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The thermal relaxation time (��ee
) for the degenerate electron plasma has been calculated by

incorporating non-Fermi liquid corrections both for the thermal conductivity and specific heat capacity.

Perturbative results are presented by making expansion in T=mD with next to leading order corrections.

We see that the next to leading order non-Fermi liquid corrections further reduce the decrease in relaxation

time due to the leading order corrections.
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I. INTRODUCTION

Determination of thermal relaxation time of degenerate
electron matter has been a subject of serious investigation
for the last several decades. Application of such studies
encompasses broad areas spread across various disciplines
like metals, semiconductors, and astrophysical objects like
white dwarfs or neutron stars, to name a few. Our focus here
is to study the heat conduction in neutron stars. In particu-
lar, we determine the thermal relaxation time of degenerate
electron systems at high density, which is relevant for heat
transfer from the crust of a star to the core [1–3].

It is known that when a new star is born following a
supernova explosion, large amounts of neutrinos are emitted
immediately from the core, resulting in a colder core and a
hotter crust; thus, a temperature gradient is set up. Then the
thermal energy gradually flows inward by heat conduction
which alternatively might be viewed as the propagation of
the cooling waves from the center towards the surface,
leading to thermalization [3]. One of the subjects of con-
temporary research in astrophysics has been the estimation
of this thermalization time scale or the estimation of the
thermal relaxation time. The investigation that we pursue
here is relevant in the context of neutron stars as we know
that degenerate electron gas and positively charged ions
constitute the envelope of the crust of neutron stars.

There exist several calculations where heat conduction
has been studied extensively. In these investigations,
major contributions have been seen to originate from the
electron-ion scattering [3,4]. The contributions of the
electron-electron scattering, in contrast, have been found
to be of limited importance [4]. Recently, this problem has
been revisited and it was seen that such conclusions are
true only when one considers the charge-charge interaction
and neglects the current-current interaction completely.
This is a valid approximation in dealing with the ions,
but might not be justified for the electron-electron scatter-
ing where at high density the magnetic interaction becomes

important [5–7]. Reference [6], in particular, deals with the
calculation of heat conductivity where it has been shown
that at high density, due to strong magnetic interaction,
the electron-electron collision frequency becomes larger
than the electron-ion collision frequency, reducing the heat
conductivity. The other point to note is that almost all these
calculations treat the degenerate electron matter as an
ideal Fermi liquid (FL) and treat the electron-electron
and electron-ion scattering nonrelativistically, restricting
to the electric sector. But at high density for the electrons
with momentum close to the Fermi momentum, since
relativistic effects become important, the magnetic inter-
action can no longer be neglected. It is now known that
with the inclusion of the transverse interaction, the normal
FL description breaks down due to the vanishing of the
electron propagator near the Fermi surface. This can be
attributed to the absence of static screening of the magnetic
photon [8]. Several investigations have been performed in
recent years where incorporation of such corrections has
been seen to have serious implications on various physical
quantities like pressure, entropy, viscosity, or quantities
like drag and diffusion coefficients [9–12]. Non-Fermi
liquid behavior for the neutrino emissivity or the neutrino
mean free path have also been studied extensively [13–15].
In all these calculations, such non-Fermi liquid (NFL)
corrections have been observed to be significant compared
to the FL results.
In this work, therefore, we incorporate NFL corrections

while estimating the thermal relaxation time (��e
) of dege-

nerate electron plasma. Such estimation requires knowl-
edge of both the thermal conductivity (�e) and specific heat
(cv) where this correction has to be included consistently
for a given order. Furthermore, in dense matter the quasi-
particle dispersion characteristics change, which modifies
the density of states too. Inclusion of this, as we shall see,
also modifies the results significantly for both �e and ��e

.

To derive analytical expressions for these quantities, how-
ever, we make a perturbative expansion in T=mD, where T
is the plasma temperature and mD is the Debye mass.
The plan of the paper is as follows. In Sec. II we develop

the formalism part which incorporates the Boltzmann
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equation, the screening mechanism of long-range inter-
actions, and the evaluation of the thermal relaxation
time. In subsection A the results of leading order thermal
conductivity and the thermal relaxation time have been
discussed, and in the subsection B next to leading order
(NLO) NFL corrections of the thermal conductivity and the
thermal relaxation time have been included, followed by a
summary and conclusion.

II. FORMALISM

We consider degenerate electron gas where the
electrons constitute an almost ideal and uniform Fermi gas
and collide among themselves. We aim to calculate the
thermal relaxation time of degenerate electron gas with the
medium modified phase-space factor. The characteristic
relaxation time for thermal conduction �� can be defined
as follows [5]:

�� ¼ 3�

cv
: (1)

In the case of a strongly degenerate electron gas, the
electron thermal conductivity (�e) can be expressed as
follows:

�e ¼ JT
T�e

; �e ¼ �ei þ �ee; (2)

where JT is the thermal current and �e is the total effective
collision frequency. This one is the sum of the partial
collision frequencies, i.e., the electron-ion (�ei) and
electron-electron (�ee) scattering rates. Evidently �e is
related to �ee and �ei [6],

1

�e

¼ 1

�ei

þ 1

�ee

; �ei ¼ JT
T�ei

; �ee ¼ JT
T�ee

: (3)

Hence, derivation of �ee in turn requires the knowledge of
�ee. It is clear from the denominator of the above equation
that the heat conduction becomes difficult when collision
frequency increases.

To evaluate �ee we appeal to the Boltzmann equation
which describes the kinetics for the individual fermion
component [5],�

@

@t
þ vp:rr þ F:rp

�
fp ¼ �C½fp�; (4)

where p is the momentum of the quasiparticle, F is the
external force, vp is the velocity of the heat carrier, and

fp is the distribution function of electrons. The collision-

integral on the rhs is given by the rate of fermions scatter-
ing in and out of the state with momentum p by scattering
on the other fermions with momentum p0. In the presence
of a weak stationary temperature gradient and the absence
of any external force, the Boltzmann equation takes the
following form:

vp:rrfp ¼ �C½fp�: (5)

Now, due to the presence of a weak temperature gradient,
these Fermi-Dirac distribution functions deviate from equi-
librium distribution functions fi, which we write as

~fi ¼ fi þ @fi
@�i

�i

rT
T

; (6)

where

fi ¼
�
exp

�
�i ��

T

�
þ 1

��1
: (7)

� is the particle energy,� is the chemical potential and T is
the temperature. Clearly the second term with � measures
the deviation from equilibrium. The collision integral can
be written as follows:

C½fp� ¼ ��0 Z
p0;k;k0

~fp ~fkð1� ~f0pÞð1� ~f0kÞ � ~f0p ~f0kð1� ~fpÞ

� ð1� ~fkÞð2�Þ4�4ðpþ p0 � k� k0ÞjMj2: (8)

jMj2 is the squared matrix element for the scattering pro-
cess 12 ! 34. The � sign includes stimulated emission
and Pauli blocking. In this paper, we only consider the
electron-electron scattering; hence, from now on only
the negative sign will be considered in the phase-space
factor. Using the standard linearization procedure from
Eqs. (5) and (6), we obtain the equation for �,

fpð1� fpÞð�p ��Þvpz

¼ ��0 Z
p0;k;k0

fpfkð1� f0pÞð1� f0kÞð2�Þ4

� �4ðpþ k� p0 � k0ÞjMj2ð�p þ�k ��p0 ��k0 Þ:
(9)

The above equation can be written in the form jXi ¼ Ij�i,
where jXi ¼ ð�p ��Þvp and I is the integral operator.

The thermal conductivity �ee is given by the maximum
of the following equation and has already been discussed
in Refs. [5,16]:

�ee ¼ hXj�i2
Th�jIj�i : (10)

h�j�i denotes an inner product, and the quantity hXj�i2
Th�jIj�i is

minimal for � ¼ � with the minimal value �ee. This is
another way to define �ee in Eq. (2). Hence, one can write

1

�ee

�
�
�
Z
p

ð�p��Þ
T

vzfpð1�fpÞ�p

��2
��0

�
Z
p;p0;k;k0

fpfkð1�f0pÞð1�f0kÞð2�Þ4

��4ðpþk�p0 �k0ÞjMj2 ð�pþ�k��p0 ��k0 Þ2
4

:

(11)
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The term in the first bracket in the denominator is the
thermal current JT .� should be determined by minimizing
Eq. (10) and the minimal value is �. But for the present
purpose here we consider the simplest trial function [5,6],

�p / ð�p ��Þvz: (12)

The above trial function can now be inserted in Eq. (11)
and the term in the bracket can be averaged over the z axis,
keeping x and � fixed, where � is the azimuthal angle
between vp and vk. After averaging we obtain [5]

ð�p þ�k ��p0 ��k0 Þ2 ¼ 2

3
!2ð1� x2Þð1� cos�Þ:

(13)

To proceed further one needs to know the interaction.
Considering only the electron-electron scattering, the
squared matrix element for small energy transfer is given
by [5]

jMj2 ¼ 32e4
�

1

ðq2 þ�LÞ
þ ð1� x2Þ cos�

ðq2 �!2 þ�TÞ
�
2
: (14)

In the above equation the medium modified photon propa-
gator contains the polarization functions �Lðq;!Þ and
�Tðq;!Þ, which describe plasma screening of interparticle
interaction by longitudinal and transverse plasma pertur-
bations, respectively. For small momentum transfers
(q � �) [17,18],

�Lðq;!Þ ¼ m2
D	L; �Tðq;!Þ ¼ m2

D	T; (15)

where

	L ¼
�
1� x

2
ln

�
xþ 1

x� 1

��
;

	T ¼
�
x2

2
þ xð1� x2Þ

4
ln

�
xþ 1

x� 1

��
:

(16)

In the above expressions x ¼ q0=q and mD is the Debye
mass m2

D ¼ e2�2=�2. For q20 < q2 the logarithmic term

has an imaginary contribution,

ln

�
q0 þ q

q0 � q

�
¼ ln

��������q0 þ q

q0 � q

���������i�
ðq2 � q20Þ: (17)

In case of the thermal conductivity due to the presence of
the cos� term in the numerator of Eq. (11), the cross term
of the matrix amplitude squared does not vanish; hence, on
retaining the cross term, the matrix amplitude squared
becomes

jMj2 ¼ 32e4

2
4 1

ðq2 þmDÞ2
� 2q4 cos�

ðq2 þm2
DÞðq6 þ �2!2m4

D

16 Þ

þ q2cos 2�

q6 þ �2!2m4
D

16

3
5: (18)

Now, we first compute the denominator of Eq. (11).
The denominator is the thermal current JT as indicated
earlier and is given by

JT¼�
Z
p

ð�p��Þ
T

vzfpð1�fpÞ�p¼��2T2

6
; (19)

where we use the following equation:

Z 1

�1
x2

ex þ 1

�
1� 1

ex þ 1

�
dx ¼ �2

3
: (20)

Now, for electrons the degeneracy factor is � ¼ 2 and JT
for the electrons is then�2T2=3. On the other hand, in case
of quarks for each flavor (� ¼ 6), the thermal current
becomes �2T2.
To proceed further to evaluate the numerator in Eq. (11),

it is convenient to introduce a dummy integration variable
!. We write the energy conserving delta function as

�ð�p þ �k � �0p � �0kÞ
¼
Z 1

�1
d!�ð!þ �p � �0pÞ�ð!� �k þ �0kÞ: (21)

Evaluating q ¼ p0 � p in terms of p, q, and cos 
pq and

defining t ¼ !2 � q2, we find

�ð!þ �p � �0pÞ ¼ p0

pq
�

�
cos
pq �!

q
� t

2pq

�

�ð!� �k þ �0kÞ ¼
k0

kq
�

�
cos
kq �!

q
þ t

2kq

�
:

(22)

The above delta functions contain terms up to !2, though
we restrict ourselves up to order ! in our calculation.
Using the above delta functions, we obtain

2�4��0

3ð2�Þ5
Z

dpdkf�pf�kð1� fð�pþ!ÞÞð1� fð�k�!ÞÞdqd!!2

� ð1� x2Þ
Z 2�

0

d�

2�
ð1� cos�ÞjMj2: (23)

The inclusion of the electron self-energy in the dispersion
relation changes the phase-space factor, which, in turn,
changes the energy integral in the above equation. We
write the momentum integration in the phase-space factor
of Eq. (23) as

dk

d�k
’
�
1þ @Re�

@!

�
; (24)

where we have assumed that the quasiparticle energy !
obeys the following dispersion relation:
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! ¼ �k � Re�ð!; kÞ: (25)

Only the real part of the self-energy has been taken into
consideration, as the imaginary part turns out to be negli-
gible in comparison with the real part. In the free case,
dk=d�k gives the inverse fermion velocity.

From Eq. (11) we can now write the expression for
��1
ee as

1

�ee

¼ 48��0�2

�3T2

dk

d�k

dp

d�p
I�ee

ðT=mDÞ; (26)

where

I�ee
ðT=mDÞ

�
Z 1

0

d!

!

!2

4T2

ðsinh !
2TÞ2

Z 1

0
dx

Z 2�

0

d�

2�
x2ð1� x2Þ

� ð1� cos�Þ
�������� 1

1þ ðxmD=!Þ2	LðxÞ
� cos�

1þ ðxmD=!Þ2	TðxÞ=ð1� x2Þ
��������

2

: (27)

In Eq. (27) the major contribution comes from the small
angle approximation, i.e., the small value of x dominates
(x	!=mD or equivalently q	mD). We have to consider
the small x behavior of �L;T ; we approximate the polar-

ization function in the small x (jxj � 1) limit to obtain

	L ¼ 1þOðxÞ; 	TðxÞ ¼ i
�x

4
þOðx2Þ: (28)

In the next two subsections we present the results of the
thermal relaxation time for both the leading and the higher
orders.

A. Leading order thermal relaxation time

In this section we derive the leading order (LO) result of
the thermal relaxation time in the degenerate electron
plasma present in the outer crust of the neutron star. It
might be recalled that in the FL theory the magnetic
contribution is suppressed compared to the electric one.
In this domain �ee varies inversely with T and cv / T. The
thermal relaxation time, on the other hand, is the ratio of
these two quantities. Therefore, in FL theory or in the
absence of transverse interaction, ��ee

/ 1=T2. Now, we

incorporate relativistic effects in it in the small energy
transfer region (! � mD, T � mD) where the transverse,
weak dynamical screening effect becomes important.
For this, transverse interaction has been incorporated in
the thermal conductivity and the medium modified phase-
space factor has also been included. Now, to have the
LO expression of ��ee

, we have to evaluate I�ee
ðT=mDÞ in

Eq. (27). In this region where! � mD, T � mD, the upper
limit of the x integral can be sent to infinity. Electric
interaction in this region gives the following contribution:

IL ¼
Z 1

0

d!

!

!2

4T2ðsinh !
2TÞ2

Z 1

0
dx

x2ð1� x2Þ
ð1þ m2

Dx
2

!2 Þ2

¼ �5

15
�3 þ 4�7

7
�5; (29)

where � is the small temperature expansion parameter
T=mD. The magnetic interaction, on the other hand, gives

IT ¼
Z 1

0

d!

!

!2

4T2ðsinh !
2TÞ2

Z 1

0
dx

x2ð1� x2Þ
1þ �2m4

Dx
6

16!4

’ 2�2ð3Þ: (30)

The higher order contribution [ðT=mDÞ10=3] in the above
equation can be neglected. For the cross term we find that

IL;T ¼
Z 1

0

d!

!

!2

4T2ðsinh !
2TÞ2

Z 1

0
dx

x2ð1�x2Þ
ð1þm2

Dx
2

!2 Þð1þ�2m4
Dx

6

16!4 Þ

’ ð2�Þ2=3
3

�8=3

�
11

3

�
�

�
14

3

�
: (31)

From the above Eqs. (29)–(31), we see that the term
coming from the magnetic sector dominates over the elec-
tric and the crossed terms. After the angular integration, we
now focus on the momentum integral. The momentum
integration gives

Z
dpdkf�pf�kð1� fð�pþ!ÞÞð1� fð�k�!ÞÞ

¼ ð1þ �ÞT2
!2

4T2

ðsinh !
2TÞ2

; (32)

where we have used Eqs. (24) and (25). The details of this
integration are given in the Appendix. In the above inte-
gral, � represents the medium effect in the phase-space
factor. In the LO, � receives the logarithmic correction
from the quasiparticle self-energy,

�ð�; kÞ ¼ e2m

�
�

12�2m

�
log

�
4

ffiffiffi
2

p
m

��

�
þ 1

��
; (33)

where � is chosen to be (�k ��) and in the low tempera-
ture limit ð�k ��Þ 	 T. The approximation is sufficiently
accurate, as only a narrow energy level near the Fermi
surface is responsible for the heat conduction of strongly
degenerate particles, and m is related to the Debye mass
(mD) through the relation m2 ¼ m2

D=2. Hence, � can be
expressed as

� ¼
�

e2

12�2
log

�
4

��

��
: (34)
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Thermal electron conductivity now takes the following
form:

�ee ¼
��

48��0ð1þ e2

12�2 log ð 4
��ÞÞ

�3
�2T�2

�

�
�
�2ð3Þþ ð2�Þ2=3

3
�8=3

�
11

3

�
�

�
14

3

�
þ�5

15
�3

���1
:

(35)

It is known that the specific heat capacity is cv ¼ �2T=3
at the LO. For the thermal relaxation time we now have,
from Eq. (1),

��ee
¼ 9

�2T

��48��0ð1þ e2

12�2 log ð 4
��ÞÞ

�3
�2T�2

�

�
�
�2ð3Þþð2�Þ2=3

3
�8=3

�
11

3

�
�

�
14

3

�
þ�5

15
�3

���1
:

(36)

In the above equation, the dominant first term in the second
bracket is from the magnetic sector, the second term is
from the longitudinal transverse cross term, and the third
one is from the electric one. This should be contrasted with
the earlier results that have been reported in Refs. [5,6].
In Refs. [5,6] the authors have mentioned that in the
low energy transfer region (! � mD, T � mD), the ther-
mal conductivity becomes independent of temperature.
This happens if only the LO term in � in Eq. (36) is
considered, but the coefficients of the other two NLO terms
make them comparable with the first one. Further modifi-
cation of the result takes place when the medium modified
dispersion relation is included in the phase-space factor
of ��ee

. The inclusion of � changes the temperature depen-

dence significantly. In this context, we can comment here
that � has to be included in the expression of ��ee

since at

very low temperature the �2 log ðTÞ term becomes large in
comparison to one. We also observe here that the FL
description breaks down with the inclusion of the magnetic
interaction.

B. Higher orders in the thermal relaxation time

In this subsection we evaluate the higher order
correction terms in the low temperature thermal relaxation
time. This has its origin in the inclusion of the NLO
terms in the specific heat capacity and �. A convenient
starting point for this would be to extend the calculation
of � in Eq. (32) which relates itself to the electron
self-energy (�). In case of the quasiparticle momenta
close to the Fermi momentum, the � is dominated by
the soft photon exchange. Beyond the leading order
at low temperature, it is given by the following
equation [8]:

�ð�; kÞ ¼ e2m

�
�

12�2m

�
log

�
4

ffiffiffi
2

p
m

��

�
þ 1

�
þ i�

24�m

þ 21=3
ffiffiffi
3

p

45�7=3

�
�

m

�
5=3ðsgnð�Þ � ffiffiffi

3
p

iÞ þ i

64
ffiffiffi
2

p
�
�

m

�
2

� 20
22=3

ffiffiffi
3

p

189�11=3

�
�

m

�
7=3ðsgnð�Þ þ ffiffiffi

3
p

iÞ

� 6144� 256�2 þ 36�4 � 9�6

864�6

�
�

m

�
3

�
�
log

�
0:928m

�

�
� i�sgnð�Þ

2

�
þO

��
�

m

�
11=3

��
:

(37)

The dominant logarithmic term in the fermion self-energy
comes from the transverse sector and it gives rise to a
logarithmic singularity when �k ! � or, in other words,
for excitations near the Fermi surface. We approximate
the above expression in the low temperature limit as
ð�k ��Þ 	 T, as has been done in the last subsection.
With the above quasiparticle self-energy, we have

dk

d�k
’
�
1þ @Re�

@!

�

¼ 1þ e2

12�2
log

�
4

��

�
þ 22=3e2�2=3

9
ffiffiffi
3

p
�7=3

� 40� 21=3e2�4=3

27
ffiffiffi
3

p
�11=3

� � �

¼ ð1þ �Þ; (38)

where � ¼ �þ �0. �0 gives us the NLO NFL terms,

�0 ¼ 22=3e2�2=3

9
ffiffiffi
3

p
�7=3

� 40� 21=3e2�4=3

27
ffiffiffi
3

p
�11=3

: (39)

The final expression for the electron thermal conductivity
now becomes

�ee ¼
�
48��0

�3
�2T�2ð1þ �Þ

�
�2ð3Þ þ ð2�Þ2=3

3
�8=3

�
11

3

�

� �

�
14

3

�
þ �5

15
�3

���1
: (40)

Unlike the FL result where �ee varies inversely with T, here
the temperature dependence is nonanalytical and anoma-
lous in nature, reminiscent of many other recent studies
involving ultradegenerate plasma [8,12,14,15]. We show
here that �ee involves fractional power in (T=mD) coming
from the medium modified phase-space factor.
The other quantity which we require for the estimation

of relaxation time is the specific heat. It has already
been derived in the context of degenerate quark matter
in Refs. [9,10]. For the degenerate electron gas it can be
written as

NON-FERMI LIQUID BEHAVIOR OF THERMAL . . . PHYSICAL REVIEW D 87, 076003 (2013)

076003-5



cv¼�2T

3
þm2

DT

36

�
ln

�
4

��

�
þ�E� 6

�2
 0ð2Þ�3

�
�40

22=3�ð83Þð83Þm3
D

27
ffiffiffi
3

p
�7=3

�5=3þ560
21=3�ð103 Þð103 Þm3

D

81
ffiffiffi
3

p
�11=3

�7=3: (41)

With Eqs. (40) and (41), the relaxation time for thermal conduction is found to be

��ee
¼ 3

��
48��0ð1þ �Þ

�3
�2T�2

�

�
�
�2ð3Þ þ ð2�Þ2=3

3
�8=3

�
11

3

�
�

�
14

3

�
þ �5

15
�3

���1
	�

�2T

3
þm2

DT

36

�
ln

�
4

��

�
þ �E � 6

�2
 0ð2Þ � 3

�

� 40
22=3�ð83Þð83Þm3

D

27
ffiffiffi
3

p
�7=3

�5=3 þ 560
21=3�ð103 Þð103 Þm3

D

81
ffiffiffi
3

p
�11=3

�7=3

�
: (42)

It is evident that the thermal relaxation time up to NLO
terms contains some anomalous fractional powers origi-
nated from the transverse interaction. This in turn changes
the temperature dependence of ��ee

nontrivially. The appe-
arance of the nonanalytic terms in Eqs. (40)–(42) has a
common origin, as explained earlier.

III. RESULTS AND DISCUSSION

In this section an estimation of the electron thermal
conductivity and the electron thermal relaxation time
with the temperature has been presented. In Fig. 1 we
have plotted �ee with T using Eq. (40). In the left panel
of Fig. 1, we note that the inclusion of both the medium
modified propagator and � decreases the value of �ee.
It shows strong deviation from the FL result �ee / 1=T.
In the right panel, it has been shown that � reduces
thermal conductivity. This has serious implications on the
total electron conductivity �e. In Ref. [6] the authors have
shown that magnetic interaction decreases �ee, which in
turn increases the electron-electron collision frequency.
Thus, to the total electron thermal conductivity electron-
electron scattering dominates over electron-ion scattering.
The phase-space correction due to the medium modifica-

tion of the electron dispersion relation further enhances
the electron-electron collision frequency.
With the thermal conductivity and specific heat capacity,

we further plot the thermal relaxation time with the tem-
perature using Eq. (42). In Fig. 2 we have shown how the
thermal relaxation time changes from the FL result with
the inclusion of the medium modifications. In the right
panel, it has been shown that the inclusion of � reduces the
thermal relaxation time. We have taken the relevant region
of temperature and density from Ref. [6]. According to
Ref. [6], in the density region higher than � ¼ 106 g cm�1

and temperature more than 108 K, Landau damping
becomes important since in this density region nonrelativ-
istic degenerate electron plasma becomes relativistic. This
region is relevant for our plots.

IV. SUMMARY

In this paper, we calculate the thermal relaxation time in
degenerate electron gas in the domain where the relativistic
effects become important. It has been shown that with the
inclusion of the magnetic interaction, which is relevant in
the above-mentioned domain, ��ee

shows departure from

the FL behavior. It is known that for the normal FL,
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FIG. 1 (color online). Temperature dependence of the electron thermal conductivity. The left panel shows a comparison between the
FL and the non-Fermi liquid NLO results where � � 0. The right panel shows the reduction of �ee with the inclusion of �.
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i.e., with only Coulomb interaction, ��ee
behaves as 1=T2.

In the relativistic domain we, on the other hand, find this to
be proportional to the inverse temperature, i.e., ��ee

/ 1=T.

This has been attributed to the absence of screening in the
transverse sector. We further expose how the in-medium
modifications of the electron dispersion characteristic af-
fect the heat conduction from the neutron star crust to the
core. Our calculation actually modifies the phase space or
the fermionic density of states, as revealed in the text,
leading to a reduction of conductivity or relaxation time.
For the thermal relaxation time, a closed form analytical
expression has been derived by making a perturbative
expansion in (T=mD) and retaining terms beyond LO.
The appearance of the fractional powers in these results
is interesting; it is reminiscent of what one obtains in the
calculation of the fermionic self-energy at high density.
Numerically, these corrections have also been found to be
important in the present context. Particularly, these correc-
tions become important in the domain of small frequency,
i.e., when ! � mD.
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APPENDIX

In this appendix we provide the complete details of the
derivation of the energy integral in the phase-space factor
discussed in the main text. We substitute �ð�p ��Þ=T ¼
�p, �ð�k ��Þ=T ¼ �k, and �!=T ¼ z to obtain

Z 1

0
f�pf�kð1�fð�pþ!ÞÞð1�fð�k�!ÞÞd�pd�k

¼ T2
Z 1

0

1

ðe��p þ 1Þðeð�pþzÞ þ 1Þðe��k þ 1Þðeð�k�zÞ þ 1Þ
�d�pd�k: (A1)

The lower integration limit can be sent to infinity without
introducing much error. Now, following Refs. [19,20],
the general way to calculate the integral (for a function
f ¼ �s, where s is an integer) is as follows:

Is ¼
Z 1

�1
�s

ðe�� þ 1Þðe�þzÞd�

¼ 2

ð1þ sÞðez � 1Þ
X½12s�

r¼0;1;���
ð�1Þs�2r

sþ 1

2r

 !

� ðsþ 1Þ!
2r!ðsþ 1� 2rÞ! ð2rÞ!C2rz

sþ1�2r; (A2)

where

2C2r ¼ 1

2r!

Z 1

�1
�2re��

X1
0

ð1þ sÞð�1Þse��sd�

¼ 2
X1
0

ð�1Þs
ð1þ sÞ2r : (A3)

[ 12 s] is the integral part of
1
2 s and C0 ¼ 1

2 . Hence, one can

write

T
Z 1

0

1

ðe��p þ 1Þðeð�pþzÞ þ 1Þ d�p ¼ T
z

1� e�z : (A4)

Finally, we obtain the result of the phase-space energy
integration quoted in Eq. (32) in the main text,

Z
d�pd�kf�pf�kð1� fð�pþ!ÞÞð1� fð�k�!ÞÞ ¼ T2

!2

4T2

ðsinh !
2TÞ2

:

(A5)
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FIG. 2 (color online). Temperature dependence of the thermal relaxation time. The left panel shows a comparison between the FL
and the non-Fermi liquid NLO results when � � 0. The right panel shows the reduction of ��ee

with the inclusion of �.
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