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Following the renewed interest in the topic [Halliwell and Yearsley, Phys. Rev. D 86, 024016 (2012)],

we revisit the problem of assigning probabilities to classes of Feynman paths passing through specified

space-time regions. We show that by assigning probabilities to interfering alternatives, one already makes

the assumption that the interference has been destroyed through interacting with the environment or a

meter. Including the effects of the meter allows one to construct a consistent theory, free of logical

‘‘pitfalls,’’ such as those identified in Halliwell and Yearsley. Wherever a meter cannot be constructed, or

cannot be set to effect the desired decoherence, formally constructed probabilities have no clear physical

meaning and can violate the necessary sum rules. We illustrate the above approach by analysing the three

examples considered in Halliwell and Yearsley.
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I. INTRODUCTION

Recently, Halliwell and Yearsley [1] revisited the
problem of assigning probabilities to amplitudes obtained
by restricting Feynman paths to space-time regions. They
emphasized that the method suffers from serious deficien-
cies: the ‘‘seemingly obvious notion of ‘restricting paths’
leads to the quantum Zeno effect and hence to unphysical
results’’. This is the sense in which we would say that path
integral constructions may suffer from pitfalls [1]. Their
criticism appears to extend to the path integral analysis of
the quantum traversal time [2–8]. In order to mitigate the
Zeno effect, the authors of Ref. [1] followed Alonso et al.
[9] in suggesting ‘‘temporal coarse graining,’’ whereby
the observed system is controlled only at discrete times,
between which it is allowed to evolve freely. The problem
is closely related to the more general question concerning
the origin of quantum probabilities (see, for example,
Refs. [10–15]).

The authors of Ref. [1] approach the problem from
the point of view of a theory which attempts to assign
probabilities without making a specific reference to mea-
surements. One such theory is the decoherent histories
approach (DHA) (Refs. [42]–[52] of Ref. [1]), designed
to assign probabilities to possible scenarios available to a
closed system where no external observation is possible.

Far from claiming to correct a technical error of
Ref. [1] (for, indeed, there is no such error), wewill attempt
to analyze the space-time probability problem from the
opposite prospective. We will advocate the view that prob-
abilities assigned to certain classes for Feynman paths are
only meaningful provided the interference between the
classes can be destroyed by physical means. This restric-
tion inevitably narrows the issue by bringing into the
discussion such questions as the possibility of constructing
a relevant ‘‘meter,’’ the accuracy of the ‘‘measurement,’’

and the back action exerted by the meter on the measured
system. The argument can be inverted: if someone
constructs—by restricting Feynman paths—probabilities
corresponding to a possible measurement, he or she will
also inherit the dynamical effects of the meter. Since no
meter was considered in the first place, the unexpected
properties of the probabilities can be perceived as failings
of the path integral method. It is in this sense that we
disagree with the conclusions of Ref. [1] with regards to
the ‘‘pitfalls’’ of the path integral approach to quantum
probabilities [16]. We also would like to restore (as much
as possible) the good name of the quantum traversal time.
The main purpose of this paper is to show that the path

integral approach is indeed a consistent theory with its own
strict rules, yet free from ‘‘unphysical’’ features. We dem-
onstrate that once the inevitable effects of the meter are
properly taken into account, one has a theory free from
logical contradictions.
The rest of the paper is organized as follows. In Sec. II

we briefly describe the path decomposition of the propa-
gator. In Sec. III we choose a variable, and construct its
amplitude distribution by restricting Feynman paths. In
Sec. IV we show that the chosen restriction automatically
prescribes the type of meter required to destroy interfer-
ence. In Sec. V we emphasize the distinction between the
finite-time and continuous quantum measurements, and
proceed to analyze the former type. In Sec. VI we formu-
late three questions which define a quantum measurement.
Section VII describes the mixed state of the system after
interference between the classes of Feynman paths has
been destroyed. In Sec. VIII we prove a general result
concerning the emergence of a kind of Zeno effect in
high-accuracy ‘‘ideal’’ measurements. In Secs. IX, X,
and XI we analyze some of the cases used in Ref. [1]
to illustrate ‘‘unreasonable properties’’ of path integral
amplitudes. Section XI contains our conclusions.
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II. PATH DECOMPOSITION OF
ATRANSITION AMPLITUDE

For a system governed by a Hamiltonian Ĥ, consider
the transition amplitude

KðF; I; tÞ ¼ hc Fj exp ð�iĤtÞjc Ii; (1)

between some initial and final states jc Ii and jc Fi. In its
Hilbert space, we choose a compete orthonormal basis jxi,
where x may take discrete or continuous values, so that
(I is the unity) X

x

jxihxj ¼ I: (2)

Writing exp ð�iĤtÞ as
Q

K
k¼1 exp ½�iĤðtk=KÞ�, inserting

Eq. (2) between the exponentials and also before and after
jc Ii and jc Fi, and sending K to infinity yields the cele-
brated Feynman path integral [17] (or, as the case may be,
path sum),

KðF; I; tÞ ¼ X
paths

A½path�: (3)

Here a path is defined by the sequence of the x’s labelling
the states through which the system passes at the inter-
mediate times t0 ¼ 0; �; 2�; . . . ; t, � � t=K. In the continu-
ous limit K ! 1 we will denote it as xðt0Þ. The functional
A½path� � lim K!1hc FjxKihxKj exp ð�iĤ�ÞjxK�1i . . .
exp ð�iĤ�Þjx0ihjx0jc Ii is the amplitude the path contrib-
utes to KðF; I; tÞ. With the Feynman paths and their
contributions A½path� known, the task of evaluating the
transition amplitudes reduces, at least formally, to the
addition of complex numbers. The conceptual simplicity
of Feynman quantum mechanics is matched by the diffi-
culty of actually performing the path sum (3). It does,
however, make a convenient starting point for a discussion
of quantum measurements.

III. MEASURABLE PROPERTIES
OFA QUANTUM SYSTEM

Next we may wish to enquire about the system’s behav-
ior in the time interval between its preparation in the state
jc Ii and its subsequent detection in jc Fi. We may not be
interested in all the details, but rather just in the values of
some quantity F. For the answer to exist, the value of F
must be defined for each of the possible histories, i.e., it
should be a functional F½path� defined on the Feynman
paths. It is reasonable to rearrange the paths according to
the value of F, and define the probability amplitude to have
this value equal to f as [�ðzÞ is the Dirac delta]

�ðF; I; tjfÞ ¼ X
paths

A½path��ðF½path� � fÞ: (4)

Equation (4) can be also written in an operator form,

�ðF; I; tjfÞ ¼ hc FjÛðtjfÞjc Ii; (5)

where the restricted evolution operator propagates the
initial state only along the paths which have the property
F½path� ¼ f. If there are several quantities F1; F2; . . .FN,
the probability amplitude for them to have (jointly) the
values f1; f2 . . . fN , KðF; I; tjf1; f2; . . . ; fNÞ, can be con-
structed in a similar manner. With the part of the path
summation (3) already performed, the full propagator is
given by an ordinary quadrature,

KðF;I;tÞ¼
Z
df1

Z
df2 ���

Z
dfN�ðF;I;tjf1;f2; . . . ;fNÞ:

(6)

It is tempting to define the probability to have the
property F½path� ¼ f as

PðF; I; tjfÞ ! j�ðF; I; tjfÞj2: (7)

Next we will show that this temptation should (so far) be
resisted.

IV. PATH RESTRICTION VS DYNAMICAL
INTERACTION

The task of converting the amplitudes (4) into probabil-
ities requires some additional care. Our rearrangement of
the Feynman histories into classes was purely cosmetic.
Like the paths themselves, the classes remain interfering
alternatives. To assign the probabilities one must first
destroy the interference. This must be done by bringing
the system into contact with another quantum system or
systems, and we must decide what type of an additional
system (a meter) is suitable for the task.
Conveniently, the answer is already contained in our

choice of the functional F. Consider the equation of motion
satisfied by the restricted path integral (4). If this equation
maps onto a Schrödinger equation describing the original
system plus another system, we immediately obtain a
recipe for constructing the meter with the desired proper-
ties. If, on the other hand, the equation of motion does not
look like a Schrödinger equation, we must stop and admit
that the interference cannot be destroyed by any means
available to us. The question of whether further progress
can be made in this latter case is beyond the scope of
this paper.
The type of equation satisfied by the restricted propa-

gator depends on the choice of the functional F, and must
be established in each individual case. One general result
was proven in Refs. [18]: let the functional be of the form

F½path� ¼
Z t

0
�ðt0Þaðxðt0ÞÞdt0; (8)

where �ðtÞ is a known function of time and aðxÞ is some
function of x. Then the probability amplitude for the
system to arrive at a ‘‘location’’ jxi by taking only the
paths with the properties F½path� ¼ f, �ðx; tjfÞ, (we drop
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the implied dependence in the initial state jc Ii to simplify
notations) satisfies the Schrödinger equation (SE)

@t� ¼ ½Ĥ� i@f�ðtÞÂ��; (9)

with the initial condition

�ðx; 0jfÞ ¼ hxjc Ii�ðfÞ: (10)

Here the operator Â, diagonal in the chosen representation,
is defined by the choice of aðxÞ in Eq. (8),

Â �
Z

dxjxiaðxÞhxj: (11)

Equation (9) is, of course, an SE describing the system
interacting with a von Neumann meter [19], with pointer

position f, designed to measure the operator Â. Unlike in
the original von Neumann approach, the pointer remains
coupled to the system for a finite time, since the quantity F
in Eq. (8) refers to the whole of the time interval ½0; t�.

V. FINITE-TIME MEASUREMENTS VS THEIR
CONTINUOUS COUNTERPARTS

Before proceeding we must emphasize an important
distinction between two kinds of measurements. Suppose
we have only one meter, and—in the spirit of Refs. [1,9]—
activate it through a sequence of sharp strong pulses; that
is, we choose

�ðt0Þ ¼ XN
n¼1

�ðt0 � tnÞ; tn ¼ nt=ðN þ 1Þ: (12)

Assume, for simplicity, that the operator Â in Eq. (11) is a
projector onto a part of the Hilbert space �. Then the
pointer would move one notch to the right each time the
system is in � at t ¼ tn; otherwise, it remains where it is.
At the time twe look at the pointer once, and, having found
it shifted by m notches, conclude that the system was in�
m times out of allN trials. We cannot, however, say exactly
when this happened, as the outcome of the measurement is
a single number yielding the value of a functional on
otherwise unspecified virtual trajectories. Since the obser-
vation took t seconds to complete, we call it a finite-time
measurement.

Suppose that instead we have N identical meters, only
one of which is briefly activated at each t ¼ tn; that is, we
choose

�nðt0Þ ¼ �ðt0 � tnÞ: (13)

As a result, at t we have N readings, all either 0 or 1, and
the exact knowledge of the tn at which the system was
found in �. Accordingly, there is a set of probabilities
Pðx1; x2; . . . xNÞ, xn ¼ �1. This is a prototype of a con-
tinuous measurement [20], whose outcome is a real trajec-
tory followed by the observed system. Like the authors of
Ref. [1] we are interested in finite-time measurements,
which we will consider throughout the rest of the paper.

VI. THREE QUESTIONS TO DEFINE
A QUANTUM MEASUREMENT

We see now that to describe a quantum measurement,
one must provide clear answers to at least three questions:
(a) What is being measured?
(b) How is it being measured?
(c) To what accuracy is it being measured?
To answer the first question, we need to specify a

variable that characterizes the system in the absence of a
meter. In our case it is the functional in Eq. (8), whose
physical meaning depends on the choice of the switching
function �ðt0Þ. Thus, for �ðt0Þ ¼ 1=t ¼ const, it represents

the time average of the quantity Â, and for �ðt0Þ ¼
�ðt0 � t0Þ, the instantaneous value of Â. Choosing �ðt0Þ ¼
�ðt0 � t1Þ � �ðt0 � t2Þ allows us to measure the sum or the
difference of the values of A at t1 and t2, and so forth.
To answer the second question one must ask first if

there is a suitable meter to be found. For a functional of
the type (8) the answer is ‘‘yes’’. One should then prepare
the system in the desired initial state, set the pointer to
zero, turn on the interaction, and accurately measure the
pointer’s position at the time t.
The third question follows from the second. The ampli-

tude� in Eq. (9) is not normalizable due to the presence of
the �ðfÞ in Eq. (10), and cannot be used to construct
physical probabilities. To obtain a physical amplitude
�ðx; 0jfÞ, one should prepare the pointer in a physical
state GðfÞ, R dfjGðfÞj2 ¼ 1, and replace the initial condi-

tion (10) with

�ðx; 0jfÞ ¼ hxjc IiGðfÞ: (14)

The result can be written in an equivalent form [18],

�ðx; tjfÞ ¼
Z

df0Gðf� f0Þ�ðx; tjf0Þ; (15)

which has a simple interpretation. The function Gðf� f0Þ
plays the role of a filter, selecting a limited range of
the values of F½xðtÞ�’s which contribute to the pointer’s
advancement to position f. For an accurate measurement
one should chooseGðfÞ sharply peaked around zero, with a
small yet finite width �f. Now

Pðx; tjfÞ ¼ j�ðx; tjfÞj2; (16)

yields the probability of finding the system in jxi and the
pointer at a location f. It is also the probability that the
observed system arrives at x and F has the value in
the interval [f� �f, fþ �f]. Accordingly,

PðtjfÞ ¼
Z

dxPðx; tjfÞ; (17)

yields the probability of finding the pointer at x without
asking about the state of the system. It is also the proba-
bility that, for the observed system, F has a value within
[f��f, fþ �f] regardless of where it ends up once the
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measurement is finished. The correct normalization of
Pðx; tjfÞ,

Z
dxdfPðx; tjfÞ ¼ 1; (18)

is guaranteed, since the evolution according to the SE (9) is
unitary. We note that the limitation on the accuracy of a
measurement is of a purely quantum nature: the values
inside the interval [f� �f, fþ �f] cannot be distin-
guished since interference between them has not been
destroyed.

VII. STATE OF THE SYSTEM
AFTER A MEASUREMENT

We note that by restricting the evolution to paths with
the property F½path� ¼ f, we effectively ‘‘chop’’ the state
of the system into sub-states

j�ðtjfÞi ¼
Z

dxjxi�ðx; tjfÞ; (19)

which add up to the Schrödinger state of a freely evolving
system, Z

dfj�ðx; tjfÞi ¼ exp ð�iĤtÞjc Ii: (20)

This is the particular property of the interaction in Eq. (9).
It can be interpreted as the quantum analog of the condition
that a classical meter should monitor the measured system
without affecting its evolution (for details see Ref. [21]).
A meter of finite accuracy �f uses linear combinations of
the fine-grained sub-states (19)

j�ðtjfÞi ¼
Z

df0Gðf� f0Þj�ðtjfÞi; (21)

and then destroys the coherence between these ‘‘coarse-
grained’’ states. The final mixed state of the system �̂ after
measurement, therefore, is

�̂ðtÞ ¼
Z

dfj�ðtjfÞih�ðtjfÞj; (22)

with Tr�̂ðtÞ ¼ 1, as follows from Eq. (18).

VIII. THE LIKELIHOOD OFA ‘‘ZENO EFFECT’’

The convolution formula (15) has the advantage that if
the main properties of the fine-grained amplitude �ðx; tjfÞ
are known, we can qualitatively estimate the result of
smearing it with the function GðfÞ. For example, suppose
that a transition is classically allowed. Then, in the semi-
classical limit, a rapidly oscillating �ðx; tjfÞ has a narrow
stationary region around the classical value of F½xðtÞ�, fcl.
Then a not-too-accurate meter will always return the value
fcl, since if Gðf� f0Þ is centred at any f � fcl the integral
(15) will vanish, destroyed by the oscillations [22].

It is possible to make another general statement about
the properties of�ðx; tjfÞ. For a system confined to a finite
interval (volume) a � x � b, the amplitude distribution
�ðx; tjfÞ cannot be a smooth function for all x. Rather, to
ensure the conservation of probability in the high-accuracy
limit �f ! 0, it must have singularities, typically, of the
Dirac delta type.
The proof is based on the conservation of probability.

Suppose we have some reference function GðfÞ and want
to improve the accuracy by making it narrower. This can be
achieved by a simple scaling,

GðfÞ ! G�ðfÞ ¼ �1=2Gð�fÞ; (23)

where we recall that GðfÞ is also the initial state of the
pointer, and as such must be normalized to unity,R
dfjG�ðfÞj2 ¼ 1. Suppose now that �ðx; tjfÞ is smooth.

Then, as � ! 1, the width of G� ��f=� ! 0, and we
should be able to take � outside of the integral (15),

�ðx; tjfÞ ¼
Z

df0G�ðf� f0Þ�ðx; tjf0Þ

� �ðx; tjfÞ
Z

G�ðf0Þdf0 ¼ ��1=2C�ðx; tjfÞ;
(24)

where C ¼ R
Gðf0Þdf0. In the high-accuracy (ideal

measurement) limit � ! 0, the rhs of Eq. (24) vanishes,
and with it vanishes the probability to find the pointer at
any location f, PðtjfÞ ¼ R

b
a j�ðx; tjfÞj2dx, which is of

course wrong. The way around this difficulty is to assume

that in addition to its smooth part ~�ðx; tjfÞ,�ðx; tjfÞ has a
number of � singularities,

�ðx; tjfÞ ¼ ~�ðx; tjfÞ þX
ckðxÞ�ðf� fkÞ: (25)

Now, as the accuracy improves, the probability Pðx; tjfÞ
becomes

lim
�!1Pðx;tjfÞ¼

X
k

jckðxÞj2�ðf�fkÞþ��1jCj2j ~�ðx;tjfÞj2:

(26)

Suppose now that one is conducting an experiment on a
large number of identical systems, all post-selected in the
state jxi, and receives a signal proportional to the number
of cases in which the pointer is found in f. As the accuracy
improves, the signal is dominated by strong peaks at
f ¼ fk. In addition, there is a smaller signal revealing

more and more details of the structure of j ~�ðx; tjfÞj2,
and eventually fading altogether. The positions of the
peaks fk and the coefficients ck must be determined for
each particular case.
For example, we have previously shown [23] that for a

system in a finite-dimensional Hilbert space, an attempt to
determine precisely the value of the time average of an

operator Â inevitably leads to a Zeno effect, trapping the
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system in the eigenstates (eigen sub-spaces of Â). Another
example of this behavior was given in Ref. [24],
which analyzed a measurement of a qubit’s residence
time with a slightly more sophisticated variant of the von
Neumann meter.

For a system in an infinite volume, e.g., for�1<x<1,
there exists another possibility. While j�ðx; tjfÞj2 must

vanish as Â ! 1, the range of x’s involved in the integral
(17) may increase proportionally, so that the probability is
conserved without �ðx; tjfÞ acquiring singular terms.
Physically this would mean that the meter scatters the
observed system into a wide range of its final positions.

For the following, it suffices to note that—as follows
from Eq. (26)—an accurate determination of the value of
any quantity of the type (8) may suppress some of the
transitions and lead to sharply defined values F½path� ¼
fk in those transitions which survive. With some hesitation
we follow the authors of Ref. [1] in also calling it a
‘‘Zeno effect’’ in the case where the measured system
has a continuous spectrum. In a conventional Zeno effect
[25–27], frequent observations trap the system in one of the
eigenstates of the measured quantity. Here, the action of the
meter restricts the system to a particular type of evolution
without freezing it altogether. With this result we are ready
to analyze some of the cases discussed in Ref. [1].

IX. THE PROBABILITY OF NOT ENTERING
THE RIGHT HALF-SPACE

We start with the task of defining the probability that,
in one dimension, a free particle of mass M does not enter
the region � � 0 � x <1 (see Sec. IV of Ref. [1]).
Equivalently, one can ask: what is the probability that the
time that the particle spends in � is zero, � ¼ 0? The
functional yielding the duration a Feynman paths spends
in � is well known [2],

t�ðt; ½xð�Þ�Þ ¼
Z t

0
��ðxðt0ÞÞdt0; (27)

where ��ðzÞ ¼ 1 for z inside �, and zero otherwise. The
operator in Eq. (15) is just the projector onto the right half-

space, Â ¼ P̂� ¼ R1
0 dxjxihxj. The coupling �i@���ðxÞ

allows one to identify the meter as a continuous version of
the Larmor clock [28–30], a large magnetic moment which
precesses in a magnetic field for as long as the particle
remains inside �. The solution to Eq. (9) is given by the
Fourier integral [6]

�ðx; tj�Þ ¼ ð2�Þ�1
Z 1

�1
dV exp ðiV�Þc Vðx; tÞ

c Vðx; tÞ � hxj exp ½�iĤVtÞjc Ii;
(28)

where [we use �ðxÞ for �½0;1Þ]

ĤV ¼ p2=2mþ V�ðxÞ: (29)

In other words, to find the traversal time amplitude distri-
bution one needs to know the results of evolving the initial
state for all potential steps added in the right half-space—
even though we are discussing the properties of a free
particle. The transmission (T) and reflection (R) ampli-
tudes for such a step at an energy E are easily found to be

(k ¼ ffiffiffiffiffiffiffiffiffiffiffi
2ME

p
)

Tðk; VÞ ¼ 2=½1þ ð1� V=EÞ1=2�; R ¼ T � 1: (30)

Now if the initial state is a wave packet initially in the left
half-space and moving from left to right,

hxjc Ii ¼
Z

dkAðkÞ exp ½ikx� iEðkÞt�;
hxjc Ii � 0 for x 	 0;

(31)

it evolves into

c Vðx;tÞ¼
Z
dkTðk;VÞAðkÞexp½ikx� iEðkÞt�

�
Z
dkAðkÞexp½�ikx� iEðkÞt�

þ
Z
dkTðk;VÞAðkÞexp½�ikx� iEðkÞt�: (32)

Here the first term is the transmitted part, the second term
describes the reflection from an infinite step, V ¼ 1, and
the third reflected term accounts for the fact that the step is
not, after all, infinite. We will consider t to be so large that
the transmitted and reflected wave packets are well sepa-
rated and do not overlap. With the help of Eq. (28) the
amplitude distribution for the duration � spent by a free
particle in the right half-space becomes [cf. Eq. (29)]

�ðx; tj�Þ ¼
(
~�ðx; tj�Þ for x > 0

��ð�Þc 0ð�x; tÞ þ ~�ð�x; tj�Þ for x < 0:

(33)

Here c 0ðx; tÞ � hxj exp ½�iĤtÞjc Ii is just the freely prop-
agating wave packet, and ~�ðx; tj�Þ is a smooth function
involving the Fourier transform of Tðk; VÞ at all relevant
energies. The last two terms clearly correspond to the
particle being reflected; for example, we have

� c 0ð�x; tÞ � c1ðx; tÞ; (34)

where c1ðx; tÞ is the wave packet reflected by an infinite
potential wall, V ¼ 1. Again, this may seem strange since
everything said so far has referred to a free particle.
This is, therefore, our central proposition: the assign-

ment of probabilities to interfering classes of quantum
histories should not be considered outside the context of
measurements of the property of interest. We acknowledge
that the statement is at odds with the decoherent histories
approach, which would inevitably see it as too narrow.
Earlier attempts to apply the DHA to the traversal time
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problem were made in Ref. [31]. Our criticism of the
approach of Ref. [31] can be found in Ref. [32]. There,
we argued that applying the DHA to most primitive closed
systems, e.g., those consisting of a single particle, adds
little to our understanding. We will briefly return to this
issue in Sec. VII.

So far we have only contemplated a classification of
Feynman paths according to the duration spent in �, yet
the result already contains a reference to the reflection
that would be caused by a Larmor clock, should we
decide to employ one. Moreover, the fine-grained ampli-
tude �ðx; tj�Þ contains information about all measurement
scenarios, which are, in turn, specified by the choice
of the filter G in Eq. (21). Suppose, for example, that
we decide to not make a measurement at all by making
Gðf� f0Þ in Eq. (10) so broad that it can be replaced by a
constant. It is useful to note that, since ð2�Þ�1

R
d�R

dV exp ðiV�ÞTðk; VÞ ¼ Tðk; 0Þ ¼ 1, ~�ðx; tj�Þ add up to
the freely propagating pulse,

Z t

0

~�ðx; tj�Þd� ¼ c 0ðx; tÞ: (35)

Thus by not taking a measurement we make the last two
terms in Eq. (33) cancel, leaving us, as it should, with
only the free wave packet travelling to the right of the
origin x ¼ 0.

Alternatively, we may want to know the probability of
spending precisely a duration � in the right half-space.
Again, we cannot avoid employing a highly accurate
meter. The result of our attempt is known from Sec. VII:
we can neglect all the terms except those that are singular
in �, thus obtaining

Pðx; tj�Þ ¼ jc1ðx; tÞj2�ð�Þ; (36)

which corresponds to the wave packet reflected as if by an
infinite wall at the meter with only zero readings. In light of
what was said above, this is hardly surprising. Classically,
one can arrange a meter which would not perturb the
measured system. One can also set the meter in such a
way that it would act on the system, and then correctly
measure the variable for the system perturbed by the
measurement itself [21]. Quantally, the first option is not
available since it is necessary to destroy interference. Our
ideal measurement is, in this sense, correct: in order to
measure � to a great accuracy, the meter would need to
exert a force which would not let the particle enter the
region, and then confirm the zero result. In a similar way,
we can analyze the ‘‘softer’’ measurements involving dif-
ferent shapes and widths of the function G. For example, a
detailed analysis of Aharonov’s ‘‘weak measurements’’
[33–35] can be found in Ref. [36].

Equally important are the restrictions that the above
principle puts on what one can use the fine-grained ampli-

tudes for. For example, simply summing ~�ðx; tj�Þ over a
certain range of �, squaring the modulus of the result, and

declaring it the probability of having � within a range is
dangerous. The authors of Ref. [1] have tried separating the
amplitudes into just two classes—those for which � is
zero and those for which it is not—so that the two
amplitudes are given by Aðx; tj� ¼ 0Þ ¼ �c 0ðx; tÞ and

Aðx; tj� � 0Þ ¼ R
d�½ ~�ðx; tj�Þ þ ~�ð�x; tj�Þ� ¼ c 0ðx; tÞ

þc 0ð�x; tÞ. Now the probability to have entered the right
half-space appears to have the value

Pðtj� � 0Þ �
Z

dxjAðx; tj�Þj2

¼
Z

dxjc1ðx; tj�Þj2 þ
Z

dxjc 0ðx; tj�Þj2 ¼ 2;

(37)

which, as the authors of Ref. [1] pointed out, must be
wrong. To find a reason for this discrepancy we revisit
the measurement as defined by Eqs. (9) and (21).
Apparently, no initial state of the meter GðfÞ effects the
coarse-graining of the fine-grained amplitudes into these
two classes. We therefore no longer have Eq. (18), which is
itself a consequence of the unitarity of the system-meter
evolution. Moreover, the nonconservation of the number
of particles in Eq. (37) suggests that the probabilities
Pðtj� � 0Þ and Pðtj� ¼ 0Þ are not measurable by any other
scheme, short of injecting more particles into the system.

X. THE PROBABILITYOFNOTBEINGABSORBED
IN THE RIGHT HALF-SPACE

Another case, discussed in Sec. III Ref. [1], is the
absorption of a particle by an optical potential confined
to the right half-space,

UðxÞ ¼ iU�ðxÞ: (38)

As before, we consider a wave packet incident on the
absorbing potential from the left, and a time t so large
that a free pulse would be fully contained to the right of the
origin x ¼ 0. Following Ref. [1], we wish to approximate
the probability of not entering the right half-space with the
probability of not being absorbed by UðxÞ. The problem is
easily solved by the technique of the previous section.
The amplitude of not being absorbed after travelling along
a Feynman path xðt0Þ is obviously exp fiS0½xðt0Þ� �
Ut�½xðt0Þ�g, with S0 denoting the free-particle action. The
amplitude of arriving in x by travelling along all paths
satisfying t�½xðt0Þ� ¼ � is, therefore, �ðx; tj�Þ exp ð�U�Þ,
and the amplitude of arriving there at all is

c Uðx; tÞ ¼
Z t

0
exp ð�U�0Þ�ðx; tj�0Þd�0; (39)

where�ðx; tj�0Þ is given by Eq. (33). This is very similar to
the amplitude of obtaining a zero reading if one measures
the duration spent in the right half-space by a meter whose
initial state Gð�Þ is �ð�Þ exp ð�U�Þ. We therefore already
know what will happen if one increases the absorption U
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in order to eliminate the particles that have entered the
right half-space, and then managed to survive until t. SinceR
d�0�ð�0Þ exp ð�U�0Þ ¼ 1=U, which vanishes as U ! 1,

the contributions from the smooth part of �ðx; tj�0Þ will
vanish, leaving us again with the particle fully reflected
from the origin,

c Uðx; tÞ � c1ðx; tÞ; as U ! 1: (40)

This result is equivalent to two complimentary statements:
(a) restricting an evolution to the Feynman paths that do
not enter a spacial region leads to a perfect reflection from
the region’s boundary, and (b) such a restriction can be
achieved by introducing a large absorbing potential, which
is the physical cause of the reflection.

XI. THE TIME OF CROSSING INTO THE RIGHT
HALF-SPACE FOR THE FIRST TIME

Another case discussed in Sec. I of Ref. [1] involves
controlling the first time a system enters a given region of
space � or, more generally, a certain sub-space of its
Hilbert space. For a particle of mass M in one dimension,
we construct a functional whose value gives the time a
Feynman path enters � for the first time,

��½xð�Þ� ¼ lim
	!1

Z t

0
dt0 exp f�	t�ðt0; ½xð�Þ�Þg; (41)

where t�ð½xðt0Þ; tÞ� is the traversal time functional defined
in Eq. (27) and 	 is a positive constant. The functional adds
up dt’s for as long as exp f�	t�½xðtÞ� is not zero, i.e., for as
long as the path has made no incursion into �, and marks
the moment the border of � is crossed for the first time. If
the path originates from inside � at t ¼ 0, the value of
��½xðtÞ� is set to zero. If a path has not yet visited� by the
time t, the value is set to t. In this way, every Feynman path
is labeled by its first crossing time, and we can rearrange
the paths into the classes, as was done previously. For the
amplitude of crossing into� ¼ ½0;1Þ for the first time at a
time �, 0 � � � t, we have

�ðx; tj�Þ ¼
Z

dx0hx0jc Ii



Z xðtÞ¼x

xð0Þ¼x0
Dx exp fiS0½xð�Þg�ð��½xð�Þ� � �Þ;

(42)

where the path integration is over the paths starting at t ¼ 0
in x0 and ending in x at the time t. The first crossing-time
expansion has been derived by many authors [37–40], and
in the Appendix we offer yet another one based on the
direct evaluation of the restricted path integral in Eq. (42).
For a wave packet (31) approaching the origin from the
left, from Eq. (A5) we have

�ðx; tj�Þ ¼ c1ðx; tÞ�ð�� tÞ þ ði=2MÞ�ð�Þ�ðt� �Þ

 Kðx; 0; t� �Þ@xc1ð0; �Þ; (43)

where, as before, c1ðx; tÞ is the wave packet scattered by
an infinite wall at x ¼ 0. We see that initially [0� stands for
lim �!0ð0� �Þ]

�ðx; 0�j�Þ ¼ c IðxÞ�ð�Þ; (44)

and, using Eq. (A4), find the equation of motion,

i@t�ðx; tj�Þ ¼ Ĥ�ðx; tj�Þ � i@�½�ð�� tÞc1ðx; tÞ�ðtÞ�:
(45)

Integrating Eq. (45) over � shows that

Z
d��ðx; tj�Þ ¼ c ðx; tÞ; (46)

which, together with Eq. (43), gives the standard first-
crossing-time expansion, used for example in Ref. [39].
This completes the first task outlined in Sec. VI; that is,
defining the quantity of interest.
We do, however, fail in the second task; that is, specify-

ing a meter for the first crossing time. Indeed, Eq. (45) does
not look like a SE describing the interaction between two
quantum systems. It is nonhomogenous, with the source
term fully determined by the evolution in the left half-
space with an infinite wall at the origin. We cannot even
guarantee that it conserves the probability. Indeed, with the
help of Eq. (10), by constricting a square integrable solu-
tion to represent the particle and a potential meter,

�ðx; 0�j�Þ ¼ c IðxÞGð�Þ;
Z

j�ðx; 0�j�Þj2d�dx ¼ 1;

(47)

and using Eq. (45) to evaluate the rate of change of
PðtÞ ¼ R j�ðx; tj�Þj2d�dx, we find
dPðtÞ
dt

¼2Re

�Z 1

0
d�@�Gð�� tÞ

Z
dxc1ðx;tÞ��ðx;tj�Þ

�
:

(48)

It is unlikely that the rhs of Eq. (48) vanishes identically,
and we abandon our attempts to find probabilities for the
first crossing time (41), just as we promised we would in
the second passage of Sec. IV.

XII. CONCLUSIONS AND DISCUSSION

In summary, assigning probabilities to interfering alter-
natives implies the destruction of coherence between the
alternatives. The destruction of interference [e.g., the con-
version of a pure state (20) into a statistical mixture (22)] is
a physical process, and must be executed by a physical
agent, which we call a meter. This puts serious restrictions
on the probabilities that we may construct.
Firstly, such a meter must exist. The precise type of the

interaction required to destroy the interference is pre-
scribed by the property of Feynman paths that we wish to
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control. It may happen that it does not correspond to a
coupling, which is physically acceptable.

Secondly, even if the meter exists, it must be capable of
causing the desired separation of Feynman paths into
classes. This requires finding an acceptable initial state
for the meter, which may not always be possible.

Thirdly, a measurement must be classified according
to its accuracy, which is determined by the width and
shape of the initial meter’s state. The range of possible
measurements stretches for highly inaccurate ‘‘weak’’
measurements to highly accurate ‘‘ideal’’ ones.

A simple analysis of Sec. VIII shows that an ideal
measurement of the type discussed in Ref. [1] may lead
to a kind of Zeno effect. This is neither an ‘‘unphysical’’
result nor a ‘‘pitfall’’ of a theory, but rather a general
quantum mechanical rule. To even contemplate the accu-
rate value of a variable F, one must assume that the
interference has been destroyed to the required degree,
i.e., one must also consider the effects of an external meter.
The meter would then perturb the system and yield a
sharply defined value of F, which correctly describes this
perturbed motion.

This ‘‘Zeno effect’’ cannot be avoided completely. It

can, however, be mitigated, e.g., by requesting less

information about F, and reducing the accuracy of the

measurement �f. The authors of Refs. [1,9] chose to

consider an ideal measurement of a quantity obtained by

replacing the integral (8) with a discrete sum (12). With

this, the system is allowed to evolve freely between tn and
tn�1, and is not reduced to the Zeno-like evolution if � is

kept sufficiently large. In general, one is lead to consider

finite-time measurements of different quantities to differ-

ent accuracies, varying �f and �, to achieve a desired ratio
between the information obtained and the perturbation

incurred.
We illustrate the above with a brief review of the

examples considered in Sec. IX, X, and XI
(a) The probability of a free particle not entering the

right half-space equals the probability of spending a
zero net duration there. This duration is represented
by the traversal time functional, and the relevant
meter exists as a continuous version of the Larmor
clock [28–30]. An accurate clock prevents the par-
ticle from entering the region and, under the circum-
stances, the probability of not entering is unity.

(b) The probability amplitude of entering the right half-
space cannot be defined as the net probability of
spending any duration other than zero there. Even
though the meter (Larmor clock) exists, it cannot be
set up to separate the Feynman paths into these two
classes. One may also be confident that this cannot
be done by any other means, since probabilities
defined in this way do not add up to unity.

(c) The probability of not being absorbed in the
right half-space is similar to the probability of not

entering it, and tends to unity as the magnitude of the
absorbing potential increases. This is a different way
of saying that an infinite absorbing potential must
reflect all incoming particles.

(d) We have found no meaningful probabilities associ-
ated with the first-crossing-time amplitudes (43), as
no physical meter of the type discussed here can be
realized. To identify the time of the first crossing,
one needs the record of the particle’s past. For this
reason, even classically, we cannot construct a
single pointer that would stop once the particle first
crosses into the region of interest.

Finally, we note that in all the above cases we have
failed to arrive at the classical limit. This may cause
some concern [1]. Where a meter for our finite-time
measurement exists, the remedy is simple [21]. We do
not improve accuracy indefinitely, but stop while �f
exceeds the width of the stationary region of the fine-
grained distribution in Eq. (9). This region occurs
around the classical value of F, fcl, and is very narrow
if the system is nearly classical. With the accuracy
chosen to be high yet finite, only this region contributes
to the integral (15). Thus the pointer always points
at fcl, and we can replace the SE by the classical
equations of motion.
Where no meter exists, the situation appears to be

more difficult. Classically, one can always define the first
crossing time, seemingly with no reference to meters or
measurements. This is not quite so, as one always has at
their disposal a classical trajectory �xðtÞ from which all
other quantities, including the first crossing time, can be
derived. From the quantum mechanical point of view, �xðtÞ
comprises the results of measuring the particle’s positions
at all times. This suggests that the first crossing time should
be determined in a continuous quantum measurement,
yielding a sequence of the particle’s positions xðtÞ, and
then evaluating the functional (41) on this ‘real’’ (rather
than virtual) trajectory. A more detailed analysis will be
given in our future work [41].
Finally, throughout this paper we have advocated a

measurement-based approach incompatible, at first glance,
with the decoherent histories approach, which makes no
explicit mention of measurements. We believe that the two
approaches can be reconciled by defining their respective
domains of applicability. One possibility would be to apply
the DHA not to a system on its own, but rather to the
composite system plus meter in those cases where the
meter can be constructed.
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APPENDIX

Consider the path integral in Eq. (42), keeping 	 finite

for the moment. Using the identity �ðzÞ ¼ ð2�Þ�1=2R
exp ði
zÞd
, we can rewrite Eq. (42) as

Kðx;x0;tj�Þ
¼ ð2�Þ�1=2

Z
d
expði
�Þ

Z xðtÞ¼x

xð0Þ¼x0
Dx


exp

�
i
Z t

0
dt0

�
L�
exp

�
�	

Z t0

0
��ðxðt00ÞÞdt00

���
;

(A1)

where Lðx; _xÞ is the particle’s Lagrangian. Expanding
the second exponential we find the amplitude for a path
xðt0Þ to be

A0½xðt0Þ� ¼ exp

�
i
Z t

0
Ldt0

��
1þ X1

n¼1

ð�i
Þn



Z t

0
dt1

Z t1

0
dt2 � � �

Z tn�1

0
dtn


 exp

�
�	

Xn
m¼1

Z tm

0
��ðxðt0ÞÞdt0

��
: (A2)

The first term in the curly brackets corresponds to free
motion. The integrand of the nth term corresponds to the
particle moving in a time-dependent optical potential.
For 0 � t0 < tn�1 we have n	�!ðxÞ, for tn�1 � t0 < tn�2

the potential is reduced to ðn� 1Þ	�!ðxÞ, and so on. For

t � t0 < t1 the absorbing potential is turned off. As we
send 	 ! 1, the distinction between, say, the terms con-
taining n	 and ðn� 1Þ	 disappears, and the particle moves
in an infinite absorbing potential until tn, after which it is

switched off. The integrals
Rt1
0 dt2 � � �

Rtn�1

0 dtn can now be

evaluated to yield tn�1
n =ðn� 1Þ!, and by summing over n

we have

A0½xðt0Þ� ¼ exp

�
i
Z t

0
Ldt0

�
� i


Z t

0
dt1 exp ð�i
t1Þ


 exp

�
i
Z t

t1

Ldt0 þ
Z t1

0
L1dt0

�
; (A3)

where L1 ¼ lim 	!1L� 	��ðxÞ is the Lagrangian with

an infinite absorbing potential introduced in the right half-
space. Inserting Eq. (A3) into Eq. (A1) yields the net
amplitude on all paths connecting x0 and x and first cross-
ing the origin x ¼ 0 at the time �,

Kðx; x0; tj�Þ ¼ Kðx; x0; tÞ�ð�Þ � @�
Z

dx00Kðx; x00; t� �Þ

 K1ðx00; x0; �Þdx00; (A4)

where K1 and K are the propagators with and
without an infinite absorbing potential in the right

half-space, i.e., Kðx;x0;t��Þ��ðt��Þhxjexpð�iĤtÞjx0i
and K1ðx; x0; �Þ � �ð�Þhxj exp ð�iĤ1�Þjx0i where Ĥ1 �
lim 	!1 Ĥ�	�ðxÞ. Note that the infinite absorbing poten-

tial is equivalent to an infinite potential wall introduced at
x ¼ 0, so that

K1ðx; x0; tÞ � 0 for x; x0 	 0:

Differentiating the product in Eq. (A4) and noting that

Ĥ�ðxÞ � �ðxÞĤ1 ¼ �ð1=2MÞ½@2x; �ðxÞ� ¼ ð1=2MÞ�ðxÞ@x,
we rewrite Eq. (A4) as

Kðx;x0;tj�Þ¼Kðx;x0;tÞ�ð�Þ�ðxÞþK1ðx;x0;tÞ�ð�� tÞ
þði=2MÞKðx;0; t��Þ@x00K1ðx00 ¼0;x0;�Þ;

(A5)

which is the standard form of the first-crossing-time am-
plitude for a particle traveling between x0 and x [37–40].
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