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It is well-known that the standard Britto-Cachazo-Feng-Witten construction cannot be used for on-shell

amplitudes in effective field theories due to bad behavior for large shifts. We show how to solve this

problem in the case of the SUðNÞ nonlinear sigma model, i.e., nonrenormalizable model with an infinite

number of interaction vertices, using scaling properties of the semi-on-shell currents, and we present new

on-shell recursion relations for all on-shell tree-level amplitudes in this theory.
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I. INTRODUCTION

Scattering amplitudes are physical observables that de-
scribe scattering processes of elementary particles. The
standard perturbative expansion is based on the method
of Feynman diagrams. In the last two decades there has
been huge progress on alternative approaches, driven by
the idea that the amplitude should be fully determined by
the on-shell data with no need to access the off-shell
physics. This effort has lead to amazing discoveries that
have uncovered many surprising properties and dualities of
amplitudes in gauge theories and gravity. One of the most
important breakthroughs in this field was the discovery
of the Britto-Cachazo-Feng-Witten (BCFW) recursion
relations [1,2] that allow us to reconstruct the on-shell
amplitudes recursively from most primitive amplitudes.
They are applicable in many field theories; however, in
some cases like effective field theories they cannot be used.
One particularly important example is the SUðNÞ nonlinear
sigma model, which describes the low-energy dynamics of
the massless Goldstone bosons corresponding to the chiral
symmetry breaking SUðNÞ � SUðNÞ ! SUðNÞ.

The SUðNÞ nonlinear sigma model has played a crucial
role in many developments of theoretical physics in the last
almost fifty years. It has a broad range of applications from
model building in particle phenomenology to string theo-
ries. For instance, for N ¼ 2 it represents a low-energy
effective theory of QCD, describing the dynamics of pions
[3,4]. It is also a starting point for many extensions or
alternatives of the electroweak standard model.

In this paper we find the recursion relations for all tree-
level amplitudes of Goldstone bosons for the SUðNÞ non-
linear sigma model. The importance of this result is
twofold. (i) It shows that the BCFW-like recursion rela-
tions can be applicable to a much larger class of theories
than previously expected. This might also help one to
better understand the properties of the theory that are
otherwise invisible. It also tells us that this model—despite
being an effective (and therefore for dimension d > 2
nonrenormalizable) field theory—behaves in some cases

similarly to renormalizable theories. (ii) It provides an
effective tool for leading-order (tree-level) calculations of
amplitudes with many external Goldstone bosons, which
might be important for low-energy particle phenomenology.
A more detailed description together with other results will
be presented in Ref. [5].

II. BCFW RECURSION RELATIONS

Let us consider an n-point on-shell scattering amplitude
of massless particles in the adjoint representation of the
symmetry group SUðNÞ, and denote by ta the generators of
the corresponding Lie algebra. At tree level each Feynman
diagram carries a single trace Trðta1 ta2 . . . tanÞ, and we can
decompose the full amplitude An into sectors with the
same group factor,

Atree
n ¼ X

�=Zn

Anðp�ð1Þ; . . .p�ðnÞÞTrðta�ð1Þ . . . ta�ðnÞ Þ; (1)

where the sum is over all noncyclic permutations. For each
stripped amplitude An we have a natural ordering of mo-
menta p�ð1Þ; . . .p�ðnÞ, and a single term Anðp1; p2; . . .pnÞ
generates all the other by trivial relabeling. At the loop
level we can define analogous objects in the planar limit,
but in the general case this simple decomposition is not
possible due to terms with multiple traces.
In 2004, Britto, Cachazo, Feng and Witten [1,2] found a

recursive construction of tree-level on-shell amplitudes.
The stripped amplitude An ¼ Anðp1; . . .pnÞ is a gauge-
invariant object and one can try to fully reconstruct it
from its poles. Because of the ordering the only poles
that can appear are of the form P2

ab ¼ 0, where Pab ¼P
b
k¼a pk for some a,b. On the pole the amplitude factorizes

into two pieces,

ALðpa; . . .pb;�PabÞ i

P2
ab

ARðPab; pbþ1; . . .pa�1Þ: (2)
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Let us perform the following shift on the external data:

piðzÞ ¼ pi þ zq; pjðzÞ ¼ pj � zq; (3)

where i and j are two randomly chosen indices, z is a
complex parameter and q is a fixed null vector which is
also orthogonal to pi and pj, q

2 ¼ ðq � piÞ ¼ ðq � pjÞ ¼ 0

(such a q exists only for dimension d � 4). Note that the
shifted momenta remain on-shell and still satisfy momen-
tum conservation. The original amplitude An becomes a
meromorphic function AnðzÞ with only simple poles. If it
vanishes for z ! 1 we can use Cauchy’s theorem to
reconstruct it,

AnðzÞ ¼
X
i

ResðAn; ziÞ
z� zi

; (4)

where zi are poles of AnðzÞ determined by

PabðzÞ2 ¼ ðpa þ � � � þ piðzÞ þ . . .pbÞ2 ¼ 0 (5)

and located in zab ¼ �P2
ab=2ðq � PabÞ. Note that AnðzÞ has

a pole only if i 2 ða; . . . bÞ or j 2 ða; . . . bÞ (not both or
none). There exists a convenient choice j ¼ iþ 1 which
minimizes a number of terms in Eq. (4). According to
Eq. (2) ResðAn; ziÞ is a product of two lower-point ampli-
tudes with shifted momenta, and Cauchy’s theorem (4) can
be rewritten as

AnðzÞ ¼
X
a;b

ALðzabÞ i

PabðzÞ2
ARðzabÞ; (6)

where the sum is over all poles PabðzÞ2 ¼ 0 and

ALðzÞ ¼ ALðpa; . . . ; piðzÞ; . . .pb; PabðzÞÞ; (7)

ARðzÞ ¼ ARð�PabðzÞ; pbþ1; . . . ; pjðzÞ; . . .pa�1Þ: (8)

In the physical case we set z ¼ 0. AL and AR in Eq. (6)
are lower-point amplitudes, nR, nL < n, and therefore we
can reconstruct AnðzÞ recursively from simple on-shell
amplitudes without using the off-shell physics at any
step. BCFW recursion relations were originally found for
Yang-Mills theory [1,2], and proven to work in gravity
[6,7]. There are many works showing the relations’ validity
in other theories (e.g., for coupling to matter see Ref. [8]).

If the amplitude AnðzÞ is constant or grows for large z,
the prescription (4) cannot be used directly. The constant
behavior was studied, e.g., in Ref. [9] for the cases of ��4

and Yukawa theory. In the generic situation of a power
behavior AnðkÞ � zk, for z ! 1, we can use the following
formula [5]:

AnðzÞ ¼
Xn
i¼1

ResðAn; ziÞ
z� zi

Ykþ1

j¼1

z� aj
zi � aj

þ Xkþ1

j¼1

AnðajÞ
Ykþ1

l¼1;l�j

z� al
aj � al

; (9)

which reconstructs the amplitude in terms of its residues
and its values at additional points ai different from zi.
This is a generalization of a formula first written in this
context in Ref. [10] and further discussed in Ref. [11],
where ai are chosen to be roots of AnðzÞ.
The other option is to use the all-line shift, i.e., deform

all external momenta. This was inspired by the work of
Risager [12] and recently used for studying the on-shell
constructibility of generic renormalizable theories in
Ref. [13]. This approach will be useful for our purpose.

III. SEMI-ON-SHELL AMPLITUDES

The Lagrangian of the SUðNÞ nonlinear sigma model in
d dimensions can be written as

L ¼ F2

4
Trð@�U@�UyÞ; (10)

where F is a constant with canonical dimension d=2� 1
and U 2 SUðNÞ is dimensionless. In the most common

exponential parametrization, U ¼ exp ði�=FÞ, where � ¼ffiffiffi
2

p
�ata. The tas are generators of the SUðNÞ Lie algebra

normalized according to TrðtatbÞ ¼ �ab. Note that for
N ¼ 2 and d ¼ 4, Eq. (10) is a leading Oðp2Þ term in the
Lagrangian for chiral perturbation theory [4], which pro-
vides a systematic effective field theory description for
low-energy QCD with two massless quarks. In this case,
�a represents the pion triplet. In what follows neither N
nor d are restricted.
For calculations of on-shell scattering amplitudes within

this model we use stripped amplitudes Anðp1; . . .pnÞ. The
Lagrangian (10) contains only terms with an even number
of�, and therefore A2nþ1 ¼ 0 and only A2n are nonvanish-
ing. It is easy to show that it makes no difference whether
we use the SUðNÞ or UðNÞ symmetry group because the
U(1) piece decouples [5]. For our purpose it is convenient
to use the Cayley parametrization of the UðNÞ nonlinear
sigma model,

U ¼ 1þ i
2F�

1� i
2F�

¼ 1þ 2
X1
n¼1

�
i

2F
�

�
n
: (11)

By plugging in this expression forU into Eq. (10) we get an
infinite tower of terms with two derivatives and an arbitrary
number of �. This is common for any parametrization;
however, in this parametrization, the stripped Feynman
rule for the interaction vertex is particularly simple,

V2nþ1 ¼ 0; V2nþ2 ¼
��1

2F2

�
n
 Xn
i¼0

p2iþ1

!
2

: (12)

It is easy to see that the shifted amplitudes AnðzÞ � z for
z ! 1. Without additional information on the values at
two points ai, the relation (9) cannot be used. Therefore,
we will follow a different strategy to determine AnðzÞ
recursively.
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Let us define a semi-on-shell current,

Ja;a1;a2;...ann ðp1; . . .pnÞ ¼ h0j�að0Þj�a1ðp1Þ . . .�anðpnÞi;
(13)

as a matrix element of the field �að0Þ between the vacuum
and the n-particle state j�a1ðp1Þ . . .�anðpnÞi. The momen-
tum pnþ1 attached to �að0Þ is off-shell, satisfying pnþ1 ¼
�P

n
j¼1 pj ¼ �P1n. At the tree-level the current can be

written in terms of stripped currents,

Ja;a1;a2;...ann ðp1; . . .pnÞ
¼ X

�=Zn

Trðtata�ð1Þ . . . ta�ðnÞ ÞJnðp�ð1Þ . . .p�ðnÞÞ: (14)

The on-shell amplitude Anþ1ðp1; . . .pnþ1Þ can be extracted
from Jnðp1; . . .pnÞ by means of the Lehmann-Symanzik-
Zimmermann formulas,

Anþ1ðp1; . . .pnþ1Þ ¼ � lim
p2
nþ1!0

p2
nþ1Jnðp1; . . .pnÞ: (15)

The one-particle states are normalized according to
J1ðpÞ ¼ 1. Note that J2n ¼ 0, in agreement with
Aðp1 . . .p2nþ1Þ ¼ 0 via Eq. (15). For the currents
Jð1; . . . ; nÞ � Jnðp1; . . .pnÞ we can write generalized
Berends-Giele recursion relations [14] (N.B. Pab ¼P

b
k¼a pk),

Jð1; . . .nÞ ¼ i

p2
nþ1

Xn
m¼3

X
j0<j1<...<jm

iVmþ1ðPj0j1 ; . . . ;�P1nÞ

� Ym�1

k¼0

Jðjk þ 1; . . . ; jkþ1Þ; (16)

where j0 ¼ 0 and jm ¼ n. This equation can equivalently
be graphically represented as

The right-hand side is a sum of products of lower-point
currents with the Feynman vertices (12). The current Jn is
obviously a homogeneous function of momenta of degree
0. It is not cyclic because there is a special off-shell
momentum pnþ1. Note, however, that Jn is an unphysical
object and can be different in different parametrizations.
From now on we will use only the Cayley parametrization
where it has interesting properties under the rescaling of
all even or odd on-shell momenta. Namely, for t ! 0

J2nþ1ðtp1; p2; tp3; . . .p2n; tp2nþ1Þ ¼ Oðt2Þ; (17)

J2nþ1ðp1; tp2; p3; . . . tp2n; p2nþ1Þ ! 1

ð2F2Þn : (18)

We postpone the detailed discussion to Ref. [5]. The proof
is by induction using the Berends-Giele recursion relations
[14], which are more suitable for this purpose than the
analysis of Feynman diagrams used to show the scaling
properties of Yang-Mills theory and gravity in Ref. [15].

IV. NEW RECURSION RELATIONS

The scaling properties (17) and (18) are our guide for
finding recursion relations for J2nþ1. Let us define the
complex deformation of the current J2nþ1ðzÞ,

J2nþ1ðzÞ � J2nþ1ðp1; zp2; . . . ; zp2n; p2nþ1Þ; (19)

i.e., the momenta are shifted according to

p2kðzÞ ¼ zp2k; p2kþ1ðzÞ ¼ p2kþ1: (20)

This deformation is possible for general d. Note that
momentum is conserved because the off-shell momentum
p2nþ2 ¼ �P

2nþ1
k¼1 pk also becomes shifted. In the limit

z ! 0, and by using Eq. (18), we get

lim
z!0

J2nþ1ðzÞ ¼ 1

ð2F2Þn : (21)

On the other hand, for z ! 1, as a consequence of homo-
geneity and Eq. (17), the current J2nþ1ðzÞ vanishes like

J2nþ1ðzÞ ¼ O

�
1

z2

�
; (22)

and we can use the standard BCFW recursion relations to
reconstruct it from its poles. The singularities of the physi-
cal current J2nþ1ð1Þ are determined by the condition
P2
ij ¼ 0, which implies the following condition for the

poles of J2nþ1ðzÞ:
P2
ijðzÞ ¼ ðzpij þ qijÞ2 ¼ 0; (23)

where j� i is even and we have decomposed Pij ¼ pij þ
qij, where pij and qij is the sum of even and odd momenta,

respectively, between i and j,

pij ¼
X

i�2k�j

p2k; qij ¼
X

i�2kþ1�j

p2kþ1: (24)

For j� i > 2 we find two solutions of Eq. (23), namely

z�ij ¼
�ðpij � qijÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpij � qijÞ2 � p2

ijq
2
ij

q
p2
ij

: (25)

For the special case of a three-particle pole, j� i ¼ 2,
either q2ij ¼ 0 or p2

ij ¼ 0. For the first case, zþij ¼ 0, and the

corresponding residue does vanish, ResðJ2nþ1; z
þ
ij Þ ¼ 0,
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while z�ij ¼ �2ðpij � qijÞ=p2
ij. In the second case, there is

only one solution of Eq. (23), zij ¼ �q2ij=2ðpij � qijÞ.
Let us denote a generic solution of Eq. (23) by zP. Then

the internal momentum PijðzPÞ is on-shell, and therefore

the current J2nþ1ðzÞ factorizes into the product of the
lower-point semi-on-shell current Jm1

and the on-shell

amplitude Mm2
. Residues at the poles z�ij are given by

ResðJ2nþ1; z
�
ij Þ

¼ 	½p2
ijðzþij � z�ij Þ
�1Mijðz�ij Þ

� J2n�jþiþ1ðp1ðz�ij Þ; . . . ; Pijðz�ij Þ; . . . ; p2nþ1ðz�ij ÞÞ;
(26)

or graphically by

In this formula, MijðzÞ ¼ P2
ijðzÞJj�iþ1ðpiðzÞ; . . .pjðzÞÞ.

In the case of a single solution zij the residue is given by

a similar formula where 	½p2
ijðzþij � z�ij Þ
�1 is replaced by

½2ðpij � qijÞ
�1. Because of Eq. (22) we can write

J2nþ1ðzÞ ¼
X
zP

ResðJ2nþ1; zPÞ
z� zP

: (27)

The residues ResðJ2nþ1; zPÞ can be determined recursively
from Eq. (26) as in the case of BCFW recursion relations.
However, there is one difficulty. In the boundary case
i ¼ 1, j ¼ 2nþ 1, the equation (26) for the residue
ResðJ2nþ1; z

�
1;2nþ1Þ contains a current J2nþ1 on the right-

hand side and therefore we cannot express it using lower-
point currents. The solution to this problem is to use two
extra relations. The first is the residue theorem: because of
the asymptotic behavior (22) the residue at infinity van-
ishes and the sum of all residues is zero,X

zP

ResðJ2nþ1; zPÞ ¼ 0: (28)

The second one is the scaling property (21) for z ! 0
together with Eq. (27),

X
zP

ResðJ2nþ1; zPÞ
zP

¼ � 1

ð2F2Þn : (29)

Let us note that the relation (28) is an analogue of the
so-called bonus relations for the on-shell amplitudes,
investigated, e.g., in Ref. [16].

By denoting z� ¼ z�12nþ1 and solving for ResðJ2nþ1; z�Þ
from Eqs. (28) and (29) in terms of all other residues we
can rewrite Eq. (27) in the form

J2nþ1ðzÞ ¼
q21;2nþ1

P1;2nþ1ðzÞ2
1

ð2F2Þn þ
X0

zP

�
ResðJn; zPÞ
z� zP

þ q21;2nþ1

P1;2nþ1ðzÞ2
ResðJn; zPÞ

zP

�
1� z

p2
1;2nþ1

q21;2nþ1

zP

��
;

(30)

where the sum is over all solutions of Eq. (23) with the
exception of z�. The residues on the right-hand side de-
pend only on lower-point currents via Eq. (26). The physi-
cal case is z ¼ 1 and the on-shell amplitude Anðp1; . . .pnÞ
can be obtained from Jnð1Þ using the limit (15).
Interestingly, even the fundamental four-point case, i.e.,
the current J3 is included in Eq. (30) (here the sum is
empty). As the explicit forms of the amplitudes are rather
lengthy we postpone the examples of the calculation to
Ref. [5], where we will also discuss further applications,
including the formula for the double soft limit and the
proof of Adler’s zeroes for stripped amplitudes.
Notice a very important difference between our recur-

sion relations and the original Berends-Giele formula (16):
we construct the amplitude recursively from the four-point
formula via BCFW, while Eq. (16) uses critically the
Lagrangian and the infinite tower of terms in the expansion
of Eq. (10). For this reason the Berends-Giele relations for
effective theories are also much less efficient than in the
renormalizable case due to the exponential growth of the
number of terms with increasing n. On the other hand,
the number of terms in our BCFW-like relations is dictated
by the number of factorization channels. From this point
of view there is no quantitative difference between our
recursive procedure and the all-line shift BCFW recon-
struction of the renormalizable model.

V. CONCLUSION AND OUTLOOK

We found the recursion relations for on-shell scattering
amplitudes of Goldstone bosons in the SUðNÞ nonlinear
sigma model. We defined a semi-on-shell current Jn and
used the Berends-Giele recursion relations to prove its
special scaling properties. This enables one to define the
alternative all-line BCFW-like deformation of the exter-
nal momenta, which then allows one to recursively con-
struct Jn from its poles. The proposed deformation is not
restricted to d � 4 dimensions and therefore our recursive
construction can be used in any dimension, in contrast to
the standard BCFW one. Another benefit of the recon-
struction is in the efficiency of the actual calculation,
which is now comparable with those for renormalizable
models.
The existence of such recursion relations for an effective

theory gives evidence that on-shell methods can be used
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for much larger classes of theories than have been consid-
ered so far. It also shows that this theory is very special and
a deeper understanding of all its properties is still missing.
For future directions, it would be interesting to see if the
construction can be reformulated purely in terms of on-
shell scattering amplitudes not using the semi-on-shell
current. Another possibility is to focus on loop amplitudes.
As was shown, e.g., in Refs. [17,18] the loop integrand can
in certain cases also be constructed using BCFW recursion

relations; it would be spectacular if a similar construction
could be applied for effective field theories.
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