto the upper surface of the coating, which we shall also
refer to as the coating-air interface. Straightforward calcu-
lations give

UB

F2
0

¼ ð1� 2
cÞl
3

�
Yc

Y2
s

ð1� 2
sÞ2ð1þ 
sÞ2
ð1� 
cÞ2

þ 1

Ys

2ð1� 2
sÞð1þ 
sÞð1þ 
cÞ
ð1� 
cÞ2

þ 1

Yc

ð1þ 
cÞ2
ð1� 
cÞ2

�

�
Z

w2ð ~xÞd2 ~x (62)

US

F2
0

¼ 2l

3

�
Yc

Y2
s

ð1� 
c þ 
2
cÞð1þ 
sÞ2ð1� 2
sÞ2

ð1� 
cÞ2ð1þ 
cÞ
� ð1þ 
cÞð1� 2
cÞð1� 2
sÞð1þ 
sÞ

Ysð1� 
cÞ2

þ ð1� 2
cÞ2ð1þ 
cÞ
Ycð1� 
cÞ2

�Z
w2ð ~xÞd2 ~x: (63)

Here l is coating thickness; for Young’s modulus Y and
Poisson’s ratio 
, substrates c and s represent coating
and substrate, respectively. Directly following Eqs. (46)
and (50) will give rise to a noise spectrum of

S �� ¼ 4kBT

	f

�
�B

UB

F2
0

þ�S

US

F2
0

�
(64)

where UB=F
2
0 and US=F

2
0 are given by Eqs. (62) and (63)

respectively.
Here we can define

Z
w2ð ~xÞd2 ~x ¼

R
d2 ~xI2ð ~xÞ

½R d2 ~xIð ~xÞ�2 �
1

Aeff

(65)

as the inverse of an effective beam area. Therefore noise
power in q is proportional to coating thickness and in-
versely proportional to beam area. In particular, for a
Gaussian beam with
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Ið ~xÞ / exp

�
�

~2x2

w2
0

�
(66)

the effective area is Aeff ¼ 	w2
0.

Let us compare our results to previous calculations using
�? and �k. As it turns out, if we assume �S ¼ �B, then

formulas for thermal noise agree with Eq. (22) in Ref. [14].
To illustrate the different roles now played by �B and �S,
let us take the very simple case of Y ¼ Yc ¼ Ys and 
 ¼

c ¼ 
s, where

�UB

F2
0

¼ 4l

3YAeff

ð1þ 
Þ2ð1� 2
Þ (67)

�US

F2
0

¼ 2l

3YAeff

ð1þ 
Þð1� 2
Þ2: (68)

Using Eq. (64), we can get the power spectral density of the
single-layer nonpenetration coating thermal noise as

S ��ðfÞ¼
8kBTð1�
�2
2Þl

3	fYAeff

½2ð1þ
Þ�Bþð1�2
Þ�S�:
(69)

From Eq. (69), we can see that the bulk loss and shear loss
contribute differently to the total noise. More importantly,
at least in the simple case where Yc ¼ Ys, the combination
of �B and �S is approximately 2�B þ�S, which differs
significantly from the combination�tot � �B þ 2�S mea-
sured by the ring-down experiments that have been per-
formed so far [19–21]. This will be discussed in detail in
the rest of Sec. VII.

D. Discussions on the correlation structure
of thermal noise

Before proceeding to more detailed calculations of
Brownian noise that involve light penetrating into the coat-
ing layers, we would like to gain more insight about
thermal noise by inspecting our existing expressions of
coating thermal noise [Eqs. (62)–(64)] more carefully.
We note that

S �� / l
Z

w2ð ~xÞd2 ~x; (70)

where the coefficient of proportionality depends only on
material property. From such a dependence on coating and
beam geometries, we deduce that (i) each point on the
coating-air interface fluctuates along the z direction inde-
pendently, and (ii) materials at different z’s within the
coating also contribute independently to coating thermal
noise. These observations will be confirmed below in
Sec. IV.

Finally, within the coefficient of proportionality
[cf. Eqs. (62) and (63)], we found three types of depen-
dence on the Young’s moduli of the coating and substrate
materials: terms proportional to 1=Yc are expected to arise

from fluctuations in coating thickness, terms proportional
to Yc=Y

2
s can be interpreted as arising from coating thermal

stresses driving the substrate-coating interface, while terms
proportional to 1=Ys are therefore interpreted as correla-
tions between the above two types of noise.

IV. CROSS SPECTRA OF THERMAL
NOISE COMPONENTS

In this section, we compute the cross spectra of each
component of coating thermal noise, and assemble the
formula for the spectral density of the total noise.
Specifically, in Sec. IVA, we compute the cross spectra
of the thickness fluctuations between any two uniform
sublayers of the coating, and obtain the cross spectrum of
Szz; in Sec. IVB, we compute the cross spectra involving
height fluctuation zs of the coating-substrate interface, i.e.,
SSzzzs and Szszs ; in Sec. IVC, we dissect the above results

and analyze the separate roles of bulk and shear fluctua-
tions; in Sec. IVD, we write down the full formula for
coating thermal noise.

A. Coating-thickness fluctuations

Let us start by calculating thickness fluctuations of
individual layers and correlations between them.
Following Levin’s approach, we imagine applying two
pairs of opposite pressure,

f1ð ~xÞ ¼ F0w1ð ~xÞ; f3ð ~xÞ ¼ F0w3ð ~xÞ (71)

in the z direction on layer I and layer III, as shown in Fig. 2,
with thicknesses of l1 and l3, respectively. Here w1ð ~xÞ and
w3ð ~xÞ, like the wð ~xÞ used in Eq. (59), provide the shape of
the pressure profiles. Note that we apply pairs of forces,
and each pair must be equal and opposite in direction
because we are interested in learning about the fluctuations
of the thickness, instead of the location, of the layers.
We assume that layers I and III are each made from a

single type of material, yet there could be an arbitrary
number of different material sublayers in II. As it will
turn out, the precise locations of layers I and III along
the z direction do not affect the result, as long as they do
not overlap, or in other words, layer II has nonzero
thickness.
Throughout this paper, we shall assume that the beam

spot size is much less than the radius of the mirror, so that
we can make the approximation that the mirror surface is
an infinite two-dimensional plane. In this case, we perform
a spatial Fourier transformation for the applied pressure,

~fjð ~kÞ ¼
Z

ei
~k� ~xfjð ~xÞd2 ~x ¼ F0 ~wjð ~kÞ; j ¼ 1; 3; (72)

and carry out our calculations for strain and stress distri-
butions in the coating-substrate system in the Fourier
domain.
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We further assume that the coating thickness is much
less than the beam spot size, which is inverse to the
maximum spatial frequency contained in ~w1;3. This means

we only need to consider ~k’s with j ~kjl 
 1, with l the total
coating thickness. According to calculations in
Appendix B, nonzero components of the stress and strain
tensors in layers I and III are found to be (in the spatial
Fourier domain)

~TI
xx ¼ ~TI

yy ¼ 
1 ~w1

1� 
1

F0; ~TI
zz ¼ ~w1F0; (73)

~SIzz ¼ �ð1� 2
1Þð1þ 
1Þ ~w1

Y1ð1� 
1Þ F0; (74)

and

~TIII
xx ¼ ~TIII

yy ¼ 
3 ~w3

1� 
3

F0; ~TIII
zz ¼ ~w3F0; (75)

~SIIIzz ¼ �ð1� 2
3Þð1þ 
3Þ ~w3

Y3ð1� 
3Þ F0; (76)

respectively.
Note that deformations within layer I only depend on ~w1

(not ~w3), while deformations within layer III only depend

on ~w3 (not ~w1)—while regions outside these layers are
found to have vanishing strain and stress. This means we
can treat deformations caused by each pair of forces inde-
pendently, as long as layer I and layer III do not overlap.
The deformations are also independent of the thickness of
the layers. The vanishing of deformations outside these
layers means that when we introduce additional pairs of
opposite forces, the new deformations introduced will be
constrained within those new layers—as long as those new
layers do not overlap with existing ones. This indepen-
dence originates from the linearity of elastic response, and
the fact that coating strains induced by force applied on a
single surface within the coating, as discussed in
Appendix B, do not depend on distance away from that
surface, as seen in Eqs. (25)–(32). The situation here is
analogous to the electrostatics of several pairs of oppo-
sitely charged infinite parallel planes.
In terms of thermal noise, such a distribution of elastic

deformations corresponds to a dissipation energy that con-
sists of two independent terms, each corresponding to one
layer and proportional to its thickness:

Wdiss

F2
0

¼ W11l1
Z

w2
1d

2 ~xþW33l3
Z

w2
3d

2 ~x: (77)

Here we have defined, for j ¼ 1, 3,

Wjj �
ð1� 2
jÞð1þ 
jÞ

3ð1� 
jÞ2Yj

�
1þ 
j

2
�j

B þ ð1� 2
jÞ�j
S

�
:

(78)

This means the fluctuation of

q �
Z
½w1ð ~xÞ�l1ð ~xÞ þ w3ð ~xÞ�l3ð ~xÞ�d2 ~x (79)

is given by

Sq ¼ 4kBT

	f

X
j¼1;3

�
Wjjlj

Z
w2

j ð ~xÞd2 ~x
�
: (80)

The absence of a cross term between w1 and w3 means that
fluctuations in �l1ð ~xÞ and �l3ð ~x0Þ are uncorrelated—and
hence statistically independent. Furthermore, within each
layer, in the same spirit as the discussions in Sec. III D, the
particular form of dependence on lj and wjð ~xÞ indicates
that Szz fluctuations at different 3-D locations (within this
layer) are all uncorrelated and have the same spectrum. In
this way, we obtain the cross spectral density of Szz at two
arbitrary 3-D locations within the coating:

SijSzzSzzð ~x; z; ~x0; z0Þ ¼
4kBT

	f
�ij�

ð2Þð ~x� ~x0Þ�ðz� z0ÞWjj:

(81)

Here we have assumed that ð ~x; zÞ belongs to layer i, while
ð ~x0; z0Þ belongs to layer j. (The association to layers helps
to identify the material property to be used in Wjj.)

substrate

z

(x,y)

III

II

I

f3(x,y)

f1(x,y)

co
at

in
g 

la
ye

rs

fs(x,y)

FIG. 2 (color online). Illustrations of forces applied onto vari-
ous interfaces within the coating. Each of layers I and III in the
coating are assumed to be uniform (but they might each contain a
different kind of material); region II denotes the entire gap
between them, which may well contain many different dielectric
layers. A pair of force distributions f1 (f3) with the same
pressure profile but in opposite directions is exerted on opposite
sides of layer I (III), while fs is exerted on the coating-substrate
interface. (Although each pair has the same pressure profile, they
may be different from each other.) The three distributions may
well have different profiles (as also illustrated in the figure).
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B. Fluctuations of coating-substrate interface and their
correlations with coating thickness

To investigate the correlation between the height of the
coating-substrate interface, zsð ~xÞ, and the thickness of each
coating layer, �ljð ~xÞ, we apply an identical pair of pres-

sures f1ð ~xÞ ¼ F0w1ð ~xÞ at opposite sides of layer I, and
force fsðx; yÞ ¼ F0wsð ~xÞ onto the coating-substrate inter-
face (along the�z direction), as shown in Fig. 1. The same

strain and stress as in Eqs. (73) and (74) are driven by ~f1,
which are only nonvanishing within layer I. On the other

hand, ~fs drives uniform strain and stress over the entire
coating, with nonvanishing components of stress and strain
given by

k ~Tij k¼ ~wsð1� 
s � 2
2
sÞYc

ð1þ 
cÞ�2Ys

k2xþ
ck
2
y

1�
c
kxky 0

kxky

ck

2
xþk2y

1�
c
0

0 0 0

2
66664

3
77775
(82)

k ~Sij k¼ � ~wsð1� 
s � 2
2
sÞ

�2Ys

k2x kxky 0

kxky k2y 0

0 0 �
c

1�
c

2
6664

3
7775;

(83)

where Young’s modulus Yc and Poisson’s ratio 
c of the
coating are given by values within layer I. The total dis-
sipation in this case will have the following structure:

Wdiss

F2
0

¼ l1

�
W11

Z
w2

1d
2 ~xþ 2W1s

Z
w1wsd~x

þWss

Z
w2

sd
2 ~x

�
; (84)

with the first term arising from dissipation in layer I that is
due to strain and stress driven by f1; the second term also

arising from dissipation in layer I due to cross terms
between strains and stresses caused by f1 and fs; and the
third term arising from dissipations throughout the entire
coating, due to strain and stress caused by fs. Here W11 is
the same as defined by Eq. (78), and

Wjs¼
ð1�
s�2
2

sÞð1�
j�2
2
j Þ

2ð1�
jÞ2Ys

ð�j
B��j

SÞ (85a)

WðjÞ
ss ¼ð1�
s�2
2

sÞ2Yj

ð1�
jÞ2Y2
s

�
1�2
j

2
�j

Bþ
1�
jþ
2

j

1þ
j

�j
S

�
:

(85b)

Note that we have added a superscript (j) for Wss to
indicate that here the dissipation is due to the pair of forces
applied on one thin layer alone.
Here again, the dependences on w2

1 and w2
s indicate that

fluctuations at different transverse locations, ~x � ~x0, are
uncorrelated, while the l1 in front of W11 and the arbitrari-
ness of l1 mean that Szz fluctuations at different z locations
within the thin layers are uncorrelated. The l1 in front of
both W1s and Wss indicates that all Szz within layer I are
correlated with zs the same way, even though all of them
are mutually uncorrelated.
This allows us to extract the following:

Szszsð ~x; ~x0Þ ¼
4kBT

3	f
�ð2Þð ~x� ~x0ÞX

j

ljW
ðjÞ
ss (86a)

SSzzszð ~x; ~x0; z0Þ ¼
4kBT

3	f
�2ð ~x� ~x0ÞWjs: (86b)

Here for Eq. (86b), j is the layer with which z0 is associ-
ated, and this labeling is to help identify which material
parameter to use in Wjs.

C. The anatomy of coating thermal noise

Here let us assemble Eqs. (81), (86a), and (86b), from
the previous sections, and write

SijSzzSzzð ~x; z; ~x0; z0Þ ¼
4kBT

3	f

ð1þ 
jÞð1� 2
jÞ
Yjð1� 
jÞ2

�
1þ 
j

2
�Bj þ ð1� 2
jÞ�Sj

�
�ij�

ð2Þð ~x� ~x0Þ�ðz� z0Þ (87a)

Szszsð ~x; ~x0Þ ¼
4kBT

3	f

ð1� 
s � 2
2
sÞ2

Y2
s

X
j

Yjlj

ð1� 
jÞ2
�
1� 2
j

2
�Bj þ

1� 
j þ 
2
j

1þ 
i

�Sj

�
�ð2Þð ~x� ~x0Þ (87b)

SzsSzzð ~x; ~x0; z0Þ ¼
2kBT

3	f

ð1� 
s � 2
2
sÞð1� 
j � 2
2

i Þ
Ysð1� 
jÞ2

½�Bj ��Sj��2ð ~x� ~x0Þ: (87c)

Here we have assumed that z belongs to the ith layer and
that z0 belongs to the jth layer, respectively. The thickness
fluctuations of different layers are mutually independent
[note the Kronecker delta in Eq. (87a)], while the thickness
fluctuation of each layer is correlated with the height
fluctuation of the coating-substrate interface [Eq. (87c)].

Fluctuations in the strain Szz and the coating-substrate
interface zs, described by Eqs. (87a) and (87b), can be
represented alternatively as being driven by a number of
independent fluctuating fields that exist throughout the
coating. Such a representation allows us to better appre-
ciate the origin and the magnitude of these fluctuations.
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In order to do so, let us first define 3N thermal noise

fields (i.e., 3 for each coating layer), nBj ðxÞ, nSAj ðxÞ and

nSBj ðxÞ, all independent from one another, with

SnBj nBk ¼
4kBTð1�
j�2
2

j Þ
3	fYjð1�
jÞ2

�j
B�jk�

ð3Þðx�x0Þ; (88a)

S
n
SA
j n

SA
k

¼S
n
SB
j n

SB
k

¼4kBTð1�
j�2
2
j Þ

3	fYjð1�
jÞ2
�j

S�jk�
ð3Þðx�x0Þ;

(88b)

and all other cross spectra vanishing. Here j labels the
coating layer, the superscript B indicates bulk fluctuation,
while SA and SB label two types of shear fluctuations. The
normalizations of these fields are chosen such that each of
these fields, when integrated over a length lj along z, has a

noise spectrum that is roughly the same magnitude as a
single-layer thermal noise.

Noise fields nBj ðxÞ, nSAj ðxÞ and nSBj can be used to gen-

erate thickness fluctuations of the layers and the interface
fluctuation (87a) and (87b) if we define

uzzð ~x; zÞ ¼ CB
j n

B
j ð ~x; zÞ þ CSA

j nSAj ð ~x; zÞ (89)

and

zsð ~xÞ ¼
X
j

Z Lj

Ljþ1

dz½DB
j n

B
j ð ~x; zÞ þDSA

j nSAj ð ~x; zÞ

þDSB
j nSBj ð ~x; zÞ�: (90)

For each coating layer, CB
j and DB

j are transfer functions

from the bulk noise field nBj to its own thickness �lj and to

surface height zs, respectively; C
SA
j and DSA

j are transfer

functions from the first type of shear noise to thickness and

surface height; finally DSB
j is the transfer function from the

second type of shear noise to surface height (note that this
noise field does not affect layer thickness). Explicit forms
of these transfer functions are listed in Table I.

Equations (89) and (90) owe their simple forms to the
underlying physics of thermal fluctuations.

For bulk noise, i.e., terms involving nBj , the form of

Eqs. (89) and (90) indicates that the interface fluctuation
due to bulk dissipation is simply a sum of pieces that are

directly proportional to the bulk-induced thickness fluctua-
tions of each layer. This means the thermal bulk stress in a
layer drives simultaneously the thickness fluctuation of that
layer and a fluctuation of the coating-substrate interface.
The fact that DB

j and CB
j have the same sign means that

when thickness increases, the interface also rises (with an
intuitive explanation shown in Fig. 3). This sign of correla-
tion is generally unfavorable because the two noises add
constructively towards the rise of the coating-air interface.
For shear noise, the situation is a little more compli-

cated, because unlike bulk deformations, there are a total of
five possible shear modes. From Eqs. (73) and (74), it is
clear that f1, applied on opposites of layer I (Fig. 2), only
drives the xxþ yy� 2zz shear mode and the xxþ yyþ zz
bulk mode, while from Eqs. (82) and (83), the force
distribution fs drives three shear modes of xx� yy, xyþ
yx, and xxþ yy� 2zz. This means that while thermal
shear stresses in the xxþ yy� 2zzmode drive layer thick-
ness and interface fluctuation simultaneously, there are
additional modes of shear stress, xx� yy and xyþ yx,
that only drive the interface without driving layer thick-
ness. Our mode SA, which drives both layer thickness and
interface height, therefore corresponds to the physical
shear mode of xxþ yy� 2zz; our mode SB, which only
drives interface height, corresponds to the joint effect of
the physical shear modes xx� yy and xyþ yx. It is inter-
esting to note that for SA, its contributions to �lj and zs are

anticorrelated, because CSA and DSA have opposite signs.
This is intuitively explained in Fig. 3.
As an example application of Eqs. (89) and (90), if we

ignore light penetration into the coating layers, namely,
when thermal noise is equal to

TABLE I. Transfer functions from bulk and shear noise fields
to layer thickness and surface height.

Thickness (�j) Surface height (zs)

Bulk
CB
j ¼

ffiffiffiffiffiffiffiffiffi
1þ
j

2

q
DB

j ¼ 1�
s�2
2
sffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ
jÞ
p Yj

Ys

Shear A CSA
j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2
j

p
DSA

j ¼ � 1�
s�2
2
s

2
ffiffiffiffiffiffiffiffiffiffiffi
1�2
j

p Yj

Ys

Shear B (none) DSB
j ¼

ffiffi
3

p ð1�
jÞð1�
s�2
2
s Þ

2
ffiffiffiffiffiffiffiffiffiffiffi
1�2
j

p ð1þ
jÞ
Yj

Ys

substrate

co
at

in
g 

la
ye

rs

bulk

deformation

shear

deformation

FIG. 3. Illustration of the correlations between coating thick-
ness �lj and the height of the coating-substrate interface, zs. On

the left, for a bulk deformation: When a coating element is
expanding, its expansion along the x-y plane lifts the coating-
substrate interface upwards, causing additional motion of the
coating-air interface correlated to that caused by the increase
in coating thickness. On the right, a particular shear mode: When
a coating element is expanding, its contraction along the x-y
plane pushes the coating-substrate interface downwards, causing
additional motion of the coating-air interface anticorrelated to
that caused by the increase in coating thickness.
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�np � �zs �
X
j

�lj (91)

we have

�np ¼ �X
j

Z Ljþ1

Lj

dz½ðCB
j þDB

j ÞnBj

þ ðCSA
j þDSA

j ÞnSAj þDSB
j nSBj � (92)

in which contributions from each layer have been divided
into three mutually uncorrelated groups, each arising from
a different type of fluctuation. Here we see explicitly that
CB and DB sharing the same sign increases contributions
from nB; CSA and DSA having opposite signs suppresses
contributions from nSA .

Finally, we note that in the spectral density of �np,
contributions directly from coating thickness will be pro-

portional to jCB
j j2 and jCSA

j j2, and hence proportional to

1=Yc; those from interface height will be jDB
j j2, jDSA

j j2 and
jDSB

j j2, and hence proportional to Yc=Y
2
s ; while those from

correlations will be proportional to CB
j D

B
j and CSA

j DSA
j , and

hence proportional to 1=Ys. This confirms our anticipation
at the end of Sec. III D.

D. Full formula for thermal noise

Now we give the complete formulas for amplitude and
phase noise spectrum [cf. Eq. (94) and (95)]. As we con-
sider light penetration into the coating, we resort to
Eq. (24), and write

�ð ~xÞ � i�ð ~xÞ ¼ �X
j

Z zj

zjþ1

dz

���
1þ i�jðzÞ

2

�
CB
j þDB

j

�

� nBj ð ~x; zÞ þ
��

1þ i�jðzÞ
2

�
CSA
j þDSA

j

�

� nSAj ð ~x; zÞ þDSB
j nSBj ð ~x; zÞ

��
: (93)

Here spectra of independent fields nBj , n
SA
j and nSBj have

been given in Eqs. (88a) and (88b), � is defined in Eq. (25),
while the transfer functions C and D are listed in Table I.

We can then obtain the spectrum of phase noise (after
averaging over the mirror surface and weighted by the
power profile of the optical mode) as

S �� ¼ X
j

Z zj

zjþ1

dz

�j

��
1� Im

�jðzÞ
2

�
CB
j þDB

j

�
2
SBj

þX
j

Z zj

zjþ1

dz

�j

��
1� Im

�jðzÞ
2

�
CSA
j þDSA

j

�
2
SSj

þX
j

½DSB
j �2 lj

�j

SSj �
X
j

qBj S
B
j þ qSj S

S
j (94)

and the spectrum of amplitude noise as

S �� ¼
X
j

Z zj

zjþ1

dz

�j

��
CB
j Re

�jðzÞ
2

�
2
SBj

þ
�
CSA
j Re

�jðzÞ
2

�
2
SSj

�
: (95)

Here �j is the wavelength of light in layer j, and we have

defined

SXj � 4kBT�j�
j
Xð1� 
j � 2
2

j Þ
3	fYjð1� 
jÞ2Aeff

; X ¼ B; S; (96)

which is at the level of coating thickness fluctuation of a
single layer of dielectrics with material parameters identi-
cal to layer j and length equal to �j. Note that the quantity

SXj only depends on the material properties (and tempera-

ture) of the layer, and is independent from the length of that
layer; the quantities qXj (see Fig. 7), on the other hand, give

us the relative thermal noise contribution of each layer in a
dimensionless way.
Note that the reason for keeping the integrals in

Eqs. (94) and (95) is because � has a z dependence, which
originates from the fact that the backscattering contribu-
tions to ��j and �rj are a weighted integral of uzz within

each layer [cf. (17) and (18)].

V. EFFECT OF LIGHT PENETRATION
INTO THE COATING

In this section, we synthesize results from Sec. II and IV,
and compute the full Brownian thermal noise for coating
configurations. We will illustrate how the light penetration
affects the total noise in highly reflective coatings.

A. Optics of multilayer coatings

For the completeness of the paper, we briefly review how
the light penetration coefficient @ log�=@�j can be

calculated.
From an interface from layer i to j (here j is either iþ 1

or i� 1), we denote the reflectivity and transmissivity of
different layers by rij and tij: r

2
ij þ t2ij ¼ 1,

rij ¼
ni � nj
ni þ nj

: (97)

We also define nNþ1 ¼ n1, since that is the refractive index
of the substrate.
A matrix approach can be applied to solve for the

amplitude of light inside the layers, when we view the
coating as made up of two elementary transformations,
each representable by a matrix. In this approach, instead
of writing outgoing fields in terms of ingoing fields, one
writes fields to the right of an optical element in terms of
those to the left. As illustrated in Fig. 4, for reflection at an
interface (left panel), we write
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c

d

" #
� Rr ¼ 1

t

1 �r

�r 1

" #
a

b

" #
: (98)

On the other hand, for propagation across a gap with phase
shift �, we have

c

d

" #
� T� ¼ ei� 0

0 e�i�

" #
a

b

" #
: (99)

In this way, assuming the input and output field ampli-
tude at the top surface of a multilayer coating to be v1 and
v2, and writing those right inside the substrate to be s1 and
s2, we have

s1

s2

" #
¼ M11 M12

M21 M21

" #
v1

v2

" #
¼ M

v1

v2

" #
(100)

where M is given by

M ¼ RrN;Nþ1
T�N�1

RrN�1;N
. . .Rr12T�1

Rr01 : (101)

The complex reflectivity is given by

� ¼ �M21=M22: (102)

B. Levels of light penetration in Advanced LIGO End
Test-Mass Mirror Coatings

In Advanced LIGO, the coating stack is made from
alternating layers of two materials: SiO2 (n1 ¼ 1:45) and
Ta2O5 (n2 ¼ 2:07). Here we consider the end test-mass
mirror (ETM). In order to achieve very high reflectivity, the
coating is made of 19 successive pairs of alternating SiO2

and Ta2O5 layers, all �=4 in thickness except the top one,
which is �=2. We will refer to this as the conventional
coating. An alternative design has been made to allow the
coating to operate at both 1064 nm and 532 nm. We shall
refer to this as the Advanced LIGO coating (see
Appendix D) [22].
In Fig. 5, we plot real and imaginary parts of

@ log�=@�j and @ log�=@rj [see Eq. (13)], for both con-

ventional and Advanced LIGO coatings. Here we note that
the real parts of these derivatives are of the order of 10�6,
which means �� is less than �� by 6 orders of magnitude.
This, together with considerations in Sec. II E, will make
amplitude coating noise negligible.

reflective surface

a

b

c

d

r r’=−r
a

b

c

d

free propagation

FIG. 4. Two basic transformations involved in solving for
optical fields in a multilayer coating.
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FIG. 5 (color online). Real (solid curves) and imaginary (dashed curves) parts of @ log�=@�j (upper panel) and @ log�=@rj (lower
panel), for conventional (red dots or curves connecting them) and Advanced LIGO (blue squares or curves connecting them) coatings.
[Note that Reð@ log�=@�jÞ ¼ 0 for conventional coating.]
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In Eq. (27), we have divided contributions to � into four
terms: the first, zs, is the height of the coating-substrate
interface, while the other three are related to fluctuations in
layer thickness, �lj, �l

c
j and �lsj; see Eqs. (27)–(30). We

can illustrate the effect of light penetration by showing the
relative size of these three contributions for each layer. In
Fig. 6, we carry out this illustration for conventional coat-
ing on the left panel and for Advanced LIGO coating on the
right. We use a solid black line to indicate the nonphotoe-

lastic part of T �
j [i.e., terms not containing �j; see

Eq. (28)], and we use long-dashed red, short-dashed blue,
and dotted purple curves to indicate the photoelastic parts

of T �
j , T

�c
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�lcjÞ2i=hð�ljÞ2i

q
and T �s

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�lsjÞ2i=hð�ljÞ2i

q
,

respectively. The weighting factors,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�lcjÞ2i=hð�ljÞ2i

q
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 4�j

4�j

s
; (103)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�lsjÞ2i=hð�ljÞ2i

q
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 4�j

4�j

s
; (104)

have been added for T �c
j and T �s

j , respectively, to correct

for the fact that �lcj and �lsj have different rms values

compared to �l. Because of the lack of experimental
data, we have assumed �j ¼ �0:4 identically. Note that

in order to focus on the effect of light penetration, we have
only showed the first ten layers.

In the figure, the effect of light penetration into the
coating layers is embodied in the deviation of the solid
black curve from unity in the first few layers, and in the
existence of the other curves. Although we cannot perceive
the correlation between these contributions, we can clearly

appreciate that only the first few layers are penetrated, and
that the total effect of light penetration will be small. We
should also expect the effect of photoelasticity (dashed
curves) to be small, and the effect of backscattering (which

gives rise to T �c
j and T �s

j , dashed blue and purple curves)

to be even smaller.

C. Thermal noise contributions from different layers

Let us now examine the breakdown of the total coating
noise by plotting the coefficients qBj and qSj in Eq. (94). In

Fig. 7, we plot silica contributions on top panels, and tantala
contributions on lower panels, with bulk contributions on
left panels, and shear contributions on right panels. Here we
use the baseline parameters shown in Table II. As it turns
out, the results for conventional and Advanced LIGO coat-
ings are hardly distinguishable from each other—therefore
we only use the Advanced LIGO coating. The red curve
uses � ¼ �1, the black uses � ¼ 0 and the blue uses
� ¼ 1. Superimposed onto the solid lines are dashed lines
of each type, calculated without introducing the backscat-
tering terms; the effect is noticeable for the first few layers.

VI. DEPENDENCE OF THERMAL NOISE ON
MATERIAL PARAMETERS

Experimental knowledge of coating materials is limited.
Most notably, values of Young’s moduli and Poisson’s
ratios of the coating materials are still uncertain, while
only one combination of the two loss angles has been
experimentally measured by ring-down experiments. In
this section, we explore the possible variation in coating
Brownian noise, away from the baseline configuration
(Table II), considering these uncertainties. We shall use

2 4 6 8 10

0.2

0.0

0.2

0.4

0.6

0.8

1.0

j
2 4 6 8 10

0.2

0.0

0.2

0.4

0.6

0.8

1.0

j

FIG. 6 (color online). Light penetration into the first ten layers of a 38-layer coating (left panel for conventional coating and right
panel for Advanced LIGO coating). We plot the nonphotoelastic part of T j in black sold curves, the photoelastic part of T s

j in long-

dashed red curves, as well as T s
j (scaled by the rms value of �lcj with respect to the rms value of �lj, shown in short-dashed blue

curves) and Ts
j (scaled by the rms value of �lsj, shown in dotted purple curves). These plots indicate that for both structures, light

penetration is restricted within the first ten layers.
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the Advanced LIGO coating structure mentioned in the
previous section.

A. Dependence on ratios between loss angles

In the baseline (Table II), we have assumed that �B and
�S are equal, but this is only out of our ignorance: experi-
ments have only been able to determine one particular
combination of these two angles. We now explore the
consequence of having these loss angles not equal, while
keeping fixed the combination measured by the ring-down
rate of drum modes [see Eq. (110)].

In Fig. 8, while fixing all other baseline parameters, we
plot how each type of thermal noise (i.e., silica vs tantala,
bulk vs shear) varies when the ratio�B=�S for both tantala
and silica layers varies between 1/5 and 5. We use blue for
tantala, red for silica, dotted for bulk, dashed for shear, and
solid for the total of bulk and shear. In this configuration,
the tantala layers’ contribution to thermal noise always
dominates over silica layers, mainly due to the higher
loss angle. As we vary the ratio between the loss angles,

there is moderate variation of thermal noise. For the domi-
nant tantala, as �B=�S vary from 1=5 to 5, there is a 30%
change in thermal noise, while for silica, the change is a
more significant 68%.
As we see from Fig. 8, a larger value of �B=�S gives

rise to higher bulk, lower shear, and higher total noise—
this is reasonable because bulk fluctuations drive correlated
noise between a layer’s thickness and the height of the
coating-substrate interface, while shear fluctuations drive
anticorrelated noise, as shown in Fig. 3.
Moreover, the fact that variation is more significant for

silica layers can be explained when we recall that
thickness-induced thermal noise is proportional to 1=Yc,
while surface-height-induced thermal noise is proportional
to Yc=Y

2
s . For silica layers, Yc is assumed to be equal to Ys,

so the two types of noise being added (bulk) or subtracted
(shear) are more comparable in magnitude; by contrast, the
Young’s modulus of tantala layers is significantly higher
than that of the substrate, causing the noise to be dominated
by fluctuations of the height of the coating-substrate inter-
face, therefore making correlations between the two types
of noise less important.
In Fig. 9, we plot variations in the total noise as we vary

�B=�S for silica layers (blue) or tantala layers (red) only, and
fix the other one. It shows that the variance of the tantala’s
loss angle will generate a larger change in the total noise.

B. Dependence on Young’s moduli and Poisson’s ratios

The Young’s modulus and Poisson’s ratios of coating
materials, especially of tantala, are also uncertain.

TABLE II. Baseline material parameters.

Parameter Tantala (Ti2O5) Silica (SiO2)

Refractive index 2.07 [23] 1.45 [23]

Poisson’s ratio 0.23 [24] 0.17 [24]

Young’s modulus (Pa) 1:4� 1011 [25] 7� 1010 [24]

Loss angle (�B ¼ �S) 2:3� 10�4 [26] 4:0� 10�5 [27]

Photoelastic coefficient �0:50 [28] �0:41 [29]
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FIG. 7 (color online). A breakdown of thermal noise contributions from silica (upper panels) and tantala (lower panels) layers, and
from bulk (left panels) and shear (right panels) losses. Blue curves correspond to � ¼ �1, black to � ¼ 0 and red to � ¼ 1. Dashed
curves indicate results calculated without including backscattering effects.
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In Fig. 10, we plot variations of tantala thermal noise when
its Young’s modulus varies from the baseline value by up to
a factor of 2, for�B=�S ¼ 0:2, 0.5, 1, 2 and 5. The noise is
seen to vary by 	15% as Young’s modulus varies by a
factor of 	2.

We can also explain the way the thermal noise varies
as a function of Yc. Starting from the baseline value, a
lower Yc leads to a lower thermal noise, until Yc becomes

comparable to Ys (which we fix at the baseline value, equal
to 0:5YTa) and starts to increase again. Such a behavior is
reasonable because the thickness noise spectrum and inter-
face noise spectrum are proportional to 	1=Yc and
	Yc=Y

2
s , respectively—as we decrease Yc from the base-

line YTa value, we transition from the interface fluctuation
being dominant towards an equal amount of both noises
(which gives a minimum total noise), and then towards the
thickness fluctuation becoming dominant.
In Fig. 11, we explore the effect of varying Poisson’s

ratio of the tantala coating, for the same values of �B=�S
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8

FIG. 9 (color online). Variations in total noise when �B=�S is
varied: (solid) total noise, (dotted) total bulk noise, (dashed) total
shear noise. The red (blue) curve corresponds to only varying
�B=�S for tantala (silica). With �B=�S of tantala or silica
varying from 0.2 to 5, the changes in total noise are 58.1%
and 10.6% respectively.
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FIG. 10 (color online). Thermal noise contribution from tan-
tala, as its Young’s modulus deviates from the baseline value, for
�B=�S ¼ 5 (dashed blue), 2 (dotted blue), 1 (solid black), 1=2
(dotted red), and 1=5 (dashed red).
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FIG. 8 (color online). Variations in thermal noise contributions
when �B=�S is varied. Contributions from tantala layers are
shown in blue; those from silica layers are shown in red. The
total thermal noise is in black. Bulk contributions are shown in
dotted curves, while shear contributions are shown in dashed
curves.
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FIG. 11 (color online). Thermal noise contribution from tan-
tala, as its Poisson’s ratio deviates from baseline value, for
�B=�S ¼ 5 (dashed blue), 2 (dotted blue), 1 (solid black), 1=2
(dotted red), and 1=5 (dashed red).
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chosen in Fig. 10. In the baseline assumption of �B ¼ �S,
when bulk and shear have the same level of loss, thermal
noise does not depend much on Poisson’s ratio. However, if
�B=�S turns out to differ significantly from 1, and if
Poisson’s ratio can be larger than the baseline value by
more than 	0:1, then thermal noise can vary by 	10%.

C. Dependence on photoelastic coefficients

Photoelastic properties of the coating materials are not
yet well known. In Fig. 12, we plot the fractional change in
thermal noise, separately for silica (left panel) and tantala
(right pane), and for bulk (blue) and shear (red) losses,
when we vary � between �1 and þ1. Dashed curves are
obtained, ignoring backscattering effects.

It is interesting to note that for small values of �, the
dependences of noise on � have different trends for bulk
and shear contributions. This is also related to the different
types of correlations between thickness and interface
height fluctuations. As we can see from the figure, the
effect of varying � is small, since it only affects thermal
noise due to light penetration into the first few layers. If
bulk and shear losses are indeed comparable, then cancel-
lation between these two types of noises (especially for the
tantala layers which are more lossy than silica layers) will
likely make the photoelastic effect completely negligible.
Even in the case when one particular type of loss dominates
shall we expect at most	2% contribution from photoelas-
ticity of the more lossy tantala—if we further assume that
j�j 	 1 [right panel of Fig. 12].

D. Optimization of coating structure

Although a standard highly reflective coating consists of
�=4 layers of alternating material capped by a �=2 layer,
this structure can be modified to lower thermal noise while
still maintaining a high reflectivity for the 1064 nm carrier
light, e.g., as shown by Agresti et al. [30]. As their results

have indicated, using baseline coating parameters and
neglecting light penetration into the coating layers [14],
the optimal structure is closer to a stack of pairs of �=8
(Ta2O5) and 3�=8 (SiO2) layers, capped by a �=2 (SiO2)
layer. This alternative coating structure shortens the total
thickness of the more lossy tantala layers, while maintain-
ing a high reflectivity for the light. The Advanced LIGO
type coating given in Appendix D, on the other hand, has
been optimized considering reflectivity at both 1064 nm
and 532 nm, as well as thermal noise—although light
penetration into the layers has not been considered.
In this section, we carry out a numerical optimization

taking penetration into account. We first fix the number N
of layers (N is even, so we haveN=2 pairs), and then forN,
we use the Lagrange multiplier method to search for the
constrained minimum of Sth, fixing T1064 and T532, namely
the power transmissivity, 1� j�j2 assuming the coating is
lossless, evaluated at 1064 nm and 532 nm, respectively.
The quantity we seek to minimize (or, the cost function) is

y � ffiffiffiffiffiffi
Sth

p þ�1T1064 þ�2ðT532 � 5%Þ2: (105)

As we vary �1 and �2 and minimize y, we obtain the
constrained minimum of

ffiffiffiffiffiffi
Sth

p
for different pairs of

ðT532; T1064Þ. The aim is to obtain a series of coating
configurations with approximately 5% transmissivity for
532 nm, and with minimized thermal noise for a variable
3–20 ppm transmissivity for 1064 nm. (Note that the
choice of the cost function contains a certain level of
arbitrariness.)
Since we are going to carry out minimization for a large

number of multipliers over a large number of degrees of
freedom, we have chosen to proceed gradually, allowing
only the first n pairs and last n pairs of layers to vary, while
maintaining the same pair structure for N=2� n pairs in
the middle (repeating doublets). In other words, our coat-
ing structure looks like
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FIG. 12 (color online). Fractional change in the contribution to thermal noise from all silica layers (left panel) and all tantala layers
(right panel), due to bulk (blue) and shear (red) loss. Dashed lines indicate results calculated without including backscattering terms.
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free|{z}
2n layers

repeating pair|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N�2n layers

free|{z}
2n layers

:

In this work, we found that it suffices to choose n ¼ 2
(which corresponds to optimizing over ten parameters);
further increasing n does not lead to noticeable improve-
ments. During our numerical optimization, we have
adopted the downhill simplex method [31,32].

Results for baseline material parameters (Table II) and
N ¼ 38, 40 and 42 have been shown in Fig. 13. This figure
indicates that different numbers of layers should be chosen
for different target T1064—more layers are required for
lower transmissivity (higher reflectivity). Overall, the op-
timal thermal noise varies by around 	10% as for T1064

from 3 to 20 ppm. In particular, for the standard Advanced
LIGO requirement of 5 ppm (see the first column of
Table III), 42 layers are found to be optimal. This is two
more pairs or four more layers than the 38-layer �=4
doublet, which has the minimum number of layers to reach
5 ppm. The larger number of layers here gets lower thermal
noise (by 6%) because the more lossy tantala layers are
shortened, and the less lossy silica layers lengthened.

We have further optimized the structure when the ratio
�B=�S is different from 1, while keeping fixed the effec-
tive loss angle measured so far—as done in Sec. VIA. For
T1064 ¼ 5 ppm, we have listed the results of an optimized
coating structure and thermal noise in the second and third
columns of Table III. The extent of variation found here is
comparable to that obtained in Sec. VIA using a standard
coating structure without optimization: the optimal coating
structures consistently lower thermal noise by about 6%. In
addition, as shown in Table III, the optimal coating struc-
ture is robust against changes in�B=�S: structure obtained
for any one of the values of the ratio is already almost
optimal for all other ratios.

VII. MEASUREMENTS OF LOSS ANGLES

In this section, we study possible mechanical ring-down
experiments that can be used to measure independently the
bulk and shear loss angles, �B and �S of a coating
material.
In a ring-down experiment, a sample with a high intrin-

sic Q is coated with a thin layer of the coating material in
question. Due to the mechanical losses in the coating, the
quality factor of the mechanical eigenmodes of the sample
will be reduced [33,34]. More specifically, for the nth
eigenmode with resonant frequency fn, if an e-folding
decay time of 
n is measured, then the quality factor is

Qn ¼ 	fn
n; (106)

while correspondingly, the loss angle is given by

�ðfnÞ ¼ 1=Qn; (107)

which is equal to the fraction of energy dissipated per
radian.

A. Bending modes of a thin rectangular plate

Figure 14 shows the schematic geometry of a rectangu-
larly shaped sample, in which a thin coating layer with
thickness d is deposited on a rectangular plate with dimen-
sions a� b� c (c 
 a, b), and d is much less than c. If
we pay attention only to the bending (or, in other words,
flexing) oscillations of the plate, the amount of energy

10.05.0 20.03.0 15.07.0

6.3

6.4

6.5

6.6

6.7

6.8

FIG. 13 (color online). Optimized thermal noise versus trans-
missivity at 1064 nm, for a coating of 38 (red), 40 (blue), and 42
(purple) layers.

TABLE III. Results of coating-structure optimization. We list optimized coating structures for T1064 ¼ 5 ppm and T532 ¼ 5%, for
three target values of �B=�S while fixing the measured effective loss angle �D [Eq. (56)] and other baseline material parameters
(Table II). Thicknesses of coating layers are given in units of wavelength (for 1064 nm light). For each optimized coating structure,
thermal noise is calculated separately for the same three values of �B=�S, and given in units of 10�21 m=

ffiffiffiffiffiffi
Hz

p
(thermal noise for the

target �B=�S is given in boldface, and boldface numbers should be the minimum within its column); thermal noise spectra of the 38-
layer �=4 stack assuming the target �B=�S are also listed for comparison.

Target Resulting coating structure
ffiffiffiffiffiffiffiffi
Soptth

q ffiffiffiffiffiffiffiffiffi
S�=4th

q
�B=�S N First 4 layers Repeated pair Last 4 layers �B

�S
¼ 1

5
�B

�S
¼ 1 �B

�S
¼ 5

1=5 42 0.0479 0.1581 0.3430 0.1760 0.2919 0.1897 0.3164 0.1738 0.3178 0.1627 5.01 6.64 8.81 5.35

1 42 0.1020 0.1250 0.3267 0.1917 0.2911 0.1914 0.3110 0.1752 0.3196 0.1609 5.02 6.64 8.81 7.05

5 42 0.1118 0.0968 0.3353 0.1882 0.2893 0.1939 0.3135 0.1673 0.3199 0.1662 5.02 6.64 8.81 9.33
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stored in the coating layer, in the form of bulk and shear
energies UB and US, as a fraction of the entire energy U,
can be calculated as

UB

U
¼ d

3c

Yc

Ys

ð1� 
2
sÞð1� 2
cÞ

ð1� 
cÞ2
(108)

US

U
¼ 2d

3c

Yc

Ys

ð1� 
2
sÞð1� 
c þ 
2

cÞ
ð1� 
cÞ2ð1þ 
cÞ

: (109)

Using Eq. (58), the total loss angle of the sample is

� ¼ �sub þ d

c

Yc

Ys

1� 
2
s

1� 
2
c

�
�
�Bð1� 
c � 2
2

cÞ þ 2�Sð1� 
c þ 
2
cÞ

3ð1� 
cÞ
�

¼ �sub þ jDcj
jDsj�D: (110)

It is not surprising that only the 2D flexural rigidity D and
its imaginary part appear in Eq. (110). During the bending
of a thin plate with thin coating, both the substrate and the
coating are described by the 2D flexural rigidity, first
introduced in Sec. III B [see Eqs. (55) and (56) and
Sec. 13 of Ref. [18]]. Because they both bend in the
sameway, the ratio of their elastic energies is given directly
by the ratio of their flexural rigidities (each proportional to
their thickness). The fraction of total energy lost in the
coating needs to be multiplied by �D (of the coating
material), and hence Eq. (110). As the oscillation of a
thicker object is considered, as long as the coating only
bends up and down (e.g., in a drum mode), then we expect
the coating contribution to the loss angle to still be pro-
portional to �D.

As it turns out, the part of coating thermal noise due to
bending of the coating-substrate interface [Szszs in

Eq. (87b)] also depends directly on �D, because the loss
mechanism in this case is the same as that during the
oscillation of a drum mode—one only applies a perpen-
dicular force from below the coating layer, while keeping
Tzz ¼ 0 within the layer.

It proves less straightforward to connect the thickness
fluctuation part of thermal noise [Suzuz in Eq. (87a)] to the

effective loss angle of either Y or D. Although the loss
mechanism here is due to the compressing of a thin mem-
brane from both sides, this membrane is not characterized
by vanishing Txx and Tyy, because the coating is attached to

a substrate which provides restoring forces along the trans-
verse (x and y) directions. However, in the case when the
Poisson’s ratio 
c of the coating vanishes, the thickness
fluctuation does depend on the loss angle of the Young’s
modulus.
For our baseline parameters, mechanical dissipation is

mostly contributed by the tantala layers, and because the
Young’s modulus of the tantala coating material is assumed
to be much greater than that of the substrate, the largest
contribution to the LIGO mirrors’ Brownian noise is bend-
ing noise Szszs . This explains why the noise only varies by

30% (as noted in Sec. VIA) even if no further measure-
ments on the other loss angle are made.

B. Torsional modes of a coated hollow cylinder

Here we propose an approach with which we can mea-
sure another combination of loss angles. We consider a
cylindrical shell with a thin, uniform coating layer outside,
as shown in Fig. 15 (c 
 R, d 
 c). In this configuration,
the surface deformations produce strains in the plane of the
shell according to the Donnell shell theory [35]. Here we
assumed that there is only angular displacement in the
shell, which means the longitudinal position of the cross
section will not change. For a torsion mode, we only have
shear strain energy; the expressions are given by

UB

U
¼ 0 (111)

US

U
¼ d

c

Yc

Ys

ð1þ 
sÞ
ð1þ 
cÞ : (112)

As a consequence, the total loss angle can be expressed as

� ¼ �sub þ d

c

Yc

Ys

ð1þ 
sÞ
ð1þ 
cÞ�S: (113)

For a cylinder shell, according to the Donnell shell
theory, the natural frequency of the nth torsional mode is
given by [36]

c

d
2R

L

FIG. 15 (color online). Thin cylindrical shell with thin coating
outside. The first torsional eigenmodes of such a shell can be
used to measure the shear loss angle of the coating.

a

b

c

d

FIG. 14 (color online). Rectangular shaped thin plate (a� b�
c) with thin coating (thickness d): c 
 a, b; d 
 c. The
transverse vibration mode is considered in this case.
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fn ¼ n

2
3
2L

�
Y

�ð1þ 
Þ
�
1=2

: (114)

A more accurate calculation may be found by using the
Flügge shell theory [37].

Using the values from Table IV, we can estimate the
resonant frequency to be 9.2 kHz. The coating contribution
to the loss angle, assuming a �S of at least 10

�5, would be
at least of the order of 10�6, which seems plausible to be
extracted from ring-down measurements.

With the measurement of both the thin plate and cylinder
shell, we can obtain �B and �S of the coating.

VIII. CONCLUSIONS

In this paper, we applied the fluctuation-dissipation theo-
rem to obtain a full set of correlation functions (87a)–(87c)
of Brownian thermal fluctuations of a multilayer dielectric
coating. In particular, we have related fluctuations of the
coating thickness and the coating-substrate interface to
independent bulk and shear thermal stresses associated
with each coating layer. While those stresses not only
induce thickness fluctuations of the layers themselves,
they bend the coating-substrate interface and this bending
noise had not been previously appreciated intuitively,
although its effect has been incorporated into formulas,
e.g., in Ref. [14]. As a result, we found that although
thickness fluctuations of different coating layers are inde-
pendent of each other, they each have partial correlations
with the height fluctuations of the coating-substrate inter-
face. Moreover, bulk loss creates a positive correlation
between them, while shear loss creates a negative correla-
tion. The entire picture is succinctly written mathematically
in Eqs. (89) and (90). This coherence structure then gives
coating Brownian noise in Eq. (93). Apart from having
provided a pedagogical and systematic derivation of these
noise components, the most important conceptual conse-
quence of our work is to point out an uncertainty in coating
loss angles. We have also incorporated the photoelastic
effect, the reflectivity fluctuations of the interfaces within

the multilayer coating, and considered the effect of ampli-
tude modulations caused by Brownian thermal noise. All of
these turned out to be rather unimportant.
We have applied our formalism to mirrors that are to be

used in Advanced LIGO detectors. As estimated in Sec. VI
and summarized in Table V (calculated for a typical candi-
date for the Advanced LIGO end test-mass mirror coating
configuration), parameter uncertainties could lead to non-
negligible corrections to coating Brownian noise calcula-
tions. The biggest uncertainties actually arise from the
elastic moduli of coating materials—for example, current
uncertainties in Young’s modulus of the tantala coating
material might lead to up to a 60% increase in thermal noise.
Although photoelastic coefficients for our coating materials
are very uncertain, they do not significantly affect thermal
noise since light does not penetrate through many layers.
It is rather remarkable that our lack of experimental

knowledge about the loss angles, beyond what we had
already obtained from the ring down of drum modes,
would not give rise to a higher uncertainty in thermal noise.
This is rather serendipitous, considering our path of under-
standing of the problem: for the baseline parameters of
Advanced LIGO, the highest contribution to coating
Brownian noise arises from the coating-substrate bending
noise caused by losses in tantala layers, because these
layers are much more lossy than the silica layers, and
have been assumed to have a much higher Young’s modu-
lus than the substrate material. This bending noise, first
elaborated by this work, turns out to be associated with the
loss angle of the 2D flexural rigidity, which in turn is
directly connected to the decay of the drum modes of a
thinly coated sample. This means the currently existing
program [14] has been measuring the predominant loss
angle all along, and has been compatible with direct mea-
surements of coating thermal noise [15]. Nevertheless, the
level of uncertainty noted in our study still warrants further
experiments seeking the other loss angle, e.g., as outlined
in Sec. VII. In addition, since future gravitational-wave
detectors may use different substrate and coating materials,
situations may arise when the loss angle measured now
does not correlate with the total coating Brownian noise.
At this moment, it is worth looking once more at the

previously used loss angles, �k and �?—although they

are mathematically ill defined, they do correctly reflect the
existence of two channels of loss. The �k was meant to

TABLE IV. Example parameters of a thin, uniformly coated
cylindrical shell (SiO2).

L R c d

Unit (mm) 200 50 1 0.04

TABLE V. Levels of thermal noise uncertainty caused by parameter uncertainties.

Material parameter Range Uncertainty in
ffiffiffiffiffi
Sx

p
For details, see

�B=�S 0.2–5a �37% Sec. VIA, Figs. 8 and 9

YTa Factor of 	2 	60% Sec. VIB, Figs. 10


Ta �0:2 Up to 10% if �B=�S � 1 Sec. VIB, Figs. 11

� �1<�<þ1 �1%b Sec. VI C, Figs. 12

aFixing the combination �D.
bCalculated from Ta2O5 layers.
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characterize losses incurred by the x-y deformations of the
coating measurable when we do not compress the coating
but instead drive its deformations using drum modes of the
substrate. This loss angle is now replaced by the (mathe-
matically well-defined) imaginary part of the flexural ri-
gidity, for which extensive measurements have already
been carried out. The �? was meant to characterize the
losses incurred by compressing the coating layers. This has
not been measured because it had not been obvious how to
easily excite this mode of coating deformation (the most
obvious way would be to compress the coating layer, but
that is difficult); however, because the Young’s modulus of
the coating is much larger than that of the substrate, this
difficult-to-measure loss angle should not contribute as
much to the total coating noise. This said, in this work,
we do come up with ways to measure both loss angles, �S

and �B, without having to compress the coating layers—
but instead by exciting different modes of substrate defor-
mation. Of course, this is only possible because we have
assumed that the material is isotropic—otherwise we may
have to compress the coating to directly access the loss
induced by such a deformation.

On the other hand, one may think of the possibilities of
using substrate materials with a higher Young’s modulus to
reduce the bending noise. Sapphire and silicon are two
viable choices because they both have a higher Young’s
modulus than tantala. Using Eqs. (87a)–(87c), it is straight-
forward to estimate the new coating Brownian noise while
replacing the substrate material by sapphire or silicon but
keeping the same aLIGO coating design. It turns out that
the coating Brownian noise will be reduced to 35% of its
original power spectra value if we use silicon substrate or
32% if we use sapphire. However, there are other disad-
vantages for sapphire or silicon substrate that prevent us
from using them for aLIGO mirrors. The main problem is
that they both have very high thermal conductivity—much
higher than fused silica. As a result, the substrate thermo-
elastic noise is one of the important noise sources for both
materials. For instance, if the aLIGO mirror were made of
sapphire, the bulk thermoelastic noise would have about
the same magnitude as the coating Brownian noise at
100 Hz. As for silicon substrate, the bulk thermoelastic
noise is more than twice as large as its corresponding
coating Brownian noise because silicon has even higher
thermal conductivity than sapphire. One may refer to [38]
for detailed methods to calculate bulk thermoelastic noise.

Setting up the experiment in a cryogenic environment is a
possible way to reduce the thermo-optic noise.
Furthermore, our formula Eq. (93) can serve as a starting

point for optimizing the material choice and structure
design of the multilayer coating, taking light penetration
effects into account. Our numerical results in Sec. VID
(see Table III) have shown that optimization of the coating
structure consistently offers a 	6% decrease in thermal
noise, regardless of �B=�S. In fact, the optimal structures
for these ratios are quite similar, and configurations ob-
tained for each presumed ratio of �B=�S are shown to
work for other ratios interchangeably.
Upon completion of this manuscript, we noted that the

optimization of the coating structure for the case assuming
�B ¼ �S (and � ¼ 0) has been carried out by Kondratiev
et al. [17]. (We note that their formalism is capable of
treating � � 0 and �B � �S, as well as backscattering
induced by photoelasticity, but they did not explore the
impact of these effects in their optimization.) Our results
are compatible with theirs, if we also use these restrictions
in parameter space and ignore backscattering.
A comparison between our result, Kondratiev et al., and

Harry et al. [14] (which ignores light penetration into the
layers, and also effectively assumes �S ¼ �B) would
therefore illustrate the effects caused by ignoring photo-
elasticity and further ignoring light penetration into the
coating. This is shown in Table VI. This again confirms
that for total coating thermal noise, light penetration causes
a noticeable difference in coating thermal noise, while
photoelasticity causes a negligible difference.
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TABLE VI. Comparison of thermal noise spectral density (assuming �B ¼ �S and evaluated
at 200 Hz, in units of 10�21 m=

ffiffiffiffiffiffi
Hz

p
) among different works.

Coating

Ref. [14]

(no light penetration)

Ref. [17]

(� ¼ 0 and no backscattering) This work

�=4 7.18 7.08 7.08

Advanced LIGO 6.93 6.82 6.83

Optimal 6.73 6.62 6.64
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APPENDIX A: FLUCTUATIONS OF THE
COMPLEX REFLECTIVITY DUE TO
REFRACTIVE INDEX FLUCTUATIONS

Brownian noise is not only caused by random strains,
but also by the refractive-index fluctuations induced by
such strains through the photoelastic effect [cf. Eqs. (13)
and (14)]. We will quantify this contribution in this section.

1. The photoelastic effect

If we denote the displacement of coating mass elements
as ðux; uy; uzÞ, then the relative coating-thickness change

from its equilibrium value can be written as

�l=l ¼ uz;z (A1)

and the relative transverse area expansion can be written as

�A=A ¼ ux;x þ uy;y: (A2)

If we denote two-dimensional displacement vectors along
the x-y plane as ~u ¼ ðux; uyÞ, and the two-dimensional

gradient as ~r, then we have

�A=A ¼ ux;x þ uy;y ¼ ~r � ~u: (A3)

We can then write the change in refractive index as

�n ¼
�

@n

@ log l

�
Aj

�l

l
þ
�

@n

@ logA

�
lj

~r � ~u (A4)

where @n=@ log l and @n=@ logA only depend on material
properties. The two terms on the right-hand side of Eq. (A4)
represent the refractive index change driven by relative length
and area changes, respectively. The first term is given by [29]

�L ¼
�

@n

@ log l

�
A
¼ � 1

2
n3CY (A5)

where C is the photoelastic stress constant, and Y is the
Young’s modulus. For silica, CY � 0:27; therefore �L

SiO2
¼

�0:41. The photoelastic coefficient can also be written as

� ¼ � 1

2
n3pij (A6)

where pij is the photoelastic tensor [39]. Some experiments

have been done to measure this coefficient for tantala [28].
Empirically, the value of pij varies from �0:15 to 0.45 for

Ta2O5 thin film fabricated in different ways. Here for the
longitudinal photoelasticity, �L

Ta2O5
, we use �0:5 in our

numerical calculation.
We shall next obtain formulas that will allow us to

convert fluctuations in n into fluctuations in the complex
reflectivity of the multilayer coating.

2. Fluctuations in an infinitesimally thin layer

Because the coating is very thin compared with the beam
spot size, we model the phase shift of light gained during
propagation along z as only determined by the local re-
fractive index. If the refractive index �n at a particular
location �nðzÞ is driven by longitudinal strain uzz at that

location, the fact that huzzðz0Þuzzðz00Þi / �ðz0 � z00Þ causes
concern, because this indicates a high variance of �n at
any given single point z, with a magnitude which is for-
mally infinity. If we naively consider the reflection of light
across any interface within the coating, e.g., at z ¼ z0, then
the independent and high-magnitude fluctuations of
nðz0�Þ and nðz0þÞ would lead to a dramatic fluctuation
in the reflectivity

r ¼ nðz0�Þ � nðz0þÞ
nðz0þÞ þ nðz0�Þ (A7)

because, naively, nðz0�Þ and nðz0þÞ are uncorrelated and
both have a variance of infinity.
However, two effects prevent the above divergence from

actually taking place: (i) there is a finite correlation length
for strain fluctuations (although not explicitly given in our
current analysis) and (ii) propagation of light averages over
those fluctuations. The most convenient way to circumvent
the above divergence is to always consider light propaga-
tion across a finite layer of materials. As shown in Fig. 16,
let us consider three regions in the coating, with refractive
indices n1, n2 and n3 separated by two interfaces, with the
length of the n2 layer given by �l—and here we only
consider fluctuations in n2. The entire transfer matrix
(Fig. 16) is given by

M ¼ Rr12T�2
Rr23 (A8)

following the same convention as in Sec. II C. Suppose the
originally uniform n2 now fluctuates, and after averaging
over this think layer, gives a mean refractive index of n2 þ
�n2; we use this as the refractive index of the entire layer,
and then have

�M ¼ n2ffiffiffiffiffiffiffiffiffiffi
n1n3

p i �i

i �i

 !
�n2 � k0�l: (A9)

Note that when �l ! 0, �n2 � �l has a variance that
approaches zero, and therefore �M is an infinitesimal
matrix—and there is no divergence. [Note that when �l
is small enough, �n2 has a variance that is comparable
to the total variance of n, which is finite—therefore
�n2 � �l	Oð�lÞ.]
The physical meaning of Eq. (9) is the following: a

random field of refractive index not only gives rise to a

n1

n2

n3

r12

r23

∆lφ2

FIG. 16. Light propagation across a thin layer (thickness of�l)
with fluctuating refractive index (from a uniform n2 to an
average of n2 þ �n2 within this thin layer). The propagation
matrix corresponding to this structure is given by Eq. (8).
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random phase shift (diagonal term), but also gives rise to a
random reflectivity (nondiagonal term). The latter term is
an additional contribution that has been ignored by pre-
vious analytical calculations.

3. The entire coating stack

Now we are ready to consider the entire multilayer
coating. Let us first focus on layer j of the coating stack,
bounded by two interfaces with reflectivities rj�1 and rj,

respectively. Since the total transfer matrix of the entire
stack is written as

M ¼ � � �T�jþ1
RrjT�j

Rrj�1
� � � ; (A10)

the reflectivity fluctuations with this layer will contribute to
the matrix T�j

above, which in turn will contribute to

fluctuations in the entire M. Consider a dz-thick sublayer
located at distance z0 from the rj boundary (lower bound-

ary in Fig. 1), therefore at coordinate location z ¼ zjþ1 þ
z0, and integrate; we have

T�j
!T�j

þk0
Z lj

0
�nðzjþ1þ zÞTk0njz

i �i

i �i

" #

�Tk0njðlj�zÞdz0 ¼
1 ��j

���
j 1

" #
T�jþk0� �njlj (A11)

where

� �nj ¼ 1

lj

Z lj

0
�njðzjþ1 þ zÞdz (A12)

and

��j ¼ �ik0
Z

�njðzjþ1 þ zÞe2ik0njzdz: (A13)

Here we have defined

zj �
XN
n¼j

ln (A14)

to be the z coordinate of the top surface of layer j.
We need to adapt the new transfer matrix into the old

form, but with modified frjg and f�jg. From Eq. (11), since

��j is complex, we need to adjust �j, rj, as well as �jþ1:

T�jþ1
RrjT�j

!T�jþ1þ�cþ
j
Rrjþ�rjT�jþk0lj� �njþ�c�

j
: (A15)

Here we have defined in addition

�rj ¼ �t2jk0
Z lj

0
�njðzjþ1 þ zÞ sin ð2k0njzÞdz (A16)

and

�c�
j ¼ r2j �1

2rj
k0
Z lj

0
�njðzjþ1þzÞcosð2k0njzÞdz: (A17)

As we consider the photoelastic noise of all the layers
together, �rj in Eq. (16) needs to be used for the effective

fluctuation in reflectivity of each layer, while

��j ¼ k0lj� �nj þ �c�
j þ �cþ

j�1 (A18)

should be used as the total fluctuation in the phase shift of
each layer.

4. Unimportance of transverse fluctuations

Connecting with the photoelastic effect, the refractive
index change is

�njðz; ~xÞ ¼ �L
j uzzðz; ~xÞ þ �T

j
~r � ~u: (A19)

Here the vector ~u is the two-dimensional displacement

vector ðux; uyÞ and ~r� is the 2D divergence along the x-y

plane. For terms that contain the transverse vector ~u, we
note that when a weighted average of � is taken over the
mirror surface (see Sec. II D), they yield the following type
of contribution:Z
M
Ið ~xÞð ~r � ~uÞd2 ~x ¼

Z
@M

dlð ~n � ~uIÞ þ
Z
M

~u � ~rId2 ~x

¼
Z
M

~u � ~rId2 ~x: (A20)

HereM stands for the 2D region occupied by the beam, and
@M is the boundary on which power vanishes. As a con-
sequence, the first term is zero according to the boundary
condition, while the second term gains a factor of (li=w0)
with respect to other types of coating Brownian noise; here
lj is the thickness of the jth layer, and w0 the beam spot

size. Since we always assume coating thickness li to be
much smaller than the beam radius rbeam, we can neglect
refractive index fluctuation due to area fluctuation.

APPENDIX B: ELASTIC DEFORMATIONS
IN THE COATING

Throughout this paper, we assume the mirror substrate to
be a half infinite space. We establish a Cartesian coordinate
system, with ðx; yÞ directions along the coating-substrate
interface, and z direction orthogonal to the mirror surface
(in the elasticity problem, we also ignore mirror curvature).
This allows us to calculate elastic deformations in the
spatial frequency domain. We will also assume the coating
thickness to be much less than the beam spot size.
We denote the displacement along x, y and z directions

as ux, uy and uz. It is then straightforward to express the

3� 3 strain tensor S in terms of their derivatives, and stress
tensor T in terms of Hooke’s Law:

Sij ¼ 1

2

�
@ui
@xj

þ @uj
@xi

�
(B1)

� ¼ Sii (B2)

�ij ¼ 1

2
½Sij þ Sji� � 1

3
�ij� (B3)

Tij ¼ �K��ij � 2��ij: (B4)
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Here we have xj ¼ ðx; y; zÞ, with Latin indices (like i and j)
running from 1 to 3. Within any layer, it is straightforward
to write down the most general solution of the elasticity
equilibrium equation

Tij;j ¼ 0 (B5)

as

~ux ¼ ikx½ð~�þ þ �z ~�þÞe�z þ ð~�� � �z ~��Þe��z�
� iky½~�þe�z þ ~��e��z� (B6)

~uy ¼ iky½ð~�þ þ �z ~�þÞe�z þ ð~�� � �z ~��Þe��z�
þ ikx½~�þe�z þ ~��e��z� (B7)

~uz ¼ ��½~�þ þ ~�þð�3þ 4
þ �zÞ�e�z
þ �½~�� þ ~��ð�3þ 4
� �zÞ�e��z (B8)

where tilde denotes quantities in the x-y spatial-frequency

domain, and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Namely

uxðx; y; zÞ ¼
Z dkxdky

ð2	Þ2 ~uðkx; ky; zÞe�iðkxxþkyyÞ: (B9)

We now consider a single-layer coating on a substrate
(see Fig. 17), with the coating-substrate interface located at
z ¼ 0, and the coating-air interface at z ¼ l. Suppose there
is a force profile Fðx; yÞ exerted perpendicular to the sur-
face at z ¼ d, 0< d< l, and let us calculate the elastic
deformation field caused by F. The entire system is now
divided into three regions: (a) at d < z < l, (b) at 0< z <
d, and (s) at z < 0. At the interfaces, we obtain the follow-
ing 15 boundary conditions:

Ta
iz ¼ 0; z ¼ l (B10)

Ta
xz ¼ Tb

xz; Ta
yz ¼ Tb

yz; Tb
zz � Ta

zz ¼ F; z ¼ d

(B11)

uaj ¼ ubj ; z ¼ d (B12)

Tb
iz ¼ 0; ubj ¼ usj; z ¼ 0 (B13)

as well as the condition that when z ! �1, usj ! 0 (which

leads to ~�s� ¼ ~�s� ¼ ~�s� ¼ 0). We are left with 15 fields

ð~�a�; ~�a�; ~�a�; ~�b�; ~�b�; ~�b�; ~�sþ; ~�sþ; ~�sþÞ (B14)

which can be solved from the 15 boundary conditions.
Assuming �d 
 1 and �l 
 1, we find that all ~� vanish,
and

~� aþ ¼ Fð1þ 
sÞ½2� 3
s þ 
cð�3þ 4
sÞ�
2Ys�

2ð�1þ 
cÞ
(B15)

~� a� ¼ Fð
c � 
sÞð1þ 
sÞ
2Ys�

2ð�1þ 
cÞ
(B16)

~�aþ ¼ �Fð1þ 
sÞð�3þ 4
sÞ
4Ys�

2ð�1þ 
cÞ
(B17)

~�a� ¼ Fð1þ 
sÞ
4Ys�

2ð1� 
cÞ
(B18)

~�bþ ¼ Fð1þ 
sÞ½2� 3
s þ 
cð�3þ 4
sÞ�
2Ys�

2ð�1þ 
cÞ
(B19)

~� b� ¼ Fð
c � 
sÞð1þ 
sÞ
2Ys�

2ð�1þ 
cÞ
(B20)

~�bþ ¼ F½Ysð1þ 
Þ � Ycð�3þ 
s þ 4
2
sÞ�

4YYs�
2ð�1þ 
cÞ

(B21)

~�b� ¼ F½Ysð1þ 
cÞ � Ycð1þ 
sÞ�
4YYs�

2ð�1þ 
cÞ
(B22)

~�sþ ¼ Fð1þ 
sÞð�1þ 2
sÞ
Ys�

2
(B23)

~�sþ ¼ �Fð1þ 
sÞ
Ys�

2
: (B24)

We can therefore obtain the strain tensor in the frequency
domain for the coating. The nonzero elements for region
(a) are given by

Saxx ¼ Fk2xð�1þ 2
sÞð1þ 
2
sÞ

Ys�
2

(B25)

Sayy ¼
Fk2yð�1þ 2
sÞð1þ 
2

sÞ
Ys�

2
(B26)

substrate
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FIG. 17 (color online). Sample with single-layer coating, force
is applied perpendicular to the air/coating interface.
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Saxy ¼ Syx ¼
Fkxkyð�1þ 2
sÞð1þ 
2

sÞ
Ys�

2
(B27)

Sazz ¼ F

cð�1þ 
s þ 2
2

sÞ
Ysð�1þ 
cÞ (B28)

while those in region (b) are given by

Sbxx ¼ Fk2xð�1þ 2
sÞð1þ 
2
sÞ

Ys�
2

(B29)

Sbyy ¼
Fk2yð�1þ 2
sÞð1þ 
2

sÞ
Ys�

2
(B30)

Sbxy ¼ Syx ¼
Fkxkyð�1þ 2
sÞð1þ 
2

sÞ
Ys�

2
(B31)

Sbzz ¼ F

��ð1þ 2
cÞ
Yc

� 
cð�1þ 
s þ 2
2
sÞ

Ysð1� 
cÞ
�
: (B32)

Using linear superposition, as well as taking the appropri-
ate limits of the above solution, it is straightforward to
obtain elastic deformations in all the scenarios in Sec. IV,
with forces applied on various surfaces, that are used to
obtain cross spectra between different noises.

APPENDIX C: DEFINITION OF LOSS ANGLE

In the past [14], the coating loss angle was defined in
association with the parallel and perpendicular coating
strains. The equation is written as

�coated ¼ �sub þ �Ukd
U

�k þ �U?d
U

�? (C1)

where �Uk and �U? are the energy density in parallel and

perpendicular coating strains

�Uk ¼
Z
s

1

2
ðSxxTxx þ SyyTyyÞdxdy (C2)

�U? ¼
Z
s

1

2
SzzTzzdxdy (C3)

and where Sij are the strains and Tij are the stresses. While

such a definition seems to be compatible with the symme-
try of the system, the quantities �Uk and �U? cannot be

used as energy, since in certain scenarios they each can
become negative.

For example, suppose we have a cube with surface area
of each side A (Poisson’s ratio 
, Young’s modulus Y), and
we uniformly apply two pairs of forces, one pair with
magnitude f on opposite yz planes, the other with magni-
tude F on opposite xy planes, with f 
 F, as shown in
Fig. 18. According to the definition of Young’s modulus
and Poisson’s ratio, up to leading order in f=F the non-
vanishing strains are

Szz ¼ �F=A

Y
; Sxx ¼ Syy ¼ 


F=A

Y
: (C4)

On the other hand, for stress, we have, up to leading order
in f=F,

Txx ¼ �f=A; Tyy ¼ 0; Tzz ¼ �F=A: (C5)

As a consequence, we have

�Uk ¼ SxxTxx þ SyyTyy ¼ �
fF=ðA2YÞ< 0 (C6)

which means �Uk is not a reasonable candidate for energy,
at least with 
 � 0. Since it is also true that SxxTxx < 0 we
will arrive at

�U? ¼ SzzTzz < 0 (C7)

if we take this configuration and rotate by 90 degrees
around the y axis, such that x rotates into z.
One reasonable way of defining the loss angle is to

derive it from the fundamental elastic energy equation.
The general form of the stored elastic energy density U
can be written as

U ¼ 1

2
K�2 þ��ij�ij (C8)

UB ¼ 1

2
K�2 (C9)

US ¼ ��ij�ij (C10)

where K is called the bulk modulus and � is the shear
modulus. In the calculation, we use Young’s modulus Y and
Poisson’s ratio 
 instead of K and �. Their relations are
given in Eq. (51). The expansion � and shear � are both
irreducible tensorial parts of the strain tensor S:

� ¼ Sii (C11)

� ¼ 1

2
ðSij þ SjiÞ � 1

3
�ijSkk: (C12)

Note that the expansion and shear energy UB and US are
always positive, so it is consistent to define the loss angles
�B and �S.

F

F

f f

x

z

FIG. 18. Solid cube with two pairs of forces applied on the
side: f 
 F.
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APPENDIX D: ADVANCED LIGO STYLE COATING

In Table VII, we provide the structure of the coating optimized jointly for dichroic operation and thermal noise.
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