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Piotr Żenczykowski*

Division of Theoretical Physics, The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,
Radzikowskiego 152, 31-342 Kraków, Poland

(Received 27 February 2013; published 16 April 2013)

The sets of charged-lepton (L) and quark ðD;UÞ masses may be parametrized in a Z3-symmetric

language appropriate for the discussion of Koide’s formula. Experiment suggests that at the low-energy

scale the relevant phase parameters �f take on possibly exact values of �L ¼ 3�D=2 ¼ 3�U ¼ 2=9. For

kf (the other parameter relevant for the pattern of masses), a similarly simple expression (kL ¼ 1) is

known for charged leptons only. Using the Fritzsch-Xing decomposition of quark-mixing matrices, we

show that the suggested pattern of low-energy quark masses is consistent with an earlier conjecture that

kD;U � 1 in the weak basis.
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I. THE DOUBLY SPECIAL KOIDE’S
PARAMETRIZATION

The appearance of three generations of leptons and
quarks and the related issue of their masses started to baffle
us three quarters of a century ago. Over the years the
problem has become further complicated by the presence
of intergeneration mixing, as revealed in weak interactions.
Fortunately, various approximate regularities have been
found in the observed pattern of particle masses and
mixings. Among the many possible parametrizations of
these regularities, there might be some whose simplicity
could help us in deciphering physics beyond the Standard
Model.

One of the most interesting of such regularities is an
empirical relation between the charged-lepton masses dis-
covered by Koide [1] (for a brief review see Ref. [2]):
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with kL equal exactly 1. When the experimental e and �
masses (here taken from Ref. [3]) are inserted into Eq. (1),
this relation predicts the tauon mass within one standard
deviation from its observed value:

m�ðkL ¼ 1Þ ¼ 1776:9689 MeV; (2)

m�ðexp Þ ¼ 1776:82� 0:16 MeV: (3)

Discussions of this success of Koide’s formula (1) are
naturally formulated in a Z3-symmetric framework by
parametrizing the masses of any three given fermions f1,
f2, f3 in terms of three parameters Mf, kf, �f as [4,5]
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This choice of parametrization of masses is particularly
suited to Koide’s formula as not onlyMf but also �f drops

out of the rhs of Eq. (1).
Since �f is free we may assumem1 � m2 � m3 without

any loss of generality. From Eq. (4) one then gets a
counterpart of Eq. (1), in which it is now kL that drops
out of the formula:ffiffiffi
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From the experimental values of e, �, and � masses one
finds

�L ¼ 0:2222324; (6)

which, as observed by Brannen and Rosen [6,7], is
extremely close to

�L ¼ 2=9: (7)

Conversely, assuming �L ¼ 2=9, Eq. (5) predicts the value
of the tauon mass in terms of experimental e and�masses.
Such a prediction is obviously completely independent
from that given by the original Koide’s formula [Eq. (1)].
Yet, just as in the case of Koide’s formula, the obtained
number is within one standard deviation from the measured
� mass:

m�ð�L ¼ 2=9Þ ¼ 1776:9664 MeV: (8)

Assuming that the Koide and the Brannen-Rosen observa-
tions do not reflect mere coincidences, the Z3-symmetric
parametrization (4) should be rightly called ‘‘doubly spe-
cial.’’ A peculiar feature of this parametrization is that the
simple numbers of 1 and 2=9 work well at the low-energy
scale and not at some high-mass scale. For example, taking
the values of charged-lepton masses at the mass scale of
MZ, the extracted values of kL and �L deviate from their
‘‘perfect’’ values of 1 and 2=9 by about 0.2% and 0.5%,
respectively. Apparently, an explanation of the success
of predictions (2) and (8) should not be sought at the*piotr.zenczykowski@ifj.edu.pl
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high-mass scale of some grand unified theory (see, e.g.,
Ref. [8]).

II. EXTENDING THE SCHEME TO THE
QUARK SECTOR

If there is some physical reason behind the appearance
of simple numbers such as 1 (Koide) and 2=9 (Brannen-
Rosen) in the charged-lepton sector, one would expect its
analogs working in the quark and neutrino sectors as well.
However, it is known that the original Koide formula (1)
does not work when replacing the charged-lepton masses
with those of neutrinos or quarks. For neutrinos one esti-
mates directly from experiment that k� � 0:81 [9] (the

mathematically allowed region being 0 � kf �
ffiffiffi
2

p
). For

quarks, using their mass values appropriate at� ¼ 2 GeV,
one obtains kD � 1:08 (kU � 1:25) for the down (up)
quarks, respectively, [9,10]. If a higher energy scale
� ¼ MZ is taken, even larger values are obtained, i.e.,
kD ¼ 1:12 and kU ¼ 1:29. Going from � ¼ 2 GeV
towards the low-energy scale leads to smaller values of
kD and kU. However, the top quark mass is so large that one
certainly cannot bring kU into the vicinity of 1.

On the other hand, it has been observed recently [11]
from the quark sector analogs of Eq. (5) that for the old-
fashioned effective quark masses, i.e., at the low-energy
scale, the relevant phase parameters acquire approximate
values:

�U � 2=27 ¼ �L=3; �D � 4=27 ¼ 2�L=3; (9)

which constitute a generalization of the Brannen-Rosen
observation (7) to the quark sector. Due to the problem
of quark confinement we obviously cannot check how
precise the above equalities are. However, given the accu-
racy of their lepton counterpart [Eq. (8)] we may expect
that they are fairly exact. Therefore, we will assume this
from now on and conjecture that at the low-energy scale
the charged-lepton and quark masses are characterized
by Eqs. (7) and (9).

The problems then remain how to interpret the value of
kL ¼ 1 and how it should be generalized to the quark
sector. Here we accept the suggestion of Ref. [12] that
kf ¼ 1 is a feature of the weak basis. Thus, according to

Ref. [12], the masses of charged leptons are described by
kL ¼ 1 because for charged leptons the mass and the weak
bases coincide. The lepton-mixing matrix (for simplicity
we assume here Dirac neutrino masses), i.e.,

VMNS ¼ Uy
LU�; (10)

is then wholly assigned to the contribution from neutrinos
(for which k� � 1):

U� ¼ VMNS; UL ¼ 1: (11)

In other words, if UL were different from 1, one would not
expect the simplicity of Koide’s formula to persist.

Since the analogs of the charged-lepton equality kL ¼ 1
do not hold in the U and D quark sectors, one expects that
the quark counterpart of the decomposition (11) will be
also modified. Thus, in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix

VCKM ¼ Uy
UUD; (12)

both of the factor matrices UU and UD are expected to be
different from 1.
For fermion type f, the general connection between the

mass and the weak bases is

diagðmf1 ; mf2 ; mf3Þ ¼ Uy
f;leftMUf;right; (13)

where M is the mass matrix in the weak basis and
Uf;left � Uf. Reference [12] chooses Uf;right ¼ 1. The rea-

son for this choice is obvious: one wants to study the
effects of a change of basis in the sector of left-handed
fields only. As a result, in the weak basis one deals with
‘‘pseudomasses’’ ~mfj , defined as [12]

~mfj ¼
��������
X
k

Ujk
f mfk

��������: (14)

The appearance of a sum over k amounts here to an
assumption that those mass terms which are coefficients
at the symmetric (‘‘democratic’’) combination

~qf;right ¼ 1ffiffiffi
3

p
 X3
k¼1

qfk;right

!
(15)

are taken into account in the definition of pseudomasses,
but that the analogous coefficients at the remaining two
combinations of qf1;right, qf2;right, and qf3;right (orthogonal to

~qf;right) are not considered (for example, they might physi-

cally vanish). Since Koide’s formula involves square roots
of masses, which is a feature of unknown origin, a natural
generalization of this formula to pseudomasses seems to
be that these masses should be defined as moduli ofP

kU
jk
f mfk as proposed in Ref. [12].1

For charged leptons (f ¼ L, UL ¼ 1) these pseudo-
masses coincide with the observed masses, i.e., ~mLj

¼
jmLj

j. On the other hand, for quarks (f ¼ D, U with UD,

UU � 1) the pseudomasses are different from the observed
mass values. It is for these pseudomasses that, according
to the proposal of Ref. [12], the analogs of Koide’s
formula (1) are supposed to hold with kD ¼ kU ¼ 1.
The authors of Ref. [12] used quark masses at the Zmass

scale and found that it is possible to get kD ¼ kU � 1
provided one takes a value of the strange quark mass
msðZÞ that is larger by a factor of 2.5 from the theo-
retical estimate at that scale. Since the Koide and the

1There is no freedom to redefine phases so as to obtain real
positive values for

P
kU

jk
f mfk . The whole available freedom in

the choice of phases is used up when removing five unphysical
phases from the general CKM matrix; see Sec. B in Ref. [13].
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Brannen-Rosen observations work best at the low-energy
scale (and not at the Z mass), and since at the low-energy
scale the masses of quarks (and especially ms; see
Ref. [11]) are naturally expected to be larger than at the
Z mass, a question appears if it is possible to recover
Koide’s formula for quarks using effective quark masses
corresponding to phases of formulas (9). This is the ques-
tion asked here. Thus, the present paper constitutes a
low-energy-scale study of the idea of Ref. [12].

III. THE STRUCTURE OF Uf IN THE
QUARK SECTOR

As the assumption of Koide’s formula for pseudomasses
imposes constraints upon matrices UD and UU (and, con-
sequently, upon VCKM), we have to discuss these matrices
in some detail.

In Ref. [14] Fritzsch and Xing convincingly argued that
the hierarchical structure of quark mass terms suggests
certain particular parametrizations of UD and UU as
‘‘most physical’’ (i.e., that this structure selects one of
the nine possible parametrizations of the VCKM matrix
[15] as probably the most suitable for the description of
the quark-mixing phenomenon). The same parametrization
was also advocated in Ref. [12] where the conjecture that
Koide’s formula holds in the weak basis was originally
formulated. Consequently, we think that it is justified to
accept the Fritzsch-Xing parametrization here. The rele-
vant ‘‘natural’’ parametrizations of UD and UU are then

UD ¼ R23ð�b; �bÞR12ð�dÞ; UU ¼ R23ð�t; �tÞR12ð�uÞ;
(16)

with (cq � cos �q, sq � sin �q)

R12ð�qÞ ¼
cq �sq 0

sq cq 0

0 0 1

0
BB@

1
CCA; ðq ¼ d; uÞ; (17)

R23ð�q;�qÞ ¼
e�i�q 0 0

0 cq sq

0 �sq cq

0
BB@

1
CCA; ðq¼ b; tÞ: (18)

Thus, the induced parametrization of the VCKM matrix can
be read from

VCKM ¼ Ry
12ð�uÞRy

23ð�t; �tÞR23ð�b; �bÞR12ð�dÞ: (19)

The product Ry
23ð�t; �tÞR23ð�b; �bÞ may be written in

the form of Eq. (18) with a single phase � ¼ �b ��t

and a single rotation angle � ¼ �b � �t, (with c � cos�,
s � sin �)

Ry
23ð�t; �tÞR23ð�b; �bÞ � R23ð�; �Þ ¼

e�i� 0 0

0 c s

0 �s c

0
BB@

1
CCA:

(20)

The CKM matrix is then parametrized as

VCKM ¼
cu su 0

�su cu 0

0 0 1

0
BB@

1
CCA

e�i� 0 0

0 c s

0 �s c

0
BB@

1
CCA

cd �sd 0

sd cd 0

0 0 1

0
BB@

1
CCA

¼
susdcþ cucde

�i� sucdc� cusde
�i� sus

cusdc� sucde
�i� cucdcþ susde

�i� cus

�sds �cds c

0
BB@

1
CCA:
(21)

Since quark fields can be freely rephased, all of the three
angles �d, �u, � can be arranged to lie in the first quadrant
so that su, sd, s and cu, cd, c are all positive (the phase �
cannot be so restricted).
We use the following absolute values of the elements of

the CKM matrix most relevant for our parametrization2 [3]:

jVubj ¼ 0:00351� 0:00015;

jVcbj ¼ 0:0412� 0:0008;

jVtdj ¼ 0:00867� 0:00030;

jVtsj ¼ 0:0404� 0:0008;

jVtbj ¼ 0:999146� 0:000034:

(22)

Inserting the above numbers, we find from (21)

�u ¼ 4:87� � 0:23�; �d ¼ 12:11� � 0:47�;

� ¼ �b � �t ¼ 2:37� � 0:05�: (23)

Since formula (14) involves absolute values, the actual sizes
of �b and �t and, consequently, the experimentally im-
posed restriction on the CP-violating phase parameter � ¼
�b ��t are irrelevant for our purposes. Indeed, from
Eqs. (14) and (16), it follows that (1) the phase factor
e�i�b enters into the definition of ~mD1

only and (2) that it

appears there as an overall factor (before the absolute value
is taken). Thus the values of ~mDk

are completely indepen-

dent of �b. Similar conclusion holds for the sector of up
quarks.

2Calculations of the scale dependence of CKM matrix ele-
ments over the enormous range from 102 GeV to 1015 GeV
show that this dependence is negligible for the Cabibbo subma-
trix and is of the order of 15% for the remaining off-diagonal
elements [16]. Consequently, one may expect that a similar
dependence over the much smaller range of 1–102 GeV is
negligible.
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IV. IMPOSING KOIDE’S CONDITION
ON PSEUDOMASSES

The values of �D ¼ 4=27 and �U ¼ 2=27, together with
the low-energy ratios ms=md ¼ 20:4, mu=md ¼ 0:56 (see,
e.g., Ref. [17]), suffice to fix the pattern of effective (low-
energy) quark masses up to two overall mass scales (in the
up and down sectors). These scales are irrelevant for the
discussion of Koide’s formulas for pseudomasses. For illus-
trative purposes, however, one may set ms ¼ 160:0 MeV
and mt ¼ 172000 MeV. This choice leads to the following
representative values of effective quark masses (in MeV):

md ¼ 7:843; ms ¼ 160:0; mb ¼ 4209;

mu ¼ 4:392; mc ¼ 1296; mt ¼ 172000;
(24)

which sit right in the middle of the ranges given in Sec. 2.1
of Ref. [18]. Our results do not depend critically on the exact
values of the effective masses used; hence, there is no need

to include uncertainties in these masses (e.g., as given in
Ref. [18]).
For a given value of kf, with �b, �t dropping from

expression (14) for the pseudomasses, the condition

P
j ~mfj�P

j

ffiffiffiffiffiffiffiffi
~mfj

q �
2
¼ 1þ k2f

3
(25)

imposes two constraints: between �d and �b in the down
quark sector, and between �u and �t in the up quark sector.
Thus, �b becomes dependent on �d (and �t on �u). For
kD ¼ kU ¼ 1 there are two possible solutions for function
�bð�dÞ and two possible solutions for function �tð�uÞ. They
are shown in Fig. 1 with solid lines marked as �b;n and �t;n
(n ¼ 1, 2). However, only the combination �Koide ¼ �b;1 �
�t;1 is positive. Specifically, taking the central experimental

values of �u and �d, one finds
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FIG. 1. Correlations required by Eq. (25): (a) �b $ �d and (b) �t $ �u (all angles in degrees). Solid lines correspond to
kD ¼ kU ¼ 1. Dashed lines denote solutions �b;1 and �t;1 for kD ¼ kU ¼ 1:015.
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FIG. 2. Contour plots of � ¼ �b;1ð�dÞ � �t;1ð�uÞ (all angles in degrees): (a) kD ¼ kU ¼ 1 and (b) kD ¼ kU ¼ 1:015. Dashed lines are
contours corresponding to � ¼ 2:37� � 0:10�. Cross denotes experimental point ð�d; �uÞ ¼ ð12:11� � 0:47�; 4:87� � 0:23�Þ.
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�Koide ¼ 2:98�; (26)

which is only slightly different from the value given in
Eq. (23).

A question thus emerges: how much must kD, kU depart
from 1 to fit the current experimental value of �? The
dashed lines in Fig. 1 correspond to �b;1 and �t;1, as

obtained for kD ¼ kU ¼ 1:015. The predicted value of �
is then �ðkD ¼ kU ¼ 1:015Þ � 2:44�, which is in good
agreement with experiment. For completeness, we also
show the contour plot of � as a function of �d and �u for
kD ¼ kU ¼ 1 [Fig. 2(a)] and kD ¼ kU ¼ 1:015 [Fig. 2(b)].
Dashed lines correspond to contours 2:37� � 2� (with
� ¼ 0:05�).

Although it might seem that the above results indicate
that one cannot obtain kU ¼ kD ¼ 1 (as discussed earlier,
playing with the phases �b, �t does not affect the pseu-
domasses), this is not the case. One has to remember
that while parametrizations (16) have been suggested as
the most appropriate ones [14], they may be naturally

modified. Indeed, the same VCKM is obtained if one sub-
stitutes UD ! U0

D ¼ WDUD and UU ! U0
U ¼ WUUU,

provided WD and WU denote the same arbitrary unitary
matrix. If WD � WU, but both WD and WU are very close
to 1, a minor modification of our results is expected. Such

a natural modification of UDðUÞ ¼ RDðUÞ
23 RDðUÞ

12 is obtained

if we putWDðUÞ ¼ RDðUÞ
13 ð�DðUÞ

13 Þ with very small �D13 � �U13.

Since the inclusion of two new parameters �DðUÞ
13 introduces

additional freedom into the scheme, it does not make sense
to study it here. However—keeping this freedom in
mind—the parametrization of Eq. (16) and our numerical
results may be viewed as capturing the dominant effects
only.
In conclusion, the data are consistent with the statement

that low-energy quark masses satisfy phase relations
�D ¼ 2�U ¼ 4=27, while the expected Koide relations
kU ¼ kD ¼ 1 hold approximately for masses transformed
to the weak basis, as suggested in Ref. [12]. These obser-
vations might be relevant for a future theory of mass.
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Eur. Phys. J. C 9, 197 (1999).
[17] S. Weinberg, Trans. N.Y. Acad. Sci. 38, 185 (1977).
[18] H. Fritzsch and Z.-Z. Xing, Prog. Part. Nucl. Phys. 45,

1 (2000).

BRIEF REPORTS PHYSICAL REVIEW D 87, 077302 (2013)

077302-5

http://dx.doi.org/10.1007/BF02817096
http://dx.doi.org/10.1016/0370-2693(83)90644-5
http://dx.doi.org/10.1016/0370-2693(83)90644-5
http://dx.doi.org/10.1103/PhysRevD.28.252
http://arXiv.org/abs/hep-ph/0505220
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://arXiv.org/abs/hep-ph/0005137
http://dx.doi.org/10.1088/0954-3899/34/7/006
http://dx.doi.org/10.1088/0954-3899/34/7/006
http://brannenworks.com/MASSES2.pdf
http://dx.doi.org/10.1142/S0217732307022621
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140534
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140534
http://dx.doi.org/10.1016/j.physletb.2011.03.007
http://dx.doi.org/10.1016/j.physletb.2006.02.051
http://dx.doi.org/10.1103/PhysRevD.86.117303
http://dx.doi.org/10.1016/j.physletb.2005.12.054
http://dx.doi.org/10.1016/j.physletb.2005.12.054
http://arXiv.org/abs/hep-ph/9708216
http://dx.doi.org/10.1016/S0370-2693(97)01130-1
http://dx.doi.org/10.1103/PhysRevD.57.594
http://dx.doi.org/10.1007/s100529900040
http://dx.doi.org/10.1111/j.2164-0947.1977.tb02958.x
http://dx.doi.org/10.1016/S0146-6410(00)00102-2
http://dx.doi.org/10.1016/S0146-6410(00)00102-2

