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Kelvin waves, or Kelvons, have been known for a long time as gapless excitations propagating along

superfluid vortices. These modes can be interpreted as the Nambu-Goldstone excitations arising from the

spontaneous breaking of the translational symmetry. Recently a different type of gapless excitation

localized on strings—the so-called non-Abelian mode—attracted much attention in high-energy physics.

We discuss their relevance in condensed matter physics. Non-Abelian rotational quasigapless excitations

could appear on themass vortices in theBphase of the superfluid 3He, due to the fact that the order parameter

in 3He-B is tensorial. While theUð1Þ rotational excitations are well established in vortices with asymmetric

cores, the non-Abelian rotational excitations belonging to the same family were not considered.
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I. INTRODUCTION

In this paper we argue that vortices in certain superfluids
with a tensorial order parameter, such as the B phase of
superfluid 3He, can have non-Abelian quasigapless modes.
The existence of such modes depends on the values of a
number of phenomenological parameters [see Eq. (2.2)
below]. Therefore, strictly speaking, for the time being
we can only say that our assertion refers to a superfluid
with the symmetry of 3He-B characterized by relatively
small values of parameters �2 and �3, which could be
arranged in ultracold Fermi gases with p-wave pairings.

By non-Abelian we mean that the moduli (collective
coordinates) that give rise to these modes are described by
non-Abelian sigma models, say, the Oð3Þ model. The very
notion of non-Abelian gapless (or quasigapless) modes
came from the study of topological defects in high-
energy physics, especially in supersymmetric non-Abelian
field theories, where they attracted much attention recently
[1–6], see also Refs. [7–9] for reviews. These non-Abelian
modes are called orientational; they play an important role
in the theory of confinement.

Non-Abelian Nambu-Goldstone (NG) excitations local-
ized on the vortices occur when a non-Abelian global
symmetry of the ground state is spontaneously broken by
the vortex. An interesting case that can be realized in
nature is quark matter at high densities, such as in the
neutron star cores. In this case nucleons melt into the quark
matter in which color SUð3Þ and flavor SUð3Þ symmetries
are spontaneously broken down to a diagonal SUð3Þ color-
flavor locked symmetry [10] resembling the B phase of

3He. The vortices in this medium spontaneously break the
SUð3Þ color-flavor locked symmetry of the ground state.
As a result, non-Abelian NG gapless modes appear,
localized on and propagating along the non-Abelian
vortices [11–19].1

Motivated by these developments in high-energy phys-
ics we would like to study whether the results obtained
there are relevant in condensed matter applications.
Superfluid helium-3 is one of the most interesting states

of matter thoroughly studied both experimentally [22,23]
and theoretically [24–27]. Unlike conventional superfluids,
the fermionic 3He atoms condense after forming bosonic
Cooper pairs [24]. The attractive interaction between 3He
atoms has a strong short-range repulsive core that favors a
P-wave pairing and bound states with unit angular
momentum and spin. The consequence of this fact is that
the order parameter describing the condensate has a ten-
sorial structure: it is a 3� 3 matrix e�i, where � and i are

the spin and orbital indices, respectively [25,28,29].
Low-energy physics of superfluids can be described

by gapless excitations, the NG modes associated with
spontaneously broken global symmetries. The most impor-
tant NG modes are (i) phonons associated with the sponta-
neously broken phase symmetry Uð1Þp (here the subscript

p stands for phase), and (ii) magnons associated with
spontaneously broken SOð3Þ spin symmetry [30–33].
In conventional superfluids the breaking of the Abelian

phase symmetryUð1Þp ! 1 leads to the existence of phonon

excitations in the bulk and of topologically stable superfluid
vortices [34–36] when the superfluid sample is under rota-
tion [37–40]. Long ago Lord Kelvin predicted that vortices
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1The above modes are gapped, however, after taking into
account quantum corrections [20,21].

PHYSICAL REVIEW D 87, 081702(R) (2013)

RAPID COMMUNICATIONS

1550-7998=2013=87(8)=081702(7) 081702-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.081702


support vibrating modes (called Kelvons) which correspond
to fluctuations of the vortex line [38,41,42]. Kelvons have
been directly observed recently [43].

In unconventional superfluids, such as 3He, the order
parameter is tensorial and non-Abelian symmetries related
to spatial rotations are usually broken in the vacuum. If
we neglect the spin-orbit interaction, rotations of spinorial
and orbital indices can be performed independently; the
full symmetry of 3He is G ¼ Uð1Þp � SOð3ÞS � SOð3ÞL,
where SOð3ÞS and SOð3ÞL are spin and angular rotations.
Two phases were theoretically predicted and experimen-
tally (indirectly) observed (in the absence of external mag-
netic fields). We focus on the so-called B phase, where the
ground state preserves a locked SOð3Þ symmetry,

G ¼ Uð1Þp � SOð3ÞS � SOð3ÞL ! HB ¼ SOð3ÞSþL:

The locked SOð3ÞSþL symmetry can be identified with the
overall spatial rotations SOð3ÞR. The expression above
implies the existence of bulk ‘‘non-Abelian’’ NG bosons
called magnons in the condensed matter terminology, due
to spontaneous breaking of non-Abelian global symme-
tries. The B phase supports topologically stable vortices:

�1ðUð1Þp � SOð3ÞS � SOð3ÞL=SOð3ÞSþLÞ
¼ �1ðUð1Þp � SOð3ÞS�LÞ ¼ Z � Z2:

The first Z factor corresponds to the breaking of the
Abelian Uð1Þp symmetry and supports the so-called mass

vortices. These vortices are created and stabilized in a
lattice once the sample is rotated and are characterized
by a nonvanishing superfluid current and angular momen-
tum, much in the same way as vortices in conventional
superfluids.2 Both the bulk magnons and the Kelvin ex-
citations were recently observed [43–46] in experiments
with superfluid 3He and 4He.

In this paper we will argue that a hitherto unexplored
type of quasigapless modes localized on the mass vortices
in the superfluid 3He-B exist. While Kelvons can be inter-
preted as the NG modes arising from the breaking of
translational symmetry, the excitations we discuss arise
from the breaking of the spatial rotation symmetry HB ¼
SOð3ÞSþL by the vortex solution. Because of their origin
we will refer to them as non-Abelian.

It is known that the B phase is divided into two sub-
phases classified according to the core structure of the mass
vortex under rotations around the vortex axis. The core
can be either axially symmetric or axially asymmetric
[28,47,48]. A possible signal of the axial symmetry break-
ing in the core of the mass vortices has been already
observed [49–51]. The axial symmetry gives rise to a
Uð1Þ NG mode localized on the given mass vortex. This

is the conventionalUð1Þ NG excitation, while our task is to
focus on non-Abelian excitations.
Considering the whole non-Abelian symmetry, there can

exist up to two or three additional modes, due to breaking
of the bulk symmetry HB ¼ SOð3ÞSþL on the vortex, in
accordance with the fact that

SOð3ÞSþL=Uð1Þz ’ S2 or SOð3ÞSþL=1 ’ S3=Z2;

relevant, respectively, for the axially symmetric core (left)
and for the asymmetric core (right).
As far as we know, these excitations were not discussed

in the literature or observed in experiments. This is the first
example of spatially localized non-Abelian modes in con-
densed matter physics. It is important to stress here that
these modes can be quasigapless or become gapped upon
inclusion of quantum effects.
The arguments that lead us to this conclusion are ex-

plained in more detail in the next sections. They can be
applied to other unconventional superfluids with tensorial
order parameters. The crucial points in our considerations
are (i) the presence (in the B phase) of an unbroken non-
Abelian (global rotational) SOð3ÞSþL symmetry, which
may be spontaneously broken by the vortex, and (ii) the
tensorial nature of the order parameter. The rotational
symmetry is broken by the vortex solution at two levels.
As in the case of conventional superfluids, it is broken by
the physical shape of the vortex itself—a line defect in
three spatial dimensions. (iii) It is known that the moduli
coming from the latter breaking are not independent of
those originated by translations, in the case of scalar order
parameter, while we argue that independent (quasi)moduli
are generated in the case of tensorial order parameters.
From a more formal point of view, if the ground state of

the theory is symmetric under H and the vortex solution
preserves only a subgroup H0 of the group H, then a par-
ticular vortex gives rise to a family of (degenerate) vortices
which are characterized by a number � ¼ dimH � dimH0
of continuous parameters (called moduli) of the solutions
and �NG NG excitation modes. In relativistic field theories,
the NG theorem implies the existence of a massless particle
per each broken generator (�NG ¼ �). In the nonrelativistic
case [52] the NG theorem is subtler [53,54]: the number of
the gapless excitations can be smaller than or equal to the
number of the broken generators (moduli).3

Our proposal is that the rotational symmetry H ¼
SOð3ÞSþL broken by a nontrivial configuration of the ten-
sorial order parameter on the vortex solution generates
rotational non-Abelian (quasi)moduli !‘ (‘ ¼ 1, 2, 3)
which are coupled, in the general case, to the conventional
Kelvin excitations. The Kelvin excitation presents an

2The second Z2 factor stabilizes a more exotic type of vortices,
the spin vortices. They are not directly created by the superfluid
rotation; they were detected, however, as bound states with the
mass vortices.

3One NG mode with a linear dispersion relation (called type I)
corresponds to one broken generator (as in the relativistic case),
and, at the same time, one NG mode with a quadratic dispersion
relation (called type II) corresponds to two broken generators.
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example of the nonrelativistic type II NG mode. With two
broken translations, there is only one independent circu-
larly polarized fluctuation of the vortex. The number of the
gapless rotational excitations given a certain number of
rotational moduli must be established on the case-by-case
basis in nonrelativistic theories, through the quantization
procedure.

II. THE GINZBURG-LANDAU
DESCRIPTION OF 3He

The starting point of our analysis is the Ginzburg-
Landau description of the superfluid phase of 3He near
the critical temperature. The order parameter is a 3� 3
matrix e�i with spin indices � (where � ¼ 1, 2, 3) and

orbital indices iði ¼ 1; 2; 3Þ that transform under the vector
representations of SOð3ÞS and SOð3ÞL,

e�i ! eic S��Lije�j; (2.1)

where S and L are SOð3ÞS and SOð3ÞL orthogonal rotation
matrices. c is a phase parameter corresponding to Uð1Þp
rotations.

The most general time-dependent expression for the
free energy, invariant under the Uð1Þ � SOð3ÞS � SOð3ÞL
symmetry of the theory takes the form

FGL � ℏie�i@te
�
�i þ �1@ie�j@ie

�
�j þ �2@ie�i@je

�
�j

þ �3@ie�j@je
�
�i � �e��ie�i þ �1e

�
�ie

�
�ie�je�j

þ �2e
�
�ie�ie

�
�je�j þ �3e

�
�ie

�
�ie�je�j

þ �4e
�
�ie�ie

�
�je�j þ �5e

�
�ie�ie�je

�
�j: (2.2)

The coefficients � and� are phenomenological parameters
depending both on temperature and pressure. Experimental
determination of all these coefficients is very difficult [55].
One can roughly evaluate them from BCS-like calculations
[29]. Note that the �2 and �3 terms in the second line differ
only by a total derivative. Hence, in deriving the equations
of motion in the bulk they can be identified. BCS-like
calculations are valid at weak coupling and predict the B
phase were they are more reliable. Strong coupling effects
have to be taken into account in general, especially to
predict the appearance of the A phase. However, for the
considerations presented in this paper the precise values of
the coefficients �, � and � are not important.

Minimizing the potential term in Eq. (2.2) with respect
to the order parameter gives the B-phase ground state [27]

ðe0Þ�i ¼ eic�ðR0Þ�i;

�2 � �

6ð�1 þ �2Þ þ 2ð�3 þ �4 þ �5Þ ;
(2.3)

where the ground state solution is parametrized (in the
most general form) in terms of an element ðR0Þ�i of the

SOð3Þ group. The configuration ðe0Þ�i ¼ eic�ðR0Þ�i

contains four parameters representing the NG excitations
in the bulk, or magnons, discussed in the Introduction.
The unbroken symmetry corresponds to a combined

action of spinorial and orbital transformations, namely,

S� ~�Li~iðR0Þ ~� ~i ¼ ðR0Þ�i: (2.4)

Without loss of generality we can set ðR0Þ�i ¼ ��i

(i.e., � ¼ 0 and c ¼ 0) in the ground state. Then
Eq. (2.4) becomes obvious provided S ¼ L.
If the parameters �2;3 in (2.2) are small, the symmetry of

the free energy (2.2) is enhanced. Indeed, in the limit �2,
�3 ! 0, the spatial SOð3ÞR rotations of coordinates can be
done independently from the spinorial SOð3ÞS and orbital
rotation SOð3ÞL without changing the free energy. In this
case, the SOð3ÞS and SOð3ÞL symmetries, together with the
locked SOð3ÞSþL symmetry effectively act as internal
symmetries. Then if we switch on �2;3 � 0 these two terms

in the free energy explicitly break SOð3ÞS � SOð3ÞL �
SOð3ÞR down to a ‘‘locked’’ SOð3ÞSþL ¼ SOð3ÞR. This
observation will be important below.

A. Vortices in 3He-B

The simplest topologically stable mass vortex in the B
phase of 3He has the following asymptotic behavior:

evort�i ¼ �ei���i at r ! 1; (2.5)

where � is the polar angle in the perpendicular plane. We
identify c with the polar angle so that the phase of the order
parameter winds by 2�. From the topological point of view,
a mass vortex is stable because �1ðUð1ÞpÞ is nontrivial.
The asymptotic behavior (2.5) of the vortex solution

does not break the SOð3ÞLþS symmetry of the bulk.
Thus, no modulus associated with the phase winding ap-
pears. At generic distances, the ansatz (2.5) is generalized
as follows:

evort�i ðx; yÞ ¼ �ei�~e�iðx; yÞ;

~e�i �
g1ðx; yÞ f12ðx; yÞ f13ðx; yÞ
f21ðx; yÞ g2ðx; yÞ f23ðx; yÞ
f31ðx; yÞ f32ðx; yÞ g3ðx; yÞ

0
BB@

1
CCA; (2.6)

with boundary conditions ~e�i ! ��i at r ! 1.

As already mentioned in the Introduction, vortices with
an asymmetric core and a rotational modulus can exist.
They are characterized by a profile matrix ~e�iðx; yÞ that
breaks SOð2Þ rotations around the vortex axis, for example
if all f’s vanish, but g1 � g2 in the core. This is a well-
known property that distinguishes the mass vortices in
3He-B from those in conventional superfluids [47,48].
Thus, the 3He vortices cannot be considered as diagonal
embeddings of more conventionalUð1Þ superfluid vortices.
The mentioned rotational gapless mode is Abelian.

In the following, we want to consider its non-Abelian
counterpart.
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III. SCALAR VS NONSCALAR ORDER
PARAMETERS

To begin with, let us consider the usual case of a
superfluid vortex in a theory with scalar order parameter
(e.g., in 4He). Such vortices are characterized by two trans-
lational moduli, corresponding to translations in the
x and y directions (assuming that the vortex axis is oriented
along the z axis). Let us examine the physical reason behind
the existence of these translational moduli (and, hence, the
Kelvin mode). The underlying theory has a number of
invariances in the ground state. In the case of the scalar
order parameter these symmetries are (a) translational
(three generators) and (b) rotational (three generators).
Some of the above symmetries are obviously spontaneously
broken by the vortex defect, namely, translations in the x
and y direction (Tx;y) and rotations outside the x, y plane

(Lzx and Lzy).

It turns out that one translational mode is equal to the
conjugate momentum of the other, and vice versa, thus
giving a single mode known as the Kelvin mode (see, e.g.,
Ref. [52]). What is the fate of the rotational symmetry
which is also spontaneously broken by the vortex? Two
of the rotations are broken, while the SOð2Þ rotation around
the z axis remains unbroken. At first sight the SOð3Þ=SOð2Þ
pattern of the symmetry breaking must lead to two extra
moduli, corresponding to broken Lzx and Lzy. However,

these extra moduli are absent because the above rotations
are already represented by the translational moduli,4 which
we will call 	I (where the capital latin subscript runs over
I ¼ 1, 2). In the quantization procedure the moduli 	I

become the fields 	Iðt; zÞ. Thus, in the case at hand, no extra
moduli are needed to represent the spontaneously broken
Oð3Þ symmetry since local translations are equivalent to
local rotations [56].

Dynamics of the 	I on the vortex is described by the
gradient terms�ð@z	IÞ2, plus a time derivative. The string
oriented along the z axis corresponds to the ground state:

	I ¼ 0: (3.1)

A rotated string is described by another ground state,

	IðzÞ ¼ aIz; aI arbitrary real numbers: (3.2)

This is also a solution of the equation of motion. An
apparent increase in the ground state energy for (3.2)
compared to (3.1) is an illusion: for the rotated vortex
the element of distance along the vortex changes too.
The overall tension remains the same.

Let us pass to the problemof interest inwhich the relevant
order parameter carries spatial indices, see Eq. (2.2). We
will start our discussion from the simplest limit �2;3 ¼ 0
(or very small). If�2;3 ¼ 0 the symmetry of the ground state

is enhanced: in addition to the translational symmetry and

that of spatial rotations R, it has ‘‘internal’’ symmetries
SOð3ÞS � SOð3ÞL spontaneously broken in the ground state
down to SOð3ÞLþS.
The vortex solution itself breaks T and R spontaneously,

by the orientation of the vortex axis. As was explained
above, this breaking generates only two (not four) moduli,
	I. The breaking of the vacuum SOð3ÞLþS symmetry
(which in the above limit is ‘‘internal’’) necessarily pro-
duces either three rotational moduli in the vortex solution
[if SOð3ÞLþS is completely broken on the given solution] or
two such moduli [if SOð3ÞLþS is broken down to SOð2Þ].
For definiteness let us focus on the first case. If the axially
asymmetric solution exists in the limit �2;3 ¼ 0, it can be

automatically elevated to the status of the full-fledged non-
Abelian vortex. Indeed, since it breaks SOð2Þ by definition,
one can ‘‘smear’’ this SOð2Þ over the SOð3ÞLþS by consid-
ering all possible embeddings of the broken SOð2Þ in
SOð3ÞLþS. In this way, we acquire three (non-Abelian)
rotational moduli. The axially asymmetric solution exists
provided that either g1 � g2, or one or more f’s in Eq. (2.6)
do not vanish, or both.
We did not attempt to systematically explore the pa-

rameter space �1;...;5 in search of all possible global vortex

solutions at �2;3 ¼ 0. This will be the subject of a special
investigation. However, for some values of�1;...;5 particular

relevant solutions can be found in a qualitative way in the
following ansatz:

evort�i ¼ �ðr?Þei���i þ "�ik

kðr?Þ; (3.3)

where ~r? ¼ fx; yg and 
i is a vector with regards to the
unbroken SOð3ÞLþS. In addition to (2.5), 
kðr?Þ ! 0 at
r? ! 1. In the core of the vortex, at small r?, an insta-
bility for 
i develops, 
i � 0, and we obtain two rotational
moduli [corresponding to SOð3Þ ! SOð2Þ].
Now let us consider a general situation and switch on

�2;3 � 0. Applying SOð3ÞLþS ¼ SOð3ÞR to the vortex pro-

file we get, generally speaking, three moduli !‘ in the
matrix structure of evort�i ðx; yÞ. Simultaneously the center of

the solution gets shifted too by 	I, see Eq. (3.2), due to the
entanglement of rotations and translations. The shift
parameters aI are linearly dependent on !1;2.

There are two consequences: a mass gap proportional to
�2;3 is generated for those moduli that are not associated

with the Uð1Þ rotation and, in addition, a derivative cou-
pling connecting the translational and rotational moduli
appears too.

IV. LOW-ENERGY EFFECTIVE THEORIES
ON THE VORTEX

In this section we will briefly outline a general construc-
tion of low-energy effective theories on the vortex which is
not very widely used in condensed matter (albeit is abso-
lutely standard in high-energy physics, e.g., Ref. [59]).
This theory allows one to describe dynamics of gapless

4In the context of high-energy physics this observation is
sometimes referred to as the inverse Higgs mechanism [56–58].
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and quasigapless excitations. This technique will help us to
substantiate the last statement in Sec. III.

The general prescription for deriving an effective low-
energy theory is as follows. One expands the Ginzburg-
Landau free energy (2.2) in terms of fluctuations of the
order parameter, up to the second order in derivatives, near
the vortex solution. These fluctuations are assumed to be
dependent on the world-sheet coordinates of the vortex,

e�iðx; yÞ ¼ evort�i ðx; yÞ þ �e�iðx; y; z; tÞ: (4.1)

The variation above is still completely generic. When
varying expression (2.2), we observe that the terms pro-
portional to the first order in the variations vanish because
of the equations of motion. The remaining terms are as
follows:

�2ðFGLÞ ¼ ℏi�e��i@t�e�i þ �1@z�e�j@z�e
�
�j þ �2@z�e�z@z�e

�
�z þ �3@z�e�z@z�e

�
�z þ �2@z�e�z@I�e

�
�I

þ �z@z�e�I@I�e
�
�z þ c:c:þ �1@I�e�J@I�e

�
�J þ �2@I�e�I@J�e

�
�J þ �3@I�e�J@J�e

�
�I

þ ð@e��i
@e�jVÞ�e�i�e

�
�j þ � � � ; (4.2)

where the ellipses denote terms of the third and higher
order in �e�iðx; y; z; tÞ containing at most two derivatives.
We will discuss them later.

For the time being we discard the t and z dependences in
(4.2) and vary �2ðFGLÞwith respect to �e�i. In this way we

arrive at a static differential operator acting on �e�i, and

define its eigenvalues and eigenmodes,

Lðx; yÞeðnÞ�i ðx; yÞ ¼ EðnÞeðnÞ�i ðx; yÞ: (4.3)

Then one uses adiabatic approximation to expand

�e�iðx; y; z; tÞ ¼ P
ncnðt; zÞeðnÞ�i ðx; yÞ. Of all infinite set of

modes, we are interested only in the gapless and quasigap-

less modes, i.e., those for whichEðnÞ ¼ 0 or small. Again, it
is convenient to start from the limit �2;3 ¼ 0.

Let us denote the set of moduli on which evort�i ðx; yÞ
depends as ma. This set includes two translational moduli
	I and three orientational !‘. Then evort�i ðx; y;maÞ deter-
mines the gapless modes,

eð0;aÞ�i ðx; yÞ / @

@ma e
vort
�i ðx; y;mÞ; Ea ¼ 0; (4.4)

where the proportionality coefficient is derived from the
normalization of each mode. Substituting these gapless
modes in the expansion of �e�iðx; y; z; tÞ (and neglecting

all nongapless modes),

�e�iðx; y; z; tÞ ¼
X
a

maðz; tÞeð0;aÞ�i ; (4.5)

we arrive at a low-energy effective theory on the vortex in
the form

Fgrad
LE ¼ X

a;b

Ga;bðmÞ@zmaðz; tÞ@zmbðz; tÞ; (4.6)

plus a similar term with time derivative (quadratic in @t for
the type I NG modes and linear for the type II NG modes).
In the quadratic approximation, as in (4.2), the target space
metric Ga;bðmÞ is replaced by Ga;bðmÞjma�0. The overall m
dependence of Ga;bðmÞ is fixed by the pattern of the sym-

metry breaking, or, alternatively, algebraically

Ga;bðmÞ ¼
Z

d2x?
@evort�j ðx; y;mÞ

@ma

@evort�i ðx; y;mÞ
@mb

; (4.7)

where convolutions of the spin and angular momentum
indices are ignored so that Eq. (4.7) is somewhat symbolic.
Usually, translational moduli are uncorrelated with others.
Then the metric (4.7) factors out and acquires a block form

FLE ¼ T

2
@z	I@z	I þ

X
‘;~‘

G‘;~‘ð!Þ@z!‘ðz; tÞ@z!~‘ðz; tÞ

þ time der: (4.8)

In the previous sections we explained that our present
problem is peculiar since the family of solutions is ob-
tained under simultaneous and concerted variations of
rotational and translational moduli.
Now, let us switch on �2;3 � 0 but small. Since SOð3Þ in

this case is explicitly broken by the vortex axis, only the
modulus corresponding to the axial SOð2Þ will remain
strictly gapless. Two others—belonging to the coset
SOð3Þ=SOð2Þ—generally speaking will acquire a mass
gap, proportional to �2;3, corresponding to a small shift

of two eigenvalues in (4.4). In other words, we expect

�FLE;m / �2;3

P
‘?�‘? ~‘?ð!‘?!

~‘?Þð‘; ~‘ ¼ x; yÞ. We will

show elsewhere that these modes are type I NG modes
with a linear dispersion relation so that all modes are
independent. Inclusion of quantum effects (not discussed
here) may or may not lift the Uð1Þmode too, depending on
dynamical details.

In addition to (4.8) we will have an extra term �Fgrad
LE /

�2;3ð@z	IÞð@z!IÞ. There is a dissipation of energy from the

Kelvin mode to rotational and vice versa with the coeffi-
cient ��2;3.

V. CONCLUSIONS

In this paper, we discussed the emergence of non-Abelian
(quasi)gapless modes on the vortices in 3He. So far our
analysis is purely classical. Quantization needed to deter-
mine how many (quasi)gapless excitations appear from

NON-ABELIAN QUASIGAPLESS MODES LOCALIZED ON . . . PHYSICAL REVIEW D 87, 081702(R) (2013)

RAPID COMMUNICATIONS

081702-5



given moduli, and whether or not some are lifted by quan-
tum effects is deferred till a more detailed publication.5

In conventional superfluids (e.g., 4He) the spontaneously
broken translational and rotational symmetries on a vortex
do not produce independent NG modes; one can say that
only translational excitations occur, a single NG excitation,
the Kelvon. This is due to the scalar nature of the order
parameter.

At the same time, for the mass vortices in the superfluid
3He-B, the rotational symmetry gives rise to independent
rotational (quasi)NG excitations. One of them—due to the
axial asymmetry of the vortex core—was known for a long
time. We argued that extra non-Abelian rotational excita-
tions exist, associated with the full SOð3Þ symmetry of the
ground state. Generically, they are not strictly gapless and
can be derivatively coupled with the translational excita-
tions, the Kelvons. Whether or not they will show up as
quasigapless depends on particular values of �2;3 and

�1;...;5. Generically, the parameters �2 and �3 are not para-

metrically small compared to �1 in
3He-B, and the gap of

the new modes could be in principle of the order of the
fermionic gap. As already mentioned in the Introduction,
this problem can be in principle cured in ultracold Fermi
gases with P-wave pairing.
The tensorial order parameter in 3He-B is crucial for

the phenomenon. We outlined the construction of the
low-energy effective theory for the (quasi)gapless excita-
tions localized on the vortex defined as a (1þ 1)-
dimensional theory on the vortex world sheet.
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