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The heavy baryon �Q (Q ¼ b or c) can be regarded as composed of a heavy quark and a scalar light

diquark, which has good spin and isospin quantum numbers. In this picture we establish the Bethe-

Salpeter equation for �Q to second order in the 1=mQ expansion. With the kernel containing both the

scalar confinement and the one-gluon-exchange terms we solve the Bethe-Salpeter equation numerically.

The value of the spin-dependant form factor for the matrix element h�bðv; sÞj �b���5bj�bðv; sÞi, �b, which
is nonzero at order 1=m2

b, is obtained numerically from our model.
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I. INTRODUCTION

In the past few decades there has been much progress in
heavy flavor physics due to the discovery of the new flavor
and spin symmetries SUð2Þf � SUð2Þs in the heavy-quark

limit and the establishment of the heavy-quark effective
theory (HQET) [1]. The Large Hadron Collider (LHC) will
provide much more data for heavy hadrons, and hence it
will be able to test the standard model (SM) more accu-
rately. One may expect more precise measurements of
Cabibbo-Kobayashi-Maskawa matrix elements such as
Vub in the near future.

There have been extensive studies in the literature on
inclusive semileptonic decays of bottom hadrons, Hb !
Xe ��e (X represents all hadrons in the final states) [2–13],
especially since the establishment of HQET. These studies
include corrections to the leading-order results from per-
turbative QCD [�sðmbÞ] terms and from nonperturbative
terms, which are suppressed by powers of mb. It was

pointed out that there are no 1=mb corrections to leading
order in the 1=mb expansion for the differential decay
widths of inclusive semileptonic decays of bottom hadrons,
d�=dq2dEe, where q is the total momentum of the electron
and the neutrino and Ee is the electron energy in the �b’s
rest frame [2]. Bigi et al. studied 1=m2

b corrections to the

decay width d�=dEe [7]. Manohar and Wise extensively
analyzed 1=m2

b corrections to d�=dq2dEe for the unpolar-

ized bottom hadron Hb and for the polarized �b [8]. In
recent years, theoretical calculations for the inclusive
semileptonic decay widths and for the moments of inclu-
sive observables have been carried out to order 1=m3

b

and �2
s�0 (�0 ¼ 11� 2nf=3, nf is the number of quark

flavors) [9–13].
At leading order in �sðmbÞ the polarized differential

semileptonic decay rate for �b ! Xue ��e (where Xu repre-
sents all hadrons containing an up quark) is

d�
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where the electron mass is neglected, j ¼ u, c, � is the
angle between the electron three-momentum and the spin
vector of �b in the �b’s rest frame, E� is the neutrino
energy in the rest frame of �b, q

2 ¼ ðpe þ p�Þ2 is the
invariant mass of the lepton pair, the kinematic variables
are to be integrated over the region q2 � 4EeE�, W1, W2,
and W3 are the form factors in the spin-independent

hadronic tensor W	�, and G1, G2, G3, G6, G8, and G9

are the form factors in the spin-dependent hadronic tensor
W

	�
S . W	� and W

	�
S have the following forms [8]:

W	� ¼ �g	�W1 þ v	v�W2 � i�	���v�q�W3

þ q	q�W4 þ ðq	v� þ q�v	ÞW5 (2)

and
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W
	�
S ¼ �q � s½�g	�G1 þ v	v�G2 � i�	���v�q�G3

þ q	q�G4 þ ðq	v� þ q�v	ÞG5�
þ ðs	v� þ s�v	ÞG6 þ ðs	q� þ s�q	ÞG7

þ i�	���v�s�G8 þ i�	���q�s�G9Þ; (3)

where s	 is the spin vector of �b and v	 is the velocity
of �b.

When the electron mass is ignored, the form factorsW4,
W5, G4, G5, and G7 in Eqs. (2) and (3) do not contribute to
the differential inclusive semleptomic decay rate of the
polarized �b [8]. The expressions for other form factors
(W1,W2,W3,G1,G2,G3,G6,G8, andG9) were obtained to
second order in the 1=mb expansion in Ref. [8]. It was
shown that 1=m2

b corrections were characterized by two

parameters, 	2
� and �b, for polarized �b decays (the spin

energy is zero for �b). 	
2
� is the kinetic energy, which is

defined as

	2
� ¼ �h�bj �hvðiD?Þ2hvj�bi

2mb

; (4)

where hv denotes the field of the b quark in HQET,
D	

? ¼ D	 � v	v �D, withD	 being the covariant deriva-

tive. The value of 	2
� was calculated for the first time in

Ref. [14]. �b is defined as

h�bðv; sÞj �b���5bj�bðv; sÞi
¼ ð1þ �bÞ �u�b

ðv; sÞ���5u�b
ðv; sÞ ¼ ð1þ �bÞs�; (5)

where u�b
ðv; sÞ is the Dirac spinor of�b with helicity s. �b

is equal to zero at leading order in the 1=mb expansion due
to the heavy-quark symmetry. It is also zero at the first
order in 1=mb expansion because of the current conserva-
tion [15]. It is the aim of the present paper to calculate the
value of �b at order 1=m2

b. This will be important for the

precise measurement of Vub in polarized �b decays.
When the quark mass is very heavy compared with the

QCD scale �QCD, the light degrees of freedom in a heavy

baryon �Q (Q ¼ b or c) become blind to the flavor and

spin quantum numbers of the heavy quark because of the
SUð2Þf � SUð2Þs symmetries. Therefore, the angular mo-

mentum and flavor quantum numbers of the light degrees
of freedom become good quantum numbers that can be
used to classify heavy baryons, and �Q corresponds to the

state in which the angular momentum of the light degrees
of freedom is zero. So it is natural to regard the heavy
baryon as composed of one heavy quark and a light di-
quark. When 1=mQ corrections are taken into account,

since the isospin of �Q is zero, the isospin of the light

degrees of freedom is also zero. Therefore, the spin of the
light degrees of freedom should also be zero in order to
guarantee that the total wave function of �Q is antisym-

metric. Hence the spin and isospin of the light degrees of
freedom are still fixed even when 1=mQ corrections are

taken into account. Therefore, we still treat �Q as com-

posed of a heavy quark and a light diquark.
Based on the above picture, the three-body system is

simplified to a two-body system. We will establish the
Bethe-Salpeter (BS) equation for �Q in this picture to

order 1=m2
Q. Then, we will solve this equation numerically

by assuming that the kernel contains the scalar confine-
ment and the one-gluon-exchange terms. Furthermore, we
will express �b in terms of the BS amplitude of�b in order
to calculate the value of �b to second order in the 1=mb

expansion.
The remainder of this paper is organized as follows. In

Sec. II we will establish the BS equation for �Q to second

order in the 1=mQ expansion and discuss the form of its

kernel. Then, we will solve the equation numerically. In
Sec. III we will express �b in terms of the BS amplitude of
�b and calculate the value of �b for different model pa-
rameters. Finally, Sec. IV is reserved for summary and
discussion.

II. BETHE-SALPETER EQUATION FOR �Q TO
SECOND ORDER IN THE 1=mQ EXPANSION

As we discussed in the Introduction,�Q is regarded as a

bound state of a heavy quark and a light scalar diquark.
Hence we can define the BS amplitude of �Q as the

following:


ðx1; x2; PÞ ¼ h0jTc ðx1Þ’ðx2Þj�QðPÞi; (6)

where c ðx1Þ and ’ðx2Þ are the field operators of the heavy
quark at position x1 and the light scalar diquark at position
x2, respectively, P ¼ m�Q

v is the momentum of�Q, and v

is its velocity. Let mQ and mD represent the masses of

the heavy quark and the light diquark in the baryon,
�1 ¼ mQ

mQþmD
, �2 ¼ mD

mQþmD
, and p represents the relative

momentum of the two constituents. Then, the BS ampli-
tude in momentum space is defined as


ðx1; x2; PÞ ¼ eiPX
Z d4p

ð2�Þ4 e
ipx
PðpÞ; (7)

where X ¼ �1x1 þ �2x2 is the coordinate of the center of
mass and x ¼ x1 � x2.
It is straightforward to prove that the BS equation for�Q

has the following form in momentum space:


PðpÞ ¼ SFðp1Þ
Z d4q

ð2�Þ4 KðP; p; qÞ
PðqÞSDðp2Þ; (8)

where p1 ¼ �1Pþ p, p2 ¼ ��2Pþ p are the momenta
of the heavy quark and the light scalar diquark, respec-
tively, KðP; p; qÞ is the kernel which is defined as the sum
of two-particle irreducible diagrams, and SFðp1Þ and
SDðp2Þ are propagators of the heavy quark with momentum
p1 and the light diquark with momentum p2,
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SFðp1Þ ¼ i

6p1 �mQ þ i"
; (9)

SDðp2Þ ¼ 1

p2
2 �m2

D þ i"
: (10)

In order to solve the BS equation for�Q to second order

in the 1=mQ expansion, we rewrite Eq. (8) as the following:


0PðpÞ þ 1

mQ


1PðpÞ þ 1

m2
Q


2PðpÞ

¼
�
S0Fðp1Þ þ 1

mQ

S1Fðp1Þ þ 1

m2
Q

S2Fðp1Þ
�

�
Z d4q

ð2�Þ4
�
K0ðP;p; qÞ þ 1

mQ

K1ðP; p; qÞ

þ 1

m2
Q

K2ðP; p; qÞ
�
�

�

0PðqÞ þ 1

mQ


1PðqÞ

þ 1

m2
Q


2PðqÞ
�
SDðp2Þ; (11)

where we have expanded the BS amplitude, the propagator
of the heavy quark, and the kernel to 1=m2

Q.

It is easy to show that SD remains unchanged in the
1=mQ expansion. Then, by comparing the two sides of

Eq. (11) at each order in 1=mQ, we have following

equations.
To leading order in the 1=mQ expansion,


0PðpÞ¼S0Fðp1Þ
Z d4q

ð2�Þ4K0ðP;p;qÞ
0PðqÞSDðp2Þ: (12)

To first order in the 1=mQ expansion,


1PðpÞ ¼ S1Fðp1Þ
Z d4q

ð2�Þ4 K0ðP; p; qÞ
0PðqÞSDðp2Þ

þ S0Fðp1Þ
Z d4q

ð2�Þ4 K1ðP; p; qÞ
0PðqÞSDðp2Þ

þ S0Fðp1Þ
Z d4q

ð2�Þ4 K0ðP; p; qÞ
1PðqÞSDðp2Þ:
(13)

To second order in the 1=mQ expansion,


2PðpÞ ¼ S2Fðp1Þ
Z d4q

ð2�Þ4 K0ðP; p; qÞ
0PðqÞSDðp2Þ þ S1Fðp1Þ
Z d4q

ð2�Þ4 K1ðP;p; qÞ
0PðqÞSDðp2Þ

þ S1Fðp1Þ
Z d4q

ð2�Þ4 K0ðP; p; qÞ
1PðqÞSDðp2Þ þ S0Fðp1Þ
Z d4q

ð2�Þ4 K2ðP; p; qÞ
0PðqÞSDðp2Þ

þ S0Fðp1Þ
Z d4q

ð2�Þ4 K1ðP; p; qÞ
1PðqÞSDðp2Þ þ S0Fðp1Þ
Z d4q

ð2�Þ4 K0ðP; p; qÞ
2PðqÞSDðp2Þ: (14)

In the following we will use the variables pl ¼ v � p� �2m�Q
, pt ¼ p� ðv � pÞv. Then, in leading order, first order,

and second order in the 1=mQ expansion, we have the following equations for the heavy quark propagator using the relation

p1 ¼ �1Pþ p [16,17]:

S0Fðp1Þ ¼ ið1þ 6vÞ
2ðpl þ E0 þmD þ i"Þ ; (15)

S1Fðp1Þ ¼ � ið1� 6vÞ
4

þ i 6pt

2ðpl þ E0 þmD þ i"Þ �
ið2E1 � p2

t Þð1þ 6vÞ
4ðpl þ E0 þmD þ i"Þ2 ; (16)

S2Fðp1Þ ¼ iðpl þ E0 þmDÞð1þ 6vÞ
8

� i 6pt

4
� ip2

t

4ðpl þ E0 þmD þ i"Þ
� 2iE2ð1þ 6vÞ þ ið2E1 � p2

t Þ6pt

4ðpl þ E0 þmD þ i"Þ2 þ ið2E1 � p2
t Þ2ð1þ 6vÞ

8ðpl þ E0 þmD þ i"Þ3 ; (17)

where E0, E1, and E2 represent the binding energies, which satisfy the relation

m�Q
¼ mQ þmD þ E0 þ 1

mQ

E1 þ 1

m2
Q

E2: (18)

SDðp2Þ remains unchanged in the 1=mQ expansion, and we rewrite it as the following using the relation

p2 ¼ ��2Pþ p:
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SDðp2Þ ¼ i

p2
l �W2

p þ i"
; (19)

where W2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t þm2

D

q
.

We assume the kernel has the following form:

� iK0 ¼ 1 � 1V1 þ v	 � ðp2 þ p0
2Þ	V2; (20)

� iK1 ¼ 1 � 1V3 þ �	 � ðp2 þ p0
2Þ	V4; (21)

� iK2 ¼ 1 � 1V5 þ �	 � ðp2 þ p0
2Þ	V6; (22)

where the first terms on the right-hand sides of
Eqs. (20)–(22) arise from the scalar confinement and the

second ones are from the one-gluon-exchange diagram,
and p2 and p0

2 are the momenta of the light diquark

attached to the gluon. v	 and �	 in Eqs. (20)–(22) are
from the vertex of the heavy quark and the gluon. It is noted
that �	 in Eq. (20) becomes v	 because of heavy-quark
symmetry (see Fig. 1). The forms of V1 and V2 were given
before [16]. In this work, we assume that V3 and V4, V5 and
V6 have the same forms as V1 and V2, respectively.
However, V3 and V4, V5 and V6 are suppressed with respect
to V1 and V2 by order �QCD=mQ and �2

QCD=m
2
Q, respec-

tively. Note that v	 in Eq. (20) is replaced by �	 in
Eqs. (21) and (22) since there is no heavy-quark spin
symmetry when we include 1=mQ corrections.

Combining Eqs. (12)–(22), we have the BS equations for
�Q in leading order, first order, and second order in the

1=mQ expansion,


0PðpÞ ¼ ið1þ 6vÞ
2ðpl þmD þ E0 þ i"Þ

Z d4q

ð2�Þ4 i½1 � 1V1 þ v	 � ðp2 þ p0
2Þ	V2�
0PðqÞ i

p2
l �W2

P þ i"
; (23)


1PðpÞ ¼ ið1þ 6vÞ
2ðpl þmD þ E0 þ i"Þ

Z d4q

ð2�Þ4 i½1 � 1V3 þ �	 � ðp2 þ p0
2Þ	V4�
0PðqÞ i

p2
l �W2

P þ i"

þ ið1þ 6vÞ
2ðpl þmD þ E0 þ i"Þ

Z d4q

ð2�Þ4 i½1 � 1V1 þ v	 � ðp2 þ p0
2Þ	V2�
1PðqÞ i

p2
l �W2

P þ i"

þ i

� ð�2E1 þ p2
t Þð1þ 6vÞ

4ðpl þmD þ E0 þ i"Þ2 �
1� 6v
4

þ 6pt

2ðpl þmD þ E0 þ i"Þ
�
i

�
Z d4q

ð2�Þ4 ½1 � 1V1 þ v	 � ðp2 þ p0
2Þ	V2�
0PðqÞ i

p2
l �W2

P þ i"
; (24)


2PðpÞ ¼ ið1þ 6vÞ
2ðpl þmD þE0 þ i"Þ

Z d4q

ð2�Þ4 i½1� 1V1 þ v	 � ðp2 þp0
2Þ	V2�
2PðqÞ i

p2
l �W2

P þ i"

þ ið1þ 6vÞ
2ðpl þmD þE0 þ i"Þ

Z d4q

ð2�Þ4 i½1� 1V3 þ�	 � ðp2 þp0
2Þ	V4�
1PðqÞ i

p2
l �W2

P þ i"

þ ið1þ 6vÞ
2ðpl þmD þE0 þ i"Þ

Z d4q

ð2�Þ4 i½1� 1V5 þ�	 � ðp2 þp0
2Þ	V6�
0PðqÞ i

p2
l �W2

P þ i"

þ i

� ð�2E1 þp2
t Þð1þ 6vÞ

4ðpl þmD þE0 þ i"Þ2 �
1� 6v
4

þ 6pt

2ðpl þmD þE0 þ i"Þ
�

�
Z d4q

ð2�Þ4 i½1� 1V1 þ v	 � ðp2 þp0
2Þ	V2�
1PðqÞ i

p2
l �W2

P þ i"
þ i

� ð�2E1 þp2
t Þð1þ 6vÞ

4ðpl þmD þE0 þ i"Þ2

� 1� 6v
4

þ 6pt

2ðpl þmD þE0 þ i"Þ
�Z d4q

ð2�Þ4 i½1� 1V3 þ�	 � ðp2 þp0
2Þ	V4�
0PðqÞ i

p2
l �W2

P þ i"

þ i

�ðpl þmD þE0Þð1þ 6vÞ
8

� 6pt

4
þ �p2

t

4ðpl þmD þE0 þ i"Þ �
2E2ð1þ 6vÞ

4ðpl þmD þE0 þ i"Þ2 �
ð2E1 �p2

t Þ6pt

4ðpl þmD þE0 þ i"Þ2

þ ð2E1 �p2
t Þ2ð1þ 6vÞ

8ðpl þmD þE0 þ i"Þ3
�Z d4q

ð2�Þ4 i½1� 1V1 þ v	 � ðp2 þp0
2Þ	V2�
0PðqÞ i

p2
l �W2

P þ i"
: (25)
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It is noted that Eqs. (23) and (24) are just the equations
obtained before in the heavy-quark limit [16], and to first
order in the 1=mQ expansion [17].

In general, 
PðpÞ can be expanded as


PðpÞ ¼ ðAþ B6vþ C 6pþD 6v 6pÞu�Q
ðv; sÞ; (26)

where A, B, C, D are Lorentz scalar functions. It is easy to
prove that

6v
0PðpÞ ¼ 
0PðpÞ; (27)

and hence we have [16]


0PðpÞ ¼ �0PðpÞu�Q
ðv; sÞ; (28)

where �0PðpÞ is a scalar function.
However, 6v
1PðpÞ and 6v
2PðpÞ do not equal 
1PðpÞ and


2PðpÞ, respectively, so we define


þ
1PðpÞ¼

1þ 6v
2


1PðpÞ; 
�
1PðpÞ¼

1� 6v
2


1PðpÞ;


þ
2PðpÞ¼

1þ 6v
2


2PðpÞ; 
�
2PðpÞ¼

1� 6v
2


2PðpÞ:
(29)

It is easy to see that

6v
þ
1;2PðpÞ ¼ 
þ

1;2PðpÞ; (30)

6v
�
1;2PðpÞ ¼ �
�

1;2PðpÞ: (31)

Hence, like 
0PðpÞ, 
þ
1;2PðpÞ can be expressed as


þ
1;2PðpÞ ¼ �þ

1;2PðpÞu�Q
ðv; sÞ; (32)

where �þ
1PðpÞ and �þ

2PðpÞ are scalar functions.
By using Eqs. (26) and (31), we can see that


�
1;2PðpÞ ¼ 6pt�

�
1;2PðpÞu�Q

ðv; sÞ; (33)

where again ��
1PðpÞ and ��

2PðpÞ are scalar functions. Then
we obtain equations for all the scalar functions,

�0PðpÞ ¼ �i

ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��0PðqÞ; (34)

�þ
1PðpÞ ¼

�i

ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ

�
Z d4q

ð2�Þ4 ½V3 þ ðpl þ qlÞV4��0PðqÞ þ �i

ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ

�
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��þ
1PðqÞ þ

�ið�2E1 þ p2
t Þ

2ðpl þmD þ E0 þ i"Þ2ðp2
l �W2

P þ i"Þ

�
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��0PðqÞ; (35)

��
1PðpÞ ¼

�i

2ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��0PðqÞ; (36)

�þ
2PðpÞ ¼

�i

ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��þ
2PðqÞ

þ �i

ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V3 þ ðpl þ qlÞV4��þ
1PðqÞ

þ �i

ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ðpt � qt � q2t ÞV4�
�
1PðqÞ

FIG. 1. Diquark-gluon-diquark vertex. 	 and � are the
Lorentz and color indices of the gluon, respectively.
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þ �i

ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V5 þ ðpl þ qlÞV6��0PðqÞ

þ �ið�2E1 þ p2
t Þ

2ðpl þmD þ E0 þ i"Þ2ðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��þ
1PðqÞ

þ �i

2ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2�pt � qt��
1PðqÞ

þ �ið�2E1 þ p2
t Þ

2ðpl þmD þ E0 þ i"Þ2ðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V3 þ ðpl þ qlÞV4��0PðqÞ

þ
�

ip2
t

4ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ þ
iE2

ðpl þmD þ E0 þ i"Þ2ðp2
l �W2

P þ i"Þ
þ �ið2E1 � p2

t Þ2
4ðpl þmD þ E0 þ i"Þ3ðp2

l �W2
P þ i"Þ

�Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��0PðqÞ

þ �i

2ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½pt � qt � p2
t �V4�0PðqÞ; (37)

��
2PðpÞ ¼

i

2ðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2� pt � qt
pt � pt

��
1PðqÞ þ

�i

2ðpl þmD þ E0 þ i"Þðp2
l �W2

P þ i"Þ

�
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��þ
1PðqÞ þ

i

2ðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4
�
1þ pt � qt

pt � pt

�
V4�0PðqÞ

þ �i

2ðpl þmD þ E0 þ i"Þ2ðp2
l �W2

P þ i"Þ
Z d4q

ð2�Þ4 ½V3 þ ðpl þ qlÞV4��0PðqÞ þ i

4ðp2
l �W2

P þ i"Þ

�
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��0PðqÞ þ ið2E1 � p2
t Þ

4ðpl þmD þ E0 þ i"Þ2ðp2
l �W2

P þ i"Þ

�
Z d4q

ð2�Þ4 ½V1 þ ðpl þ qlÞV2��0PðqÞ: (38)

From Eqs. (34) and (36) it is easy to see that [17]

��
1PðpÞ ¼

1

2
�0PðpÞ: (39)

The numerical solutions for �0PðpÞ and �þ
1PðpÞ can be

obtained by discretizing the integration region into n
pieces (with n sufficiently large). In this way, the integral
equations become matrix equations and the BS scalar
functions �0PðpÞ and �þ

1PðpÞ become n-dimensional vec-
tors. Thus�0PðpÞ is the solution of the eigenvalue equation
ðA� IÞ�0 ¼ 0, where A is an n� n matrix corresponding
to the right-hand side of Eq. (34). In order to have a unique
solution for the ground state, the rank of ðA� IÞ should be
n� 1. From Eq. (35), �þ

1PðpÞ is the solution of ðA�
IÞ�1 ¼ B, where B is an n-dimensional vector correspond-
ing to the first and third integral terms on the right-hand
side of Eq. (35). In order to have solutions for �þ

1PðpÞ, the
rank of the augmented matrix ðA� I; BÞ should be equal to
that of ðA� IÞ, i.e., B can be expressed as linear combi-
nation of the n� 1 linearly independent columns in
ðA� IÞ. This is difficult to guarantee if B � 0, since the
way to divide ðA� IÞ into n columns is arbitrary.
Therefore, following Ref. [17], we demand the following
condition in order to have solutions for �þ

1PðpÞ:

Z d4q

ð2�Þ4
�
ðV3 þ ðpl þ qlÞV4Þ þ

�E1 þ p2
t

2

pl þmD þ E0 þ i"

� ðV1 þ ðpl þ qlÞV2Þ
�
�0PðqÞ ¼ 0: (40)

The simplest forms for V3 and V4 that satisfy Eq. (40) are

V3 ¼
E1 � p2

t

2

pl þmD þ E0 þ i"
V1; (41)

V4 ¼
E1 � p2

t

2

pl þmD þ E0 þ i"
V2: (42)

With Eq. (40), �þ
1PðpÞ satisfies the same eigenvalue

equation as �0PðpÞ. Therefore, we have
�þ

1PðpÞ ¼ ��0PðpÞ; (43)

where � is a constant of proportionality with dimension of
mass. It was determined to be zero by applying Luke’s
theorem [15] at the zero-recoil point in HQET [17].
Therefore, �þ

1PðpÞ does not contribute.
As to the forms of V5 and V6, we simply assume that

V5 ¼ 
2V1; V6 ¼ 
2V2; (44)

where 
 is a parameter which is of order �QCD.
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From Eq. (38) we can see that ��
2PðpÞ is only related to

�0PðpÞ and �þ
1PðpÞ, so our goal is to solve the BS

equations of �0PðpÞ and �þ
2PðpÞ numerically.

In the covariant instantaneous approximation,
~Vi ¼ Vijpl¼ql , i ¼ 1, 2 [16–18]. In the meson case, one

has [18]

~V1jmeson ¼ 8��0

½ðpt � qtÞ2 þ	2�2 � ð2�Þ3
3ðpt � qtÞ

�
Z d3k

ð2�Þ3
8��0

ðk2 þ	2Þ2 ; (45)

~V2jmeson ¼ � 16�

3

�seff

ðpt � qtÞ2 þ	2
; (46)

where �0 and �seff are coupling parameters related to the
scalar confinement and the one-gluon-exchange terms,
respectively. The parameter 	 is introduced to avoid the
infrared divergence in numerical calculations, and in the
end we will take the limit	 ! 0. In the baryon case, since
the scalar confinement term is still due to a scalar interac-
tion, the form of ~V1 need not be changed. Only the pa-
rameter �0 in the meson case has to be replaced by �, which
describes the scalar confinement interaction between the
heavy quark and the diquark. However, the diquark is not a
pointlike object, so there should be a form factor in ~V2,
FðQ2ÞðQ ¼ p2 � p0

2Þ, to describe the structure of the di-
quark (see Fig. 1) [19],

FðQ2Þ ¼ �seffQ
2
0

Q2 þQ2
0

; (47)

where Q2
0 is a parameter that freezes FðQ2Þ when Q2

is very small. In the high-energy region the form factor is
proportional to 1

Q2 , which is consistent with perturbative

QCD calculations [20]. By analyzing the electromagnetic
form factor for the proton, it was found that Q2

0 ¼
3:2 GeV2 can lead to consistent results with the
experimental data [19]. Based on the above analysis, the
form of the kernel for the BS equation in the baryon case is
taken as [16]

~V1 ¼ 8��

½ðpt � qtÞ2 þ	2�2 � ð2�Þ3
3ðpt � qtÞ

�
Z d3k

ð2�Þ3
8��

ðk2 þ	2Þ2 ; (48)

~V2 ¼ � 16�

3

�2
seffQ

2
0

½ðpt � qtÞ2 þ	2�½ðpt � qtÞ2 þQ2
0�
: (49)

From the BS-equation solutions in the meson case it was
found that the valuesmb ¼ 5:02 GeV andmc ¼ 1:58 GeV
give predictions which are in good agreement with experi-
ments [18]. Hence in the baryon case we take

mD þ E0 þ 1

mb

E1 þ 1

m2
b

E2 ¼ 0:62 GeV: (50)

The dimension of � is three and that of �0 is two. This
extra dimension in � should be caused by nonperturbative
diagrams, which include the frozen form factor FðQ2Þ in
the low-momentum region. Since �QCD is the only pa-

rameter which is related to confinement, we expect that

� ¼ 
�0; (51)

where 
 is of order �QCD. It is noted that the two propor-

tionality parameters in Eqs. (44) and (51) could be different
in general, although they are both of order�QCD. However,

in order to simplify our model we assume these two
parameters are the same. The value of � was determined
to be in the region between 0:02 GeV3 and 0:08 GeV3 in
Ref. [14]. Since �0 is about 0:2 GeV2 [18], we take 
 to be
in the range from 0.1 to 0.4 GeV.
One notes that E1 ��QCDE0, E2 ��QCDE1, and hence

we further assume that E1 ¼ 
E0, E2 ¼ 
E1 ¼ 
2E0.
In general, �0PðpÞ can be a function of pl and pt.

Defining ~�0PðptÞ �
Rðdpl=2�Þ�0P, one immediately

gets the BS equation for ~�0PðptÞ,

~�0PðptÞ ¼ � 1

2ð�Wp þmD þ E0ÞWp

�
Z d3qt

ð2�Þ3 ð
~V1 � 2Wp

~V2Þ ~�0PðqtÞ; (52)

where we have used the residue theorem and selected the
upper contour in the pl plane, which has a singular point
�Wp þ i" (see Fig. 2).

Substituting ~V1 and ~V2 into Eq. (52) we have [16]

ð�Wp þmD þ E0Þ ~�0PðptÞ ¼ � 1

2Wp

�Z q2t dqt
4�2

16��

ðp2
t þ q2t þ u2Þ2 � 4p2

t q
2
t

~�0PðqtÞ þ
32��2

seffQ
2
0Wp

3ðQ0 � u2Þ

�
Z q2t dqt

4�2

1

2ptqt

�
ln
ðpt þ qtÞ2 þ u2

ðpt � qtÞ2 þ u2
� ln

ðpt þ qtÞ2 þQ2
0

ðpt � qtÞ2 þQ2
0

�
~�0PðqtÞ

�

þ 1

2Wp

Z q2t dqt
4�2

16��

ðp2
t þ q2t þ u2Þ2 � 4p2

t q
2
t

~�0PðptÞ: (53)
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This is an eigenvalue equation of ~�0PðptÞ. Solving this
equation, we obtain the values of the model parameter �seff

corresponding to different values of � andmD (see Table I).

With the numerical result of ~�0PðptÞ, we can solve
~�þ
2PðptÞ numerically from Eq. (37).
The normalization equation for the BS equation takes

the following form [21]:

i

ð2�Þ4
Z

d4qd4q0 �
kðq0Þ @

@k0
½Iðq0; q; kÞ

þ Kðq0; q; kÞ�
kðqÞ ¼ 2k0; (54)

where Iðq0; q; PÞ ¼ 
ð4Þðq0 � qÞ½SFðp1Þ��1½SDð�p2Þ��1,
in which p1 ¼ �1Pþ q0, p2 ¼ ��2Pþ q0, and k0 repre-
sents the energy of �b, which is the mass of �b in the rest
frame of �b. With this condition we can give the plots of

the normalized ~�0PðptÞ and ~�þ
2PðptÞ in Figs. 3 and 4,

respectively.

III. NUMERICAL RESULTS OF �b

With the numerical results of the BS amplitudes solved
above, we can calculate the value of �b. The left-hand side
of Eq. (5) can be expressed as the overlap integral of the BS
amplitude by the following:

h�bðv; sÞj �b���5bj�bðv; sÞi

¼
Z d4p

ð2�Þ4 �
PðpÞ���5
PðpÞS�1
D ðp2Þ: (55)

Hence we have

ð1þ �bÞ �u�b
ðv; sÞ���5u�b

ðv; sÞ

¼
Z d4p

ð2�Þ4 �
PðpÞ���5
PðpÞS�1
D ðp2Þ: (56)

Expanding both sides of Eq. (56) to order 1=m2
Q, we

have

�
1þ �0b þ 1

mb

�1b þ 1

m2
b

�2b

�
�u�b

ðv; sÞ���5u�b
ðv; sÞ

¼
Z d4p

ð2�Þ4 �u�b
ðv; sÞ

�
�0PðpÞ þ 1

mb

ð�þ
1PðpÞ

þ��
1PðpÞ6ptÞ þ 1

m2
b

ð�þ
2PðpÞ þ��

2PðpÞ6ptÞ
�
���5

�
�
�0PðpÞ þ 1

mb

ð�þ
1PðpÞ þ��

1PðpÞ6ptÞ

þ 1

m2
b

ð�þ
2PðpÞ��

2PðpÞ6ptÞ
�
u�b

ðv; sÞS�1
D ðp2Þ; (57)

where we have expanded �b in Eq. (5) as

�b ¼ �0b þ 1

mb

�1b þ 1

m2
b

�2b: (58)

FIG. 2. Three singular points, �mD � E0 � i", �Wp þ i",
and Wp � i", in the pl plane.

TABLE I. Values of �seff for different mD and �.

�ðGeV3Þ 0.02 0.04 0.06 0.08

mD ¼ 650 MeV �seff 0.66 0.7 0.73 0.75

mD ¼ 700 MeV �seff 0.69 0.73 0.76 0.78

mD ¼ 750 MeV �seff 0.74 0.77 0.79 0.8

mD ¼ 800 MeV �seff 0.77 0.8 0.82 0.83

FIG. 3 (color online). Plot of ~�0PðptÞ with mD ¼ 650 MeV,
� ¼ 0:04.

FIG. 4 (color online). Plot of ~�þ
2PðptÞ with mD ¼ 650 MeV,

� ¼ 0:04.
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By comparing the two sides of Eq. (57) at each order in the 1=mQ expansion, we have the following equations.

To leading order in the 1=mQ expansion,

ð1þ �0bÞ �u�b
ðv; sÞ���5u�b

ðv; sÞ ¼
Z d4p

ð2�Þ4 �u�b
ðv; sÞ�0PðpÞ���5�0PðpÞu�b

ðv; sÞS�1
D ðp2Þ: (59)

To first order in the 1=mQ expansion,

�1b �u�b
ðv; sÞ���5u�b

ðv; sÞ ¼
Z d4p

ð2�Þ4 �u�b
ðv; sÞ½�0PðpÞ���5�

þ
1PðpÞ þ�0PðpÞ���5 6pt�

�
1PðpÞ þ�þ

1PðpÞ���5�0PðpÞ
þ��

1PðpÞ6pt�
��5�0PðpÞ�u�b

ðv; sÞS�1
D ðp2Þ: (60)

To second order in the 1=mQ expansion,

�2b �u�b
ðv; sÞ���5u�b

ðv; sÞ ¼
Z d4p

ð2�Þ4 �u�b
ðv; sÞ½�0PðpÞ���5�

þ
2PðpÞ þ�0PðpÞ���5 6pt�

�
2PðpÞ þ�þ

1PðpÞ���5�
þ
1PðpÞ

þ�þ
1PðpÞ���5 6pt�

�
1PðpÞ þ��

1PðpÞ6pt�
��5�

þ
1PðpÞ þ��

1PðpÞ6pt�
��5 6pt�

�
1PðpÞ

þ�þ
2PðpÞ���5�0PðpÞ þ��

2PðpÞ6pt�
��5�0PðpÞ�u�b

ðv; sÞS�1
D ðp2Þ: (61)

Getting rid of the spinors, �b at each order in the 1=mQ expansion can be expressed as the following:

ð1þ �0bÞ ¼
Z d4p

ð2�Þ4 �0PðpÞ�0PðpÞS�1
D ðp2Þ; (62)

�1b ¼ 2
Z d4p

ð2�Þ4 �0PðpÞ�þ
1PðpÞS�1

D ðp2Þ; (63)

�2b ¼ 2
Z d4p

ð2�Þ4 �0PðpÞ�þ
2PðpÞðp2

l �W2
PÞ �

1

3

Z d4p

ð2�Þ4 �
�
1PðpÞ��

1PðpÞp2
t ðp2

l �W2
PÞ: (64)

From Eq. (62) one can see immediately that �0b ¼ 0
because the Isgur-Wise function is normalized to 1. From
Eq. (63) we have �1b ¼ 0 since �þ

1PðpÞ ¼ 0. This is con-
sistent with the demand of the current conservation [15].

Substituting Eqs. (34), (37), and (39) into Eq. (64) and

using ~�ðptÞ ¼
R dpl

2� �ðpÞ and the residue theorem, we

obtain the value of �2b with the obtained numerical results

of ~�0PðptÞ and ~�þ
2PðptÞ. The results are listed in Table II.

We can see from Table II that the value of �2b depends
on our model parameters, mD and �. In the ranges of the
parameters, �2b is always negative. The absolute value of
�2b increases with an increase of mD and �. When mD ¼
650 MeV,

ffiffiffiffiffiffiffiffiffiffij�2bj
p

changes from 0.33 to 0.56 GeV. When

mD ¼ 800 MeV,
ffiffiffiffiffiffiffiffiffiffij�2bj

p
changes from 0.62 to 0.79 GeV.

As expected,
ffiffiffiffiffiffiffiffiffiffij�2bj

p
is of order �QCD. This indicates that

our results are reasonable.

IV. SUMMARYAND DISCUSSION

More and more data have been and will be collected at
the LHC. This makes possible more precise measurements
of Cabibbo-Kobayashi-Maskawa matrix elements, espe-
cially the value of Vub. Vub can be measured through the
inclusive semileptonic decays of polarized �b. Since the
decay rate involves two parameters, 	2

� and �b, to second
order in the 1=mb expansion, the theoretical calculation of
these two parameters is important for extracting more
precise values of Vub from experimental data. 	2

� was
calculated in the previous work. In this paper we focused
on the theoretical calculation of �b in the BS equation
approach. Since �b is only nonzero at second order in the
1=mb expansion, it is necessary to establish the BS equa-
tion for �b to this order.
We regarded the heavy baryon�b as being composed of

a heavy b quark and a light scalar diquark based on the fact
that the light degrees of freedom in �b have fixed spin and
isospin quantum numbers. In this picture, we established
the BS equation for �b to second order in the 1=mb

expansion. Then we solved the BS equation numerically
by applying the kernel, which includes the scalar confine-
ment and the one-gluon-exchange terms. To second order
in the 1=mb expansion, we obtained numerical results for
BS scalar functions. Expressing �b as the overlap integral
of the BS amplitude for �b, we obtained the numerical

TABLE II. Values of �2b for different mD and �.

�ðGeV3Þ 0.02 0.04 0.06 0.08

mD ¼ 650 MeV �2bðGeV2Þ �0:11 �0:19 �0:26 �0:32
mD ¼ 700 MeV �2bðGeV2Þ �0:16 �0:25 �0:32 �0:41
mD ¼ 750 MeV �2bðGeV2Þ �0:27 �0:36 �0:44 �0:49
mD ¼ 800 MeV �2bðGeV2Þ �0:39 �0:47 �0:56 �0:62
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values for �b. It was found that �b is only nonzero at 1=m
2
b,

as expected. This indicates that our result is consistent with
the requirements from the heavy-quark symmetry and the
current conservation. At 1=m2

b, �b can be expressed as

�2b=m
2
b. We found that in the ranges of our model parame-

ters, �2b is always negative, and varies form �0:11 GeV2

to �0:62 GeV2. We found that
ffiffiffiffiffiffiffiffiffiffij�2bj

p
is of order �QCD, as

expected.
There are some uncertainties in our model. Compared

with the heavy meson case, heavy baryons are much
more complicated. To order 1=mb there are two parame-
ters in our model, mD and � [17]. When we expanded to
second order in the 1=mb expansion, more uncertainties
were involved, including the forms for the kernel V5 and
V6 and the values of binding energies at orders 1=mbðE1Þ

and 1=m2
bðE2Þ. To simplify our model we assumed that

V5 ¼ 
2V1, V6 ¼ 
2V2, E2 ¼ 
E1 ¼ 
2E0, with the
same proportionality parameter 
, which is of order
�QCD. Our model to first order in the 1=mQ expansion

has been tested in �b ! �c semileptonic decay and
�b ! �c� nonleptonic decay [16,17,22]. Further tests
are needed in other physical processes and for the model
to 1=m2

Q.
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