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We determine both real and virtual next-to-leading order corrections to the gluon-induced forward jet

vertex from the high energy effective action proposed by Lipatov. For these calculations we employ the

same regularization and subtraction formalism developed in our previous work on the quark-initiated

vertex. We find agreement with previous results in the literature.
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I. THEORETICAL FRAMEWORK

In this work we present the calculation of the vertex
describing the production of a jet in a forward direction
very close in the detector to one of the hadrons in hadron-
hadron interactions at very high energies. This is done in
the kinematic approximation, where the jet is well sepa-
rated in rapidity from other jets also produced in the
scattering process. As a calculational technique we make
use of Lipatov’s effective action [1], designed to ease the
derivation of scattering amplitudes in the high energy
limit of QCD. Here we focus on the gluon-initiated jet
vertex, which is a more complicated counterpart of the
quark-initiated vertex, derived with similar techniques in
Ref. [2]. A convenient regularization and subtraction pro-
cedure, taken from Ref. [2], is shown to give the correct
results (in agreement with previous calculations in the
literature [3–8]) at next-to-leading (NLO) accuracy. The
convolution of this jet vertex with the NLO Balitsky-Fadin-
Kuraev-Lipatov (BFKL) gluon Green function plays a very
important role in the description of jet production at the
LHC physics program. Many interesting studies have been
performed in this direction in recent years; see Refs. [9–20].

A complete description of the high energy effective
action used in this work can be found in Refs. [1,5]. For
a more recent discussion directly related to our calculation,
we refer the reader to Ref. [21]. The calculation of the
quark contributions to the gluon Regge trajectory at two
loops using Lipatov’s effective action has been performed
by us in Refs. [22,23]. Here we will just briefly explain the
general structure of this action and then describe in some
detail our calculation of the gluon-initiated jet vertex.

The high energy effective action is based on the inter-
play between QCD particles and Reggeized degrees of
freedom, which are introduced as independent fields inter-
acting with the standard ones via new vertices. These
effective interactions, dominant in the high energy limit
of QCD, appear inside an extra term added to the QCD
action. Reggeized quarks and gluons ‘‘propagate’’ in the t

channel, with modified propagators connecting two re-
gions of different rapidities, and play the role of suppress-
ing any real emission in that interval. At the endpoints of
these intervals there can be particle production—single
production in multi-Regge kinematics (MRK) and double
production in quasi-multi-Regge kinematics. Within these
clusters of particle production there are no kinematic re-
strictions, and interactions are the usual QCD ones. A
representation of this effective clustering is shown in
Fig. 1(a). The ordering in rapidity of the produced clusters

is of the form y0 � y1 � � � � � ynþ1, where yk ¼ 1
2 ln

kþ
k�

and with all particles in each cluster being emitted with a
similar rapidity. Defining the light-cone vectors nþ;� ¼
2pa;b=

ffiffiffi
s

p
we work with Sudakov expansions for four-

dimensional vectors of the form k ¼ 1
2 ðkþn� þ k�nþÞ þ

k, with k being transverse. The strong ordering of the
clusters simplifies the polarization tensor of the t-channel
Reggeized particles, which can be written as g�� !
1
2 ðnþÞ�ðn�Þ� þOð1sÞ, with

ffiffiffi
s

p
being the center-of-mass

energy of the scattering process, carrying mainly trans-
verse momenta, q2i ¼ �q2i .
The effective interaction between Reggeized and usual

particles, like the one shown in Fig. 1, consists of two pieces:
the projection of the QCD vertex onto high energy kinemat-
ics and additional induced contributions. This structure can
be obtained from the following form of the effective action:

Seff ¼ SQCD þ Sind;

Sind ¼
Z

d4xTr½ðWþ½vðxÞ� �AþðxÞÞ@2?A�ðxÞ�
þ fþ $ �g; (1)

where A� are the gauge-invariant Reggeized gluon fields
which satisfy the following kinematic constraint:

@þA�ðxÞ ¼ 0 ¼ @�AþðxÞ: (2)

Their couplings to the QCD gluon field are given in
terms of two nonlocal functionals W�½v� ¼ v� 1

D�
@� ¼

v� � gv� 1
@�

v� þ � � � withD� ¼ @� þ gv�.
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The lowest order Feynman rules for the induced vertices
are shown in Fig. 2. The contributions in the vertices of
the form 1=k� generate a new type of divergence which will
be related to high energy logarithms. These divergences call
for a regularization, or equivalently, a suitable definition of
the nonlocal operator @�1� in the Wilson lines. A convenient
regularization scheme was defined in Refs. [2,22] where nþ
and n� are replaced by tilted light-cone vectors of the form
a ¼ n� þ e��nþ and b ¼ nþ þ e��n�. These tilted light-
cone vectors form a hyperbolic angle � in Minkowski space
which can be interpreted as ln s, implying that at high
energies we are interested in the � ! 1 limit. In the follow-
ing we treat � as an external parameter which, at the end, we
consider in the � ! 1 limit, similar to the treatment of
� ! 0 in d ¼ 4þ 2� dimensional regularization.

After this brief introduction we turn in the following
to give details of our calculation of the gluon-initiated

forward jet vertex. In Sec. II we provide a description of
the virtual corrections to the gluon-gluon-Reggeized gluon
vertex, while in Sec. III we explain the key details for the
calculation of the real corrections. Finally, Sec. IV contains
our conclusions and an outlook for future calculations. The
Appendix collects further technical details.

II. VIRTUAL CORRECTIONS TO THE GLUON-
GLUON-REGGEIZED GLUON VERTEX

Let us consider the process gg ! gg, where the external
gluons are on-shell: p2

a ¼ ðpa � kÞ2 ¼ p2
b ¼ ðpb þ kÞ2 ¼

0. In the high energy limit the corresponding scattering
amplitude factorizes into a Reggeized gluon exchange in
the t channel and its couplings to the external particles, the
so-called impact factors. At tree level this is shown in
Fig. 3.

FIG. 2. Feynman rules for the lowest-order effectivevertices.Wavy lines denoteReggeized fields and curly lines gluons. (a) is the direct
transition vertex and (b) the Reggeized gluon propagator. We also show the unregulated order g (c) and order g2 (d) induced vertices.

FIG. 1. (a) Quasi-multi-Regge kinematics. (b) Reggeized gluon-Reggeized gluon-gluon effective vertex. The first two diagrams are
the induced contributions.

G. CHACHAMIS et al. PHYSICAL REVIEW D 87, 076009 (2013)

076009-2



Light-cone momenta are defined making use of the
momenta of the incoming particles pa and pb through
pa ¼ pþ

a n
�=2 and pb ¼ p�

b n
þ=2 with 2pa � pb ¼ s ¼

pþ
a p

�
b . From Eq. (2) one obtains for the upper vertex the

constraint kþ ¼ 0, while k� ¼ 0 for the lower one. Both
constraints can be understood as the leading term in the
expansion in the small kþ=pþ

a and k�=p�
b ratios, respec-

tively. The polarization vectors must be physical, satisfying
for the upper vertex " � pa ¼ 0 and "� � ðpa � kÞ ¼ 0. The
last relation implies that "� � pa ¼ "� � k. Gauge invari-
ance of the effective action enables us to choose different
gauges for the upper and lower gluon-gluon-Reggeized
gluon couplings. We therefore impose the condition
"ðpaÞ � nþ ¼ "�ðp1Þ � nþ ¼ 0 for the upper vertex and
the condition "ðpbÞ � n� ¼ "�ðp2Þ � n� ¼ 0 for the lower
vertex, which implies the following polarization sum,

X
polarizations

"��ðp; nÞð"�0
� Þ�ðp; nÞ ¼ �g�� þ

p�n� þ p�n�
p � n ;

(3)

with p being the gluon momentum and n ¼ n�.
To define the impact factors we start from the general

definition for the differential cross section for m-particle
production in terms of the corresponding matrix elements
and the phase space integral, i.e.,

d� ¼ 1

2s
jMi!fj2d�mð2�Þd�d

�
pa þ pb �

Xm
j¼1

pj

�
;

d�m ¼ Ym
j¼1

ddpj

ð2�Þd�1
�þðp2

j Þ: (4)

In the special case where all final state particles are pro-
duced either in the fragmentation region of particle a or
particle b, we rewrite, withm ¼ ma þmb, the overall delta
function for global momentum conservation as follows:

ð2�Þd�d

�
pa þ pb �

Xm
j¼1

pj

�

¼
Z ddk

ð2�Þd ð2�Þ
2d�d

�
pa þ k� Xma

j¼1

pj

�

� �d

�
pb � k�Xmb

l¼1

pj

�
: (5)

The generalization to the additional production of
n-particle clusters at central rapidities (see also Fig. 1(a),
with m ¼ ma þmb þP

n
i mi, reads

ð2�Þd�d

�
p1 þ p2 �

Xm
j¼1

pj

�

¼ Yn
i¼0

Z ddki
ð2�Þd ð2�Þ

ð2þnÞd�d

�
pa þ k0 �

Xma

l0¼1

pl0

�

� �d

�
pb � kn �

Xmb

ln¼1

pj

�

� ð2�Þnd�d

�
k0 � k1 �

Xm1

l1¼1

pl1

�

� � � ��d

�
kn�1 � kn �

Xmn

ln¼1

pln

�
: (6)

Restricting from now on to the gg ! gg amplitude at tree-
level, we use in our next step the fact that the effective action
naturally factorizes the amplitude iMgr�!g1 into two prod-

ucts of iMgr�!g1 times the square root of the Reggeized

gluon propagator i=2q2. Squaring, averaging over color and
polarization of the initial gluon and summing over color
and polarization of the final state and Reggeized gluon (at
the level of the gr� ! g amplitudes), the 2 ! 2 tree-level
amplitude takes the following factorized form:

jMð0Þ
gagb!g1g2 j2 ¼

jMð0Þ
gar

�!g1
j2

2k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c � 1
p � jMð0Þ

gbr
�!g2

j2
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c � 1
p : (7)

Defining now the impact factors ¼ hð0Þa;bðkÞ through the

relation

d�ab ¼ hð0Þa ðkÞhð0Þb ðkÞd2þ2�k; (8)

we are led to the following general expression in terms of
the effective action matrix elements:

hð0Þa;gluonðkÞ

¼ ð2�Þd=2
2pþ

a

Z
dk�

jMð0Þ
gar

�!g1
j2

2k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c � 1
p d�1�

ðdÞðpa þ k� p1Þ;

(9)

FIG. 3. Tree-level contribution to the gluon-gluon scattering amplitude in terms of effective vertices.
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with a natural generalization to mb-particle production in
the fragmentation region of particle b.

The iMgr�!g1 amplitude itself receives at tree-level two

contributions (see Fig. 3)—one from the gluon-gluon-
Reggeized gluon vertex,

gfabc
k2

pþ
a

ðnþÞ�1ðnþÞ�2"�1
"��2;

and the other from the projection of the 3-gluon vertex,

gfabc½2g�1�2pþ
a � ðnþÞ�1ðpa � kÞ�2

� ðnþÞ�2ð2kþ paÞ�1�"�1
"��2

:

It is possible to verify that this amplitude is gauge invariant
and satisfies the necessary Ward/Slavnov-Taylor identities,
see, e.g., Refs. [1,21]. At the amplitude level we arrive at

M gar
�!g1 ¼ 2gfabc� � �� (10)

and

hð0Þa;gluonðkÞ ¼
Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
c � 1

p g2

k2
1

ð2�Þ1þ�

¼ 21þ�	sCA

�2��ð1� �Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c � 1
p 1

k2
;

	s � g2�2��ð1� �Þ
ð4�Þ1þ�

: (11)

The one-loop corrections to this gluon-gluon-Reggeized
gluon vertex are shown in Fig. 4. All diagrams are eval-
uated in the limit � ! 1, while we only keep track of
divergent (Oð�Þ) and finite (Oð�0Þ) terms; � is on the other
hand kept finite. Details about the calculation of individual
diagrams can be found in the Appendix A1. The final result
for the one-loop gr� ! g amplitude reads

iMð1Þ
gar

�!g1
¼ �g3�2�pþ

a

ð4�Þ2þ�
fabc

�
k2

�2

�
�
�
Nc" � "� �ð1� �Þ�2ð�Þ

�ð2�Þ
�
2 ln

�
pþ
a

jkj
�
þ �� i�þ c ð1Þ � 2c ð�Þ þ c ð1� �Þ

�

þ 8½Ncð1þ �Þ � nf�
�
� 1

2
" � "� �

2ð1þ �Þ�ð��Þ
�ð4þ 2�Þ þ " � q"� � q

k2
�ð�Þ�ð1� �Þ
�ð4þ 2�Þ ð2�ð1þ �Þ þ �ð2þ �ÞÞ

�

þ 8½Ncð1þ �Þ � nf� " � q"� � q
k2

�ð��Þ�2ð1þ �Þ
ð2þ 2�Þ�ð2þ 2�Þ þ " � "�ð4Nc � nfÞ�ð��Þ�2ð1þ �Þ

��ð2þ 2�Þ
� " � "�ð4Nc � nfÞ 1þ 2�

�

�ð��Þ�2ð1þ �Þ
�ð2þ 2�Þ þ 2Nc" � "� �ð��Þ�2ð1þ �Þ

�ð2þ 2�Þ þ 2" � "�½ð1þ �ÞNc � nf�

� �ð��Þ�2ð1þ �Þ
ð3þ 2�Þ�ð2þ 2�Þ � 2" � "�½4Nc � nf��ð��Þ�2ð1þ �Þ

�ð2þ 2�Þ
�
: (12)

Our result contains two types of tensor structures involving the initial and final polarization tensors, namely, " � "� and
" � q"� � q=k2. These are related to the helicity conserving and helicity violating terms [8]

" � "� ¼ ��a;�1
; " � "� þ 2

k2
" � q"� � q ¼ ���a;��1

: (13)

FIG. 4 (color online). One-loop virtual corrections to the gluon-initiated jet vertex.
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To avoid double counting it is now needed to introduce the subtraction procedure discussed in the Introduction. This
procedure requires to subtract all effective diagrams which contain internal Reggeized gluon propagators in the t channel
from the above result. With

the subtraction procedure results into the following coefficient

The one-loop Reggeized gluon self-energy, which was computed in Ref. [2], includes both divergent,Oð�Þ, and finite terms
of Oð�0Þ and reads1

where

!ð1Þðk2Þ ¼ �	sNc

2�

�2ð1þ �Þ
��ð1þ 2�Þ

�
k2

�2

�
�

(17)

is the one-loop gluon Regge trajectory. The high energy limit of the gluon-gluon scattering amplitude at one-loop is then
obtained as the following sum of diagrams

While each diagram on the right side is divergent in the
limit � ! 1, the divergence cancels in their sum, resulting
into a finite one-loop amplitude. Following Ref. [22] we
therefore define renormalized gluon-gluon-Reggeized
gluon coupling coefficients,

CRgr�!g

�
pþ
a

Mþ ; �;
k2

�2

�

¼ Zþ
�
Mþffiffiffiffiffi
k2

p ; �; �;
k2

�2

�
Cgr�!g

�
pþ
affiffiffiffiffi
k2

p ; �; �
k2

�2

�
; (19)

CRgr�!g

�
p�
b

M� ; �;
k2

�2

�

¼ Z�
�
M�ffiffiffiffiffi
k2

p ; �; �;
k2

�2

�
Cgr�!g

�
p�
bffiffiffiffiffi
k2

p ; �; �
k2

�2

�
; (20)

and the renormalized Reggeized gluon propagator,

GRðMþ;M�; �; k2; �2Þ

¼ Gð�; �; k2; �2Þ
ZþðMþffiffiffiffi

k2
p ; �; �; k

2

�2ÞZ�ðM�ffiffiffiffi
k2

p ; �; �; k
2

�2Þ
; (21)

with the bare Reggeized gluon propagator given by

Gð�; �; k2; �2Þ ¼ i=2

k2

�
1þ i=2

k2
�

�
�; �;

k2

�2

�

þ
�
i=2

k2
�

�
�; �;

k2

�2

��
2 þ � � �

�
: (22)

1There is a misprint in Ref. [2]; the term ½� � ��2 in Eq. (6) of
Ref. [2] vanishes. As the same contribution appears also in the
one-loop corrections to the quark-quark-Reggeized gluon vertex,
the final result is independent of this contribution and remains
unchanged.

NEXT-TO-LEADING ORDER CORRECTIONS TO THE . . . PHYSICAL REVIEW D 87, 076009 (2013)

076009-5



The renormalization factors Z� cancel for the complete
scattering amplitude and can be parametrized as follows

Z�
�
M�ffiffiffiffiffi
k2

p ; �; �;
k2

�2

�
¼ exp

��
�

2
� ln

M�ffiffiffiffiffi
k2

p
�
!

�
�;

k2

�2

�

þ f�
�
�;

k2

�2

��
; (23)

where the gluon Regge trajectory has the following
perturbative expansion,

!

�
�;

k2

�2

�
¼ !ð1Þ

�
�;

k2

�2

�
þ!ð2Þ

�
�;

k2

�2

�
þ � � � ; (24)

with the one-loop expression given in Eq. (17). The func-
tion fð�; k2Þ parametrizes finite contributions and is, in
principle, arbitrary. While symmetry of the scattering am-
plitude requires fþ ¼ f� ¼ f, Regge theory suggests fix-
ing it in such a way that at one loop, the non-�-enhanced
contributions of the one-loop Reggeized gluon self energy

are entirely transferred to the gluon-Reggeized gluon
couplings. This leads to

fð1Þ
�
�;

k2

�2

�

¼ �	sNc�
2ð1þ �Þ

4��ð1þ 2�Þ
�
k2

�2

�
�
�5þ 3�� nf

Nc
ð2þ 2�Þ

2ð1þ 2�Þð3þ 2�Þ
�
:

(25)

Let us remark that in principle other alternative and even
asymmetric fþ � f� choices are possible, as long as they
are in agreement with UV-renormalizability of QCD and
collinear factorization. Using now Mþ ¼ pþ

a , M
� ¼ p�

b

we can see that this choice for f keeps the full
s-dependence of the amplitude inside the Reggeized gluon
exchange. The renormalized gluon-gluon-Reggeized gluon
couplings allows then to extract the NLO corrections to the
gluon impact factor. Extracting the Born contribution and
decomposing into helicity conserving and non-conserving
parts

CRgr�!g

�
1; �;

k2

�2

�
¼ 2gfabc � ½�ðþÞ

a ��a;�1
þ �ð�Þ

a ��a;��1
�; (26)

where the helicity tensors are for finite � defined through Eq. (13), we have

�ðþÞ
a ¼ � 1

2
!ð1Þ

�
�;

k2

�2

��
�c ð1Þ þ 2c ð2�Þ � c ð1� �Þ þ 1

4ð1þ 2�Þð3þ 2�Þ þ
7

4ð1þ 2�Þ �
nf
Nc

1þ �

ð1þ 2�Þð3þ 2�Þ
�

¼ 	sNc

4�

�
k2

�2

�
�
�
� 1

�2
þ 
0

2�
� ð67� �2ÞNc � 10nf

18

�
þOð�Þ;

�ð�Þ
a ¼ � 1

2
!ð1Þ

�
�;

k2

�2

��
�

ð1þ �Þð1þ 2�Þð3þ 2�Þ
�
1þ �� nf

Nc

��
¼ 	s

12�
ðNc � nfÞ þOð�Þ:

with 
0 ¼ 11
3 Nc � 2

3nf. The result is in precise agreement with the literature2 [3–6,8].

III. REAL CORRECTIONS AND ONE-LOOP
JET VERTEX

In the high energy limit, the real corrections to the Born-
level process are naturally cast into three contributions to
the gg ! ggg amplitude where the additional gluon is
either produced at central rapidities or close to the frag-
mentation region of one of the initial gluons (quasielastic
gluon production); see Fig. 5. A second class of corrections
due to the possible fragmentation of one of the initial
gluons into a q �q pair which only contributes to the quasi-
elastic region, see Fig. 6. In the same way as the effective
action generates high energy divergences near the light
cone when computing virtual corrections, a cutoff in ra-
pidity must be enforced in the longitudinal integrations.

The central production amplitude yields the unintegrated
real part of the forward leading order BFKL kernel and is
obtained from the sum of the following three effective
diagrams:

The squared amplitude for (27), averaged over color of the
incoming Reggeized fields and summed over final state
color and helicities reads [2]

jMj2r�r�!g ¼ 16g2Nc

N2
c � 1

k02k2

q2
(28)

with k0 ¼ k� q. The central production vertex Vð0Þ can
be then defined through the differential cross section

2As noted in Ref. [6], the original result [3] contains several
misprints. The correct expressions can be found, e.g., in
Refs. [5,6,8].
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where the gluon with transverse momentum q is produced
at central rapidities and the gluons with transverse mo-
menta k0 and k in the forward and backward direction,
respectively,

d�̂abðk0;q;kÞ¼hð0Þa ðk0Þhð0Þb ðkÞV ðk;k0;qÞd2þ2�k0d2þ2�kdy:

(29)

We obtain, using the decomposition in Eq. (6) and with
M2 ¼ kþ0k�:

Vðk;k0;qÞ¼N2
c�1

8

Z
dM2

jMj2r�r�!g

k2k02
d�1�

ðdÞðk0 �k�qÞ

¼ 	sNc

���q
2
; ����1þ��ð1��Þ�2�: (30)

While the rapidities of the gluons in the forward and
backward directions are fixed through energy-momentum
conversation, ya ¼ lnpþ

a =jk0j and yb ¼ � lnp�
b =jkj, the

integral over the rapidity of the central gluon leads
for inclusive observables, where the integral over gluon ra-
pidity extends up to y ! �1, to a divergence. We therefore
introduce upper and lower bounds�a;b with�a > y >��b

to define such integrals, with the regulators evaluated in the
limit �a;b ! 1. This leads then to the definition of the

regularized production vertex V ðk;k0; q;�a; �bÞ �
Vðk; k0Þ�ð�a � yÞ�ðy� �bÞ. The complete exclusive dif-
ferential cross section is then given by

d�̂ðcÞ
ab ¼ 1

3!

h
hð0Þa ðk0Þhð0Þb ðkÞV ðk; k0; qÞ

� d2þ2�k0d2þ2�kdyþ perm
i

(31)

Here ‘perm’ denotes all possible permutations of the four
momenta of the three final state gluons, while the factor
1=3! arises due to the indistinguishability of three gluons
in the final state.

The remaining part of our calculation addresses the
quasielastic contribution gðpaÞr�ðkÞ ! gðpÞgðqÞ (see the

notation in Fig. 7). The sum of all the effective diagrams
is given in Fig. 8, where we include both the gg and the
q �q final state. In the computation of these diagrams we
will employ the following choice for the polarization
vectors: "a � pa ¼ "b � p ¼ "c � q ¼ "a � nþ ¼ "b � nþ ¼
"c � nþ ¼ 0; together with the Sudakov decomposition

pa ¼ pþ
a

n�

2
; p ¼ ð1� zÞpþ

a

n�

2
þ p� nþ

2
þ k0;

k ¼ k�
nþ

2
þ k; q ¼ zpþ

a

n�

2
þ ðk� � p�Þ n

þ

2
þ q;

(32)

where we used qþ ¼ zpþ
a and pþ

a ¼ ð1� zÞpþ
a . Squaring

and averaging over initial colors and polarizations and
summing over the final state we obtain with � ¼ q� zk

jM2jgg!ggg ¼ 8zð1� zÞðpþ
a Þ2g4Cað1þ �ÞP ggðzÞ k

2

k02

�
�
z2k02 þ ð1� zÞ2q2 � zð1� zÞq � k0Þ

q2�2

�
;

(33)

where P ggðzÞ ¼ Ca
1þz4þð1�zÞ4

zð1�zÞ is the gluon-gluon

Altarelli-Parisi splitting function. In the same way, the
joined contribution of the diagrams (j), (k) and (l) for the
quark-antiquark final state gives

jM2jgg!q �q ¼ 8zð1� zÞðpþ
a Þ2g4nfNcð1þ �ÞP qgðz; �Þ

� k2

q2k02

�
Cf

Ca

þ zð1� zÞ q ��
�2

�
; (34)

with P qgðz; �Þ ¼ 1
2 ½1� 2zð1�zÞ

1þ� � the quark-gluon splitting

function. Generalizing our definition in Eq. (9) to two final
state particles we obtain

hð1Þa;ggðkÞ¼ ð2�Þd=2
2pþ

a

�
Z
dk�

jMð0Þ
gar

�!ggj2
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c �1
p d�2�

ðdÞðpaþk�p�qÞ

¼
Z
dzd2þ2�k0Fgggðk;k0;zÞhð0Þa;gluonðk0Þ; (35)

and

FIG. 6. Quark production is restricted to the quasielastic
region.

FIG. 5. Central (left) and quasielastic (middle and right) gluon
production.

FIG. 7 (color online). Notation for external momenta and color
indices in the quasielastic contribution.
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hð1Þa;q �qðkÞ¼
ð2�Þd=2
2pþ

a

�
Z
dk�

jMð0Þ
gar

�!ggj2
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c �1
p d�2�

ðdÞðpaþk�p�qÞ

¼
Z
dzd2þ2�k0Fgq �qðk;k0;zÞhð0Þa;gluonðk0Þ; (36)

with

Fgggðk; k0; zÞ ¼ 1

2

	s

2���

P ggðzÞ

�
�
z2k02 þ ð1� zÞ2q2 � zð1� zÞq � k0

q2�2

�
;

(37)

and

Fgq �qðk;k0;zÞ¼ 	s

2���

nfP qgðz;�Þ 1
q2

�
Cf

Ca

þ zð1� zÞq ��
�2

�
;

(38)

where the overall factor 1=2 for the gg final state stems
from the indistinguishability of identical bosons in the final
state.

If we parametrize the momentum fraction z in terms of
the rapidity difference �y � yp � yq of the final state

gluons, i.e.,

z ¼ e�y

ðk02=q2Þ1=2 þ e�y
; (39)

we can see that Fggg reduces in the limits �y ! �1
(including the corresponding Jacobian factor) to half of
the central production vertex of Eq. (30). To regularize the
resulting divergence of the rapidity integral we require
ln ðpþ

a =k
0Þ þ �b > �y >� ln ðpþ

a =qÞ � �b, where �b

is again taken in the limit �b!1, and define
F gggðk;k0;z;�bÞ¼Fgggðk;k0;zÞ�ð�y� lnðpþ

a =k
0Þ��bÞ�

ð�yþ lnðpþ
a =qÞþ�bÞ. As in the case of virtual corrections

it is now necessary to subtract the contribution from gluon
production at central rapidities to construct the complete
differential cross section, schematically,

This leads to the definition of the coefficient,

GðaÞ
gggðk; k0; z; �bÞ ¼ F gggðk; k0; z; �bÞ

� 1

2

�
1

1� z
V ðk;k0; q;�a; �bÞ

þ 1

z
V ðk; q; k0;�a;�bÞ

�
; (41)

where the factor 1=2 in front of the subtraction term takes
into account Bose symmetry of the produced two gluon
system. The cross section for quasielastic production of
two gluons then reads

d�̂ðqeaÞ
ab;gg ¼

1

3!
½hð0Þa;gluonðk0ÞGðaÞ

gggðk; k0; z; �bÞ
� hð0Þb;gluondzd

2þ2�kd2þ2�k0 þ perm�; (42)

where ‘‘perm’’ denotes all possible permutations of the
four momenta of the three final state gluons. The cross
section for quasielastic production of a q �q pair is given by

d�̂ðqeaÞ
ab;q �q ¼ hð0Þa;gluonðk0ÞFðaÞ

gq �qðk;k0; z; �bÞ
� hð0Þb;gluondzd

2þ2�kd2þ2�k0: (43)

The high energy limit of the differential cross section for
the production of three final state partons is finally obtained
as the sum of central and quasielastic contributions,

d�̂ab ¼ d�̂ðcÞ
ab þ d�̂ðqeaÞ

ab;gg þ d�̂ðqeaÞ
ab;q �q þ d�̂ðqebÞ

ab;gg þ d�̂ðqebÞ
ab;q �q:

(44)

FIG. 8. Diagrams involved in the computation of the real corrections. In the case of final q �q state, the external quark has momentum
p and the external antiquark momentum q.
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Integrated over the gluon rapidity y, it yields a finite result
with a well-defined limit �a;b ! 1. This completes our

calculation of the gluon-initiated forward jet vertex at NLO
using the high energy effective action constructed by
Lipatov.

IV. CONCLUSIONS AND OUTLOOK

We have performed the calculation of the forward jet
vertex at next-to-leading order in the BFKL formalism,
offering an explicit derivation of the gluon-initiated con-
tribution. This adds to that previously calculated for the
quark-initiated vertex and completes the derivation of the
full vertex. We have found agreement with previous results
in the literature. Our method of calculation is based on the
high energy effective action for QCD proposed by Lipatov,
which is proven to be very useful to streamline our calcu-
lations. Our subtraction and regularization procedure in
order to avoid overcounting of kinematic regions has
been proven to work well in both gluon and quark cases.
Compared to more standard calculations, in this approach
the number of Feynman diagrams finally contributing to
the physical observables is reduced, and gauge invariance
is readily ensured. We are now confident this method will
help in the calculationof further amplitudes at loop level.
We understand that it is important to test these high energy
resummations in exclusive observables at the Large
Hadron Collider. Typical processes where our approach
can be applied include the inclusive production of a pair
of forward (Mueller-Navelet) jets. Similar techniques are
now being used to calculate the production of a forward jet
coupled to a color singlet, associated to diffractive events
(Mueller-Tang jets) [24,25] at next-to-leading order.
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APPENDIX

In the following we present further details on the NLO
calculation of both virtual and real corrections

1. Virtual corrections

For the notation, we refer to Fig. 4. Tadpole contribu-
tions vanish in dimensional regularization. The contribu-
tion for each of these diagrams can be written in terms of
master integrals labelled with the following notation: M, S,
P, and Q denote, respectively, the existence of a propagator
of the form kþð! b � kÞ, k2, ðk� paÞ2 or ðk� qÞ2. The
number at the end (0, 1, 2, or 3) indicates how many tensor
indices are present in the numerator (e.g., 2 stands for a
factor k�k�). � ¼ a2 ¼ b2 ¼ 4e�� are chosen to indicate
the squares of the new light-cone vectors. For diagrams
(E), (F), (I) and (J) in Fig. 4, the contribution with reversed
arrows is included. Diagrams (G) and (H) turn out to vanish
completely. The symmetry factors for the diagrams, which
are included, are equal to one apart from diagrams (C) and
(D), for which it is two. In more detail, following are all
the contributing expressions:

iMðAÞ ¼ � ig3

2
k2fabcNc

Z ddl

ð2�Þd
ðlþ � 2pþ

a Þ2" � "� þ 4�" � l"� � ðl� kÞ
lþl2ðl� paÞ2ðl� kÞ2

¼ � ig3

2
k2fabcNcf16e��"�"

�
�½MSPQ2� � 16e��"� � k"�½MSPQ1�

� 4pþ
a " � "�½SPQ0� þ 4ðpþ

a Þ2" � "�½MSPQ0� þ ðnþÞ�" � "�½SPQ1�g;

iMðBÞ ¼ � ig3

2
fabcNc

Z ddl

ð2�Þd
1

l2ðl� paÞ2ðk� lÞ2 ½4p
þ
a f" � "�ððl� paÞ2 � k2Þ þ 4ð" � l"� � k� " � k"� � lÞg

þ lþf7k2" � "� þ ð18þ 16�Þ" � l"� � ðl� kÞ þ 16" � k"� � kg�

¼ � ig3

2
fabcNcfð18þ 16�ÞðnþÞ�"�"��½SPQ3� � ð18þ 16�ÞðnþÞ�"�"� � k½SPQ�2�

þ ½ðnþÞ�ð16" � k"� � kþ 7k2" � "�Þ � 16pþ
a ð" � k"�� � "� � k"�Þ�½SPQ1�

� 4pþ
a k

2" � "�½SPQ0� þ 4pþ
a " � "�½SQ0�g;
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iMðCÞ ¼ � ig3

2
fabcNc

Z ddl

ð2�Þd
1

lþl2ðl� kÞ2 ½4�ð" � l"� � k� " � k"� � lÞ þ " � "�ð4lþpþ
a þ �ð2ðl� paÞ2 � k2Þ�

¼ � ig3

2
fabcNcf�16e��ð" � "�pa� þ " � k"�� � "� � k"�Þ½MSQ1� � 4e��k2" � "�½MSQ0� þ 4pþ

a " � "�½SQ0�g;

iMðDÞ ¼ ig3

2k2
fabcNc

Z ddl

ð2�Þd
1

l2ðl� kÞ2 ½�8pþ
a k

2" � "� þ ð5þ 4�Þlþf" � "�ðk2 � 2ðl� paÞ2Þ

þ 4" � k"� � l� 4" � l"� � kg� ¼ ig3

2k2
fabcNcfð20þ 16�ÞðnþÞ�ð" � k"�� � "� � k"� þ " � "�pa�Þ½SQ2�

þ ð5þ 4�Þk2" � "�ðnþÞ�½SQ1� � 8pþ
a k

2" � "�½SQ0�g;

iMðEÞ ¼ 2ig3

k2
fabcnf

Z ddl

ð2�Þd
1

l2ðl� kÞ2 ½p
þ
a k

2" � "� þ lþ½" � "�ð2ðl� paÞ2 � k2Þ þ 4ð" � l"� � k� " � k"� � lÞ��

¼ � 2ig3

k2
fabcnff4ðnþÞ�ð" � k"�� � "� � k"� þ " � "�pa�Þ½SQ2� þ " � "�k2ðnþÞ�½SQ1� � pþ

a k
2" � "�½SQ0�g;

iMðFÞ ¼ ig3

2k2
fabcNc

Z ddl

ð2�Þd
lþ

l2ðl� kÞ2 ½" � "�ð2ðl� paÞ2 � k2Þ þ 4ð" � l"� � k� " � k"� � lÞ�

¼ � ig3

2k2
fabcNcf4ðnþÞ�ð" � "�pa� þ " � k"�� � "� � k"�Þ½SQ2� þ k2" � "�ðnþÞ�½SQ1�g;

iMðIÞ ¼ ig3fabcnf
Z ddl

ð2�Þd
1

l2ðl� paÞ2ðl� kÞ2 ½p
þ
a ð�k2" � "� þ 2ð" � l"� � k� " � k"� � lÞÞ

þ lþð" � "�ðk2 � 2ðl� paÞ2Þ þ 8" � l"� � ðl� kÞ þ 2" � k"� � kÞ�
¼ ig3fabcnff8ðnþÞ�"�"��½SPQ3� � 8"� � kðnþÞ�"�½SPQ2�

þ ½ðk2" � "� þ 2" � k"� � kÞðnþÞ� þ 2pþ
a "

� � k"� � 2pþ
a " � k"���½SPQ1� � k2pþ

a " � "�½SPQ0�g;

iMðJÞ ¼ ig3fabcNc

Z ddl

ð2�Þd
lþ

l2ðl� paÞ2ðl� kÞ2 " � l"� � ðl� kÞ ¼ ig3fabcNcðnþÞ�f"�"��½SPQ3� � "� � k"�½SPQ2�g:

Those integrals which are not suppressed in the � ! 1 limit are

½SQ0� ¼ i

ð4�Þ2þ�
ðk2Þ� �ð��Þ�2ð1þ �Þ

�ð2þ 2�Þ ; ½SQ2� ¼ ðg��k2 þ k�k�ð4þ 2�ÞÞ 1

4ð3þ 2�Þ ½SQ0�;

½SPQ0� ¼ 1þ 2�

�k2
½SQ0�; ½SPQ1� ¼

�
k� þ 1

�
p
�
a

�
½SQ0�;

½SPQ2� ¼
�

1

2þ 2�

�
1

2
g�� þ

�
k�p�

a þ p�
a k�

k2

�
þ 2

�

p�
a p�

a

k2

�
þ 1

k2
k�k�

�
½SQ0�;

½SPQ3� ¼ 1

�ð1þ �Þð3þ 2�Þ
�
1

k2

�
p�
a p�

ap
�
a þ �k�p�p� þ 1

2
�ð1þ �Þk�k�p� � 1

6
ð1� �Þð2þ �Þ2k�k�k��

þ �

4
½p�g�� þ ð1þ �Þk�g��� þ cyclic permutations of�; � and�

�
½SQ0�;

½MSQ1� ¼ b�

�
½SQ0� þ 1

2
q�

� �i

ð4�Þ2þ�

�2ð12 þ �Þ�ð12 � �Þ�ð12Þ
�ð1þ 2�Þðk2Þ12���

1
2

�
;

½MSPQ0� ¼ � i

ð4�Þ2þ�

ðk2Þ��1

pþ
a

�ð1� �Þ�2ð�Þ
�ð2�Þ

�
ln

�
pþ
a

jkj
�
þ �

2
þ c ð1Þ � 2c ð�Þ þ c ð1� �Þ

2

�
:
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2. Details on the real corrections

We refer to Figs. 7 and 8 for our notation. We have

p� ¼ ðk� qÞ2
ð1� zÞpþ

a

; k� ¼ ðq� zkÞ2 þ zð1� zÞk2
zð1� zÞpþ

a

: (A1)

Within the given choice of polarization vectors, diagrams (a), (b), (c), (d) and (i) are immediately zero, while diagram (h)
turns out to vanish as well. The amplitudes for the nonvanishing diagrams can be written in the following form:

iMðeÞ ¼ "a�"
�
b�"

�
c�2ig

2 fadefbce
s

pþ
a fg��½k�ð1� 2zÞ � p� þ q�� þ g��ð2p� þ q�Þ � g��ð2q� þ p�Þg;

iMðfÞ ¼ "a�"
�
b�"

�
c�ð�ig2Þ fabefcde

t
pþ
a f�4zðg��p� þ g��p�

aÞ þ g��½k�ð2� zÞ þ p�ð2þ zÞ þ p
�
a ð�2þ 3zÞ�g;

iMðgÞ ¼ "a�"
�
b�"

�
c�ð�ig2Þ facefbde

u
pþ
a f�4ð1� zÞ½g��p�

a þ g��q�� þ g��½k�ð1þ zÞ þ p�
að1� 3zÞ þ q�ð3� zÞ�g;

iMðjÞ ¼ � 2g2facdt
c

s
"a�½k�ðnþÞ� � pþ

a g
��� �uðpÞ
�vðqÞ;

iMðkÞ ¼ � ig2tdta

u
"a� �uðpÞ6nþð6pa � 6qÞ
�vðqÞ;

iMðlÞ ¼ ig2tatd

t
"a� �uðpÞ
�ð6pa � 6pÞ6nþvðqÞ:

(A2)
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