
Conservation laws in gravitational theories with general nonminimal coupling

Yuri N. Obukhov*

Theoretical Physics Laboratory, Nuclear Safety Institute, Russian Academy of Sciences, B. Tulskaya 52, 115191 Moscow, Russia

Dirk Puetzfeld†

ZARM, University of Bremen, Am Fallturm, 28359 Bremen, Germany
(Received 24 March 2013; published 16 April 2013)

We use the Lagrange-Noether methods to derive the conservation laws for models in which matter

interacts nonminimally with the gravitational field. The nonminimal coupling function can depend

arbitrarily on the gravitational field strength. The obtained result generalizes earlier findings. The

generalized conservation laws provide the basis for the derivation of the equations of motion for the

nonminimally coupled test bodies.
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I. INTRODUCTION

Recently modified gravity theories with nonminimal
coupling have attracted considerable attention. In such
models matter interacts with the gravitational field directly
via the explicit dependence of the generalized coupling
function (which replaces the coupling constant) on
the curvature of spacetime. See Refs. [1–3]; the reviews
[4–6] give an outlook and contain references for further
reading.

It was soon recognized that the nonminimal coupling
leads to a modification of the conservation laws of
the energy-momentum (for the early analysis see
Refs. [1,7]). This is an important observation since the
conservation laws underlie the derivation of the equations
of motion of the test bodies. As a result, the massive
extended bodies and particles are affected by an extra
force, as compared to the minimally coupled case [8,9].
Some recent works [2,3] reported very complicated mod-
ifications of the conservation laws.

Here we carefully analyze the consequences of the
general coordinate invariance of the action that describes
the most general nonminimal coupling of matter to the
gravitational field strengths. The Lagrange-Noether frame-
work yields the conservation laws which have a remark-
ably simple structure. Our results generalize [9] and correct
[2,3] earlier derivations. In particular, recently in Ref. [9]
we have considered the case when the nonminimal cou-
pling function depends arbitrarily on the nine parity-even
curvature invariants. These belong to the set of the 14
algebraically independent invariants constructed from the
components of the Riemann tensor, which characterize a
curved spacetime of four dimensions [10–12]. Our newly
derived general conservation laws extend the aforemen-
tioned results.

Furthermore, our current analysis also covers the case
when the material elements have the microstructural prop-
erties such as spin. The resulting conservation laws then
are suitable for the study of the equations of motion of
extended bodies constructed from matter with microstruc-
ture coupled nonminimally to the gravitational field. This
extends the findings of Refs. [13–15].
Our notations and conventions are those of Ref. [16]. In

particular, the basic geometrical quantities, such as the
curvature, torsion, etc., are defined as in Ref. [16], and
we use the latin alphabet to label the spacetime coordinate
indices. Furthermore, the metric has the signature
ðþ;�;�;�Þ. As a result, our definition of the metrical
energy-momentum tensor is different from the definition
used in Refs. [1,6,9].
The structure of the paper is as follows. In Sec. II we

briefly introduce different nonminimal coupling scenarios,
and in particular we formulate the maximally extended
version of nonminimal gravity, in which the coupling
function can depend arbitrarily on the metric, curvature,
and torsion of spacetime. The general Lagrange-Noether
analysis is developed in Sec. III, and the results obtained
are subsequently applied in Sec. IV to the extended non-
minimal model, for which we explicitly work out the
conservation laws. A further generalization to nonmini-
mally coupled matter with intrinsic moments is considered
in Sec. V. Finally, our findings are discussed in section VI.

II. FORMULATION OF THE PROBLEM

A. Nonminimal fðRÞ gravity
In Refs. [1,4–6] an extended version of a so-called fðRÞ

gravity theory was considered. The corresponding interac-
tion Lagrangian was put forward,

L ¼ ½1þ �f2ðRÞ�Lmat; (1)

where the nonminimal coupling function f2 depends arbi-
trarily on the curvature scalar R, and Lmat is the matter
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Lagrangian. The nonminimal coupling of matter and grav-
ity is controlled by the constant �.

In contrast to standard general relativity theory, the last
term in (1) leads to a modification of the conservation law
of the metrical energy-momentum tensor of matter defined
by

ffiffiffiffiffiffiffi�g
p

tij :¼ 2�ð ffiffiffiffiffiffiffi�g
p

LmatÞ=�gij. It reads

ritij ¼ �f02
1þ �f2

ð�gijLmat � tijÞriR: (2)

Here f02ðRÞ :¼ df2ðRÞ=dR denotes a shortcut for deriva-
tives of the unspecified function f2ðRÞ of the curvature
scalar. The first term in the parentheses on the right-hand
side has the different sign, as compared to Refs. [1,6,9],
due to a different metric signature and the corresponding
different definition of the metrical energy-momentum
tensor.

B. Generalized nonminimal gravity

In Ref. [9] the above model was generalized to

L ¼ FLmat; (3)

where the nonminimal coupling function F ¼ Fði1; . . . ; i9Þ
depends on the set of the nine parity-even invariants con-
structed from the components of the curvature tensor,

i1 ¼ R2; i2 ¼ RijR
ij; i3 ¼ RijklR

ijkl; (4)

i4 ¼ Rij
klRkl

mnRmn
ij; (5)

i5 ¼ Rj
iRk

jRi
k; i6 ¼ Ri

jR
j
kR

k
lR

l
i; (6)

i7 ¼ RijDij; i8 ¼ DijD
ij; i9 ¼ DijD

jkRi
k: (7)

Here we have denoted Dij :¼ RikljR
kl. The set (4)–(6) is

equivalent to the one reported in Refs. [11,12], when the
Riemann tensor is decomposed in terms of the Weyl and
the traceless Ricci tensor.

Generalized gravity theories with Lagrangians that are
functions of the minimal independent set of curvature
invariants have recently attracted some attention in the
cosmological context; see Ref. [17], for example.

Without using the Noether theorem, in Ref. [9] we
demonstrated directly from the field equations that the
conservation law for the model (3) reads

ritij ¼ 1

F
ð�gijLmat � tijÞriF: (8)

This result generalizes the conservation law (2) to the case
in which F ¼ Fði1; . . . ; i9Þ depends arbitrarily on the com-
plete set of nine parity-even curvature invariants (4)–(7),
correcting the earlier derivations [2,3]. Again notice a
different conventional sign, as compared to our previous
work [9].

C. Maximally extended nonminimal gravity

In order to be as general as possible, we consider the
matter with microstructure, namely, with spin. An appro-
priate gravitational model is then the Poincaré gauge
theory in which the metric tensor gij is accompanied by

the connection �ki
j that is metric-compatible but not nec-

essarily symmetric. The gravitational field strengths are the
Riemann-Cartan curvature and the torsion,

Rkli
j ¼ @k�li

j � @l�ki
j þ �kn

j�li
n � �ln

j�ki
n; (9)

Tkl
i ¼ �kl

i � �lk
i: (10)

Our aim is to study the nonminimal gravity model in
which the interaction Lagrangian reads

L ¼ Fðgij; Rkli
j; Tkl

iÞLmat: (11)

The coupling function Fðgij; Rkli
j; Tkl

iÞ depends arbitrarily
on its arguments. In technical terms, F is a function of
independent scalar invariants constructed in all possible
ways from the components of the curvature and torsion
tensors.

III. LAGRANGE-NOETHER ANALYSIS

The basic ideas and the general scheme, as well as the
exhaustive literature, can be found in Refs. [18,19]. We
will follow quite closely along the lines of the standard
discussion of the Noether theorem.
It is convenient to embed the problem formulated above

into a wider framework that deals with a general action

I ¼
Z

d4xL: (12)

The Lagrangian density L ¼ Lð�J; @i�
JÞ depends on

the set of fields which we collectively denote �J ¼
ðgij;�ki

j; c AÞ. We do not specify the range of the multi-

index J at this stage.
Let us consider arbitrary infinitesimal transformation of

the spacetime coordinates and the matter fields

xi ! x0iðxÞ ¼ xi þ �xi; (13)

�JðxÞ ! �0Jðx0Þ ¼ �JðxÞ þ ��JðxÞ: (14)

Within the present context it is not important whether this
is a symmetry transformation under the action of any
specific group. The total variation (14) is a result of the
change of the form of the functions and of the change
induced by the transformation of the spacetime coordinates
(13). In order to distinguish the two pieces in the field
transformation, it is convenient to introduce the substantial
variation,

���J :¼ �0JðxÞ ��JðxÞ ¼ ��J � �xk@k�
J: (15)

By definition, the substantial variation commutes with the
partial derivative, ��@i ¼ @i ��.
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We need the total variation of the action,

�I ¼
Z
½d4x�Lþ �ðd4xÞL�: (16)

A standard derivation shows that under the action of the
transformation (13) and (14), the total variation reads

�I ¼
Z

d4x

�
�L
��J

���J þ @i

�
L�xi þ @L

@ð@i�JÞ
���J

��
:

(17)

Here the variational derivative is defined, as usual, by

�L
��J

:¼ @L
@�J � @i

�
@L

@ð@i�JÞ
�
: (18)

A. General coordinate invariance

Under the general coordinate transformations, we have
xi ! xi þ �xi, gij ! gij þ �gij, �ki

j ! �ki
j þ ��ki

j, and

c A ! c A þ �c A with

�xi ¼ �iðxÞ; (19)

�gij ¼ �ð@i�kÞgkj � ð@j�kÞgik; (20)

�c A ¼ �ð@i�jÞð�A
BÞjic B; (21)

��ki
j ¼ �ð@k�lÞ�li

j � ð@i�lÞ�kl
j þ ð@l�jÞ�ki

l � @2ki�
j:

(22)

Here ð�A
BÞji are generators of the general coordinate trans-

formations, which satisfy the commutation relations,

ð�A
CÞjið�C

BÞlk � ð�A
CÞlkð�C

BÞji
¼ ð�A

BÞli�k
j � ð�A

BÞjk�i
l: (23)

Substituting (19)–(22) into (17), and making use of the
substantial derivative definition (15), we find

�I ¼ �
Z

d4x½�k�k þ ð@i�kÞ�k
i

þ ð@2ij�kÞ�k
ij þ ð@3ijn�kÞ�k

ijn�; (24)

where explicitly

�k ¼ @L
@gij

@kgij þ �L
�c A

@kc
A þ @i

�
@L

@@ic
A
@kc

A � �i
kL

�

þ @L
@�ln

m @k�ln
m þ @L

@@i�ln
m @k@i�ln

m; (25)

�k
i ¼ 2

@L
@gij

gkj þ �L
�c A

ð�A
BÞkic B þ @L

@@ic
A
@kc

A

� �i
kLþ @j

�
@L

@@jc
A
ð�A

BÞkic B

�
þ @L

@�li
j �lk

j

þ @L
@�il

j �kl
j � @L

@�lj
k
�lj

i þ @L
@@i�ln

m @k�nl
m

þ @L
@@n�il

m @n�kl
m þ @L

@@n�li
m @n�lk

m

� @L
@@n�lm

k
@n�lm

i; (26)

�k
ij ¼ @L

@@ðic A
ð�A

BÞkjÞc B þ @L
@�ðijÞ

k
þ @L

@@ði�jÞl
m �kl

m

þ @L
@@ði�jljjÞ

m �lk
m � @L

@@ði�jlnj
k
�ln

jÞ; (27)

�k
ijn ¼ @L

@@ðn�ijÞ
k
: (28)

If the action is invariant under the general coordinate trans-
formations, �I ¼ 0, in view of the arbitrariness of the
function �i and its derivatives, we find the set of the four
Noether identities,

�k ¼ 0; �k
i ¼ 0; �k

ij ¼ 0; �k
ijn ¼ 0: (29)

General coordinate invariance is a natural consequence
of the fact that the action (12) and the Lagrangian L are
constructed only from covariant objects. Namely, L ¼
Lðc A;ric

A; gij; Rkli
j; Tkl

iÞ is a function of the metric,

the curvature (9), the torsion (10), the matter field, and
its covariant derivative,

rkc
A ¼ @kc

A � �ki
jð�A

BÞjic B: (30)

Denoting

�ijk
l
:¼ @L

@Rijk
l
; �ij

k
:¼ @L

@Tij
k
; (31)

we find for the derivatives of the Lagrangian

@L
@�ij

k
¼ � @L

@ric
A
ð�A

BÞkjc B þ 2�ij
k

þ 2�inl
k�nl

j þ 2�nij
l�nk

l; (32)

@L
@@i�jk

l ¼ 2�ijk
l: (33)

As a result, we straightforwardly verify that �k
ij ¼ 0 and

�k
ijn ¼ 0 are indeed satisfied identically.

Using (32) and (33), we then recast the two remaining
Noether identities (25) and (26) into
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�k ¼ @L
@gij

@kgij þ �L
�c A

@kc
A þ @i

�
@L

@ric
A
rkc

A ��i
kL

�

þr̂j

�
@L

@rjc
A
ð�A

BÞmnc B

�
�kn

m

þ @L
@rlc

A
ð�A

BÞmnc BRlkn
m

þ�iln
m@kRiln

m þ�ln
m@kTln

m ¼ 0; (34)

�k
i ¼ 2

@L
@gij

gkj þ �L
�c A

ð�A
BÞkic B þ @L

@ric
A
rkc

A

� �i
kLþ r̂j

�
@L

@rjc
A
ð�A

BÞkic B

�
þ 2�iln

mRkln
m

þ �lni
mRlnk

m � �lnm
kRlnm

i þ 2�il
nTkl

n � �ln
kTln

i

¼ 0: (35)

Here we introduced the covariant derivative for an arbitrary
tensor density An

i...
j...

r̂ nAn
i...

j... ¼ @nAn
i...

j... þ �nl
jAn

i...
l... � �ni

lAn
l...

j...;

(36)

which produces a tensor density of the same weight. In
particular, notice that the variational derivative (18) of the
matter field, identically rewritten as

�L
�c A

¼ @L
@c A

� r̂j

�
@L

@rjc
A

�
; (37)

is a covariant tensor density.
The Noether identity (35) is a covariant relation. In

contrast, (34) is apparently noncovariant. However, this
can be easily repaired by replacing�k ¼ 0with an equiva-

lent covariant Noether identity, ��k¼�k��kn
m�m

n¼0.
Explicitly, we find

��k ¼ �L
�c A

rkc
A þ r̂i

�
@L

@ric
A
rkc

A � �i
kL

�

�
�

@L
@ric

A
rlc

A � �i
lL

�
Tki

l þ @L
@rlc

A

� ð�A
BÞmnc BRlkn

m þ �iln
mrkRiln

m þ �ln
mrkTln

m

¼ 0: (38)

On-shell, i.e., assuming that the matter field satisfies the
field equations �L=�c A ¼ 0, the Noether identities (35)
and (38) reduce to the conservation laws for the energy-
momentum and spin.

More exactly, (38) gives rise to the conservation law of
the energy and the momentum, in which the divergence of
the canonical energy-momentum tensor is balanced by the
Lorentz-type forces of Mathisson-Papapetrou (second and
third lines); it is worthwhile to notice the appearance of the
quadrupole-type terms displayed in the last line.

Equation (35) contains a relation between the canonical
and metrical energy-momentum tensors and the conserva-
tion law of spin. In the next section we turn to the dis-
cussion of the general nonminimal coupling models.

IV. CONSERVATION LAWS IN MODELS WITH
NONMINIMAL COUPLING

The results obtained in the previous section are appli-
cable to any theory in which the Lagrangian depends
arbitrarily on the matter field and the gravitational field
strengths. Now we specialize to the class of models
described by (11).

A. Identities for the nonminimal coupling function

As a preliminary step, let us derive the identities which
are satisfied for the nonminimal coupling function F ¼
Fðgij; Rkli

j; Tkl
iÞ. For this, we apply the above Lagrange-

Noether machinery to the auxiliary Lagrangian density
L0 ¼ ffiffiffiffiffiffiffi�g

p
F. This quantity does not depend on the matter

fields, and both (35) and (38) are considerably simplified.
In particular, we have

@L0

@gij
¼ ffiffiffiffiffiffiffi�g

p �
1

2
Fgij þ Fij

�
; Fij :¼ @F

@gij
: (39)

Then we immediately see that (35) and (38) reduce to

rkF ¼ �
0 iln

mrkRiln
m þ �

0 ln
mrkTln

m; (40)

2Fk
i ¼ �2�

0 iln
mRkln

m � �
0 lni

mRlnk
m þ �

0 lnm
kRlnm

i

� 2�
0 il

nTkl
n þ �

0 ln
kTln

i: (41)

Here we denoted

�
0 ijk

l
:¼ @F

@Rijk
l
; �

0 ij
k
:¼ @F

@Tij
k
: (42)

The identity (40) is naturally interpreted as a generally
covariant generalization of the chain differentiation rule.
It should be stressed that (40) and (41) are the

true identities, they are satisfied for any function
Fðgij; Rkli

j; Tkl
iÞ irrespectively of the field equations that

can be derived from the corresponding action.

B. Conservation laws

Now we are in a position to derive the conservation laws
for the general nonminimal coupling model (11), and thus
we have to consider the Lagrangian density,

L ¼ ffiffiffiffiffiffiffi�g
p

FLmat: (43)

As before, F ¼ Fðgij; Rkli
j; Tkl

iÞ is an arbitrary function of
its arguments, whereas the matter Lagrangian Lmat ¼
Lmatðc A;ric

A; gijÞ has the usual form established from

the minimal coupling principle.
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In a standard way, the matter is characterized by the
canonical energy-momentum tensor,

�k
i ¼ @Lmat

@ric
A
rkc

A � �i
kLmat; (44)

the canonical spin tensor,

�nk
i ¼ � @Lmat

@ric
A
ð�A

BÞknc B; (45)

and the metrical energy-momentum tensor,

tij ¼ 2ffiffiffiffiffiffiffi�g
p @ð ffiffiffiffiffiffiffi�g

p
LmatÞ

@gij
: (46)

In view of the product structure of the Lagrangian (43),
the derivatives are easily evaluated, and the conservation
laws (35) and (38) reduce to

�Ftk
i �r

�
nðF�iknÞþF�k

i þ½2Fk
i þ 2�

0 iln
mRkln

m þ�
0 lni

mRlnk
m ��

0 lnm
kRlnm

i þ 2�
0 il

nTkl
n ��

0 ln
kTln

i�Lmat ¼ 0; (47)

r
�
iðF�k

iÞ � F�l
iTki

l þ F�mn
lRklm

n þ ½�0 ilnmrkRiln
m þ �

0 ln
mrkTln

m�Lmat ¼ 0: (48)

Here the so-called modified covariant derivative is defined
as usual by

r
�
i ¼ ri � Tki

k: (49)

It replaces the derivative (36) when we pass from the
tensor densities to the true tensors in the Riemann-Cartan
spacetime.

After we take into account the identities (40) and (41),
the conservation laws (47) and (48) are brought to the final
form,

F�k
i ¼ Ftk

i þr
�
nðF�iknÞ; (50)

r
�
iðF�k

iÞ ¼ F�l
iTki

l � F�mn
lRklm

n � LmatrkF: (51)

Lowering the index in (50) and antisymmetrizing, we
derive the conservation law for the spin,

F�½ij� þ r
�
nðF�½ij�nÞ ¼ 0: (52)

This is a generalization of the usual conservation law of the
total angular momentum for the case of nonminimal
coupling.

C. Purely Riemannian theory

Our results contain the Riemannian theory as a special
case. Suppose the torsion is absent Tij

k ¼ 0. Then for usual

matter without microstructure (spinless matter with
�mn

i ¼ 0) the canonical and the metrical energy-
momentum tensors coincide, �k

i ¼ tk
i. As a result, the

conservation law (51) reduces to

ritk
i ¼ 1

F
ð�Lmat�

i
k � tk

iÞriF: (53)

It is remarkable that we are able to generalize the earlier
result (8) to the case when the nonminimal coupling func-
tion F depends not just on the minimal set of the curvature

invariants but is actually an absolutely arbitrary scalar
function of the curvature tensor.

V. FURTHER GENERALIZATION: MATTER WITH
INTRINSIC MOMENTS

Our formalism allows to consider also the case when
matter couples to the gravitational field strengths not just
through an F-factor in front of the Lagrangian but directly
via Pauli-type interaction terms in Lmat,

Iklmnðc A; gijÞRklm
n þ Jklnðc A; gijÞTkl

n: (54)

In Maxwell’s electrodynamics, similar terms describe
the interaction of the electromagnetic field to the anoma-
lous magnetic and/or electric dipole moments. For the
Dirac spinor matter [20,21], the Pauli-type quantities
Iklmnðc A; gijÞ and Jklnðc A; gijÞ are interpreted as the

(Lorentz and translational, respectively) ‘‘gravitational
moments’’ that arise from the Gordon decomposition of
the dynamical currents.
Then for a Lagrangian density L ¼ ffiffiffiffiffiffiffi�g

p
Lmat with

Lmat that contains Pauli-type terms (54), we find the
derivatives (31)

�klm
n ¼ ffiffiffiffiffiffiffi�g

p
Iklmn; �kl

n ¼ ffiffiffiffiffiffiffi�g
p

Jkln: (55)

As a result, the Noether identities (35) and (38) yield the
on-shell conservation laws,

�k
i ¼ tk

i þr
�
n�

i
k
n � 2JilnTkl

n þ JlnkTln
i

� 2IilnmRklnm � 2Ilnm½iRjlnmjk�; (56)

r
�
i�k

i ¼ �l
iTki

l � �mn
lRklm

n � IilnmrkRiln
m

� JlnmrkTln
m: (57)

In the purely Riemannian case of general relativity, the
torsion vanishes and the system (56) and (57) reduces to

rn�½ik�
n ¼ ��½ik� þ 4I½i

lnmRk�lnm; (58)
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ri�k
i ¼ ��mn

lRklm
n � IilnmrkRilnm: (59)

We displayed only the antisymmetric part in (58), whereas
the symmetric equation describes the relation between the
metrical and canonical energy-momentum tensors. When
deriving (58), we took into account that in view of the
contraction in (54), we have the symmetry properties,

Iijkl ¼ I½ij�kl ¼ Iij½kl� ¼ Iklij: (60)

The form of the system of conservation laws (58) and
(59) is very close to Dixon’s equations describing the
dynamics of material body with the dipole and quadrupole
moments. However, it is important to stress that in contrast
to Dixon’s integrated moments of usual structureless mat-
ter, �½ik�

n and Iilnm are the intrinsic spin and quadrupole

moments of matter with microstructure. The above con-
servation laws can also be viewed as a direct generalization
of the ones for spinning particles and polarized media
given in Ref. [22].

The explicit equations of motion of such a matter
using multipolar expansion techniques will be discussed
elsewhere.

VI. CONCLUSION

We have obtained the conservation laws (50)–(53) for
the general theory (11) of matter that interacts nonmini-
mally with gravity via the coupling function F, which can

depend arbitrarily on the gravitational field strengths (9)
and (10). In a certain sense, this situation is similar to the
scalar-tensor-type theory [23], where the gravitational cou-
pling constant is replaced by a scalar field that depends on
time and spatial coordinates.
In our study we assumed that the connection is metric

compatible, that is, Qkij ¼ �rkgij ¼ 0. However, it is

straightforward to generalize all derivations to the geome-
tries with nontrivial nonmetricity Qkij.

We demonstrate that an even further generalization of
the gravitational theories with nonminimal coupling is
possible by allowing for the direct interaction via Pauli-
type gravitational moments, thus extending the earlier
results of Bailey and Israel [22].
The results obtained in this work should form the basis

for a reanalysis of the equations of motion of the material
bodies with microstructure, thus generalizing the previous
work [8,13–15] to the general framework with the non-
minimal coupling. In particular, this will allow us to extend
the discussion on probing possible post-Riemannian
spacetime structures by means of the Gravity Probe B
mission.
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