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Observation of CP violation in D — K~ 77+ as a smoking gun for new physics
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In this paper, we study the Cabibbo favored nonleptonic D decays into K~ 7+ decays. First we show
that, within the Standard Model (SM), the corresponding charge conjugation and parity (CP) asymmetry
is strongly suppressed and out of the experimental range, even taking into account the large strong phases
coming from final state interactions. We show also that although new physics models with extra sequential
generation can enhance the CP asymmetry by a few orders of magnitude, the resulting CP asymmetry is
still far from the experimental range. The most sensitive new physics models to this CP asymmetry come

from nonmanifest left-right models, where a CP asymmetry up to 10% can be reached, and the general
two-Higgs model extension of the SM, where a CP asymmetry of order 1072 can be obtained without
being in contradiction with the experimental constraints on these models.
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I. INTRODUCTION

The Standard Model (SM) has been very successful in
predicting and fitting all the experimental measurements
up to date over energies ranging many orders of magnitude
[1]. Unfortunately, the SM is only a patchwork where
several sectors remain totally unconnected. Flavor physics,
for example, involves quark masses, mixing angles, and
charge conjugation and parity (CP) violating phases ap-
pearing in the Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix [2,3]. These parameters unavoidably have to
be measured and are independent from parameters present
in other sectors like electroweak symmetry breaking, quan-
tum chromodynamics, etc. Other sectors remain to be
tested like CP violation in the up quark sector and even
tensions with experimental measurements remain to be
clarified (see for instance Refs. [4-7]).

This is why it is important to find processes where the
SM predictions are very well known and a simple mea-
surement can show their discrepancy. Some of these pro-
cesses are the rare decays and other “‘null” tests which
correspond to an observable strictly equal to zero within
the SM. So any deviation from zero of these null test
observables is a clear signal of physics beyond the SM.
This is the case for Cabibbo-favored (CF) and double
Cabibbo suppressed (DCS) nonleptonic charm decays,
where the direct CP violation is very suppressed given
that penguin diagrams are absent [8—10].

Even with the observation of D° oscillation [11-16] and
the first signal of CP violation in D — 27, 2K [singly
Cabibbo suppressed (SCS) modes] [17-32], it is not clear
that the SM [33-41] can describe correctly the CP
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violation in the up quark sector. It is even more difficult
as large distance contributions are important and difficult
to be evaluated [42—46]. Thus, unfortunately it will be not
easy to find new physics in this sector (SCS). On the
contrary, in the CF and Double Cabibbo Favored modes,
the charge conjugation and parity violation (CPV) signal is
very suppressed in the SM and in most of the new physics
(NP) models. So even if long distance corrections are large,
any small signal of CPV will be due to new physics.

Up to now, only D° « D° oscillations have been ob-
served and their parameters have been measured [1,11-16]:

AT,
2T,

Amd
I'p

x = 055012 y=--2=1083(13), (1)

%|=O.918j}2’ p=arg(q/p)=—(10.239)°, (2)

where x # 0 and/or y # 0 mean oscillations have been
observed, while |¢/p| # 1 and/or ¢ # 0 are necessary to
have CP violation. The theoretical estimations of these
parameters [ 1] are not easy, as they have large uncertainties
given that the ¢ quark is not heavy enough to apply heavy
quark effective (HQE) theory (like in B physics) [47].
Similarly, it is not light enough to use chiral perturbation
theory (CPTh) (like in kaon physics). Besides, there are
cancellations due to the Glashow-Iliopoulos-Maiani
mechanism [2,48]. Theoretically CP violation in the charm
sector is smaller than in the B and kaon sectors. This is
due to a combination of factors: CKM matrix elements
(Vi Vi, /VisVis|> ~ 107) and the fact that the b quark
mass is small compared to the top mass. CP violation in the
b quark sector is due to the large top quark mass, while in the
kaon it is due to a combination of the charm and top quark.

Experimental data should be improved within the next
years with LHCb [49] and the different charm factory
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projects [50]. In Table I the experimentally measured
branching ratios and CP asymmetries are given for differ-
ent nonleptonic D decays.

In this paper, we study in detail the CP asymmetry for
the CF D° — K~ 7" decay. In Sec. II, we give the general
description of the effective Hamiltonian describing this
decay within the SM and show how to evaluate the strong
phases needed to get CP violating observables. These
strong phases are generated through final state interaction
(FSI). In Sec. I11, we first evaluate the SM prediction for the
CP asymmetry and we show that within SM, such CP
asymmetry is experimentally out of range. In Sec. IV, new
physics models are introduced and their contributions to CP
asymmetry are evaluated. Finally, we conclude in Sec. V.

II. GENERAL DESCRIPTION OF CF
NONLEPTONIC D DECAYS INTO K~ AND #=*

In general the Hamiltonian describing D — K~ 7™ is
given by

G ) )
£eff. = 7% V?SV“dl:thlahirlcaﬁridb

+ Y ch, e, 5Tyd, ] (3)
La
with i = S, V, and T for the scalar (S), vectorial (V), and
tensorial (T) operators, respectively. The Latin indexes a,
b=L,Rand g, r = (1 F ys5)q.

Within the SM, only two operators contribute to the
effective Hamiltonian for this process [8—10]. The other
operators can only be generated through new physics.

Gr

H =—=ViViale\Sy e iyt d, + cyiiy e 5y*dy) + Hee.

NG
“4)

TABLE 1.
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G
= 7; ViVua(e10) + ¢,0,) + He, )
where a;=c¢  +¢/N,=12%x01 and a,=
¢y — ¢;/Ne = —0.5 = 0.1 [8-10], where N is the color
number. For the case D — K7 [8—10], one has that

Gp . .
Apprg-m = —zTngVud[alxgoK- +a X2 1 ()

BR = —2PK 42, (7)
8mmy,

where BR is the branching ratio of the process. 7, is the D
lifetime, pg is the kaon momentum and my, is the D meson
mass. The Xg; g and X ,?2 -+ can be expressed in the
following way:

Py _ 2 PyP3 2 2
Xp,p, = ifp Ap,p, Fo™ (),

2 2
A192133_’"P2 mp,,
3)

where f, and fg are the decay constants for D and K
mesons, respectively, and F5X and FP™ are the correspond-
ing form factors. These amplitudes have been computed
within the so-called naive factorization approximation
(NFA) without including the FSI. In NFA, no strong CP
conserving phases are obtained (and therefore no CPV is
predicted) but it is well known that FSI effects are very
important in these channels [52-56]. In principle, we have
many FSI contributions: resonances, other intermediate
states, rescattering, and so on. Resonances are especially
important in this region given that they are abundant. They
can be included and seem to produce appropriate strong
phases [56]. However, the other contributions mentioned
above have to be included too, rendering the theoretical
prediction cumbersome. A more practical approach,
although less predictive, is obtained by fitting the experi-
mental data [52,56]. This is the so-called quark diagram

Direct CP in D nonleptonic decays, from the Heavy Flavor Averaging Group (HFAG) [1,51]. The blank entries

correspond to cases where no experimental data for branching ratio or CP asymmetries are available at present time.

Mode BR (%) Acp (%) Mode BR (%) Acp (%)
D’ — K~o* CF 3.95(5) DY — K%7% CF 2.4(1)

D% — K% CF 0.96(6) D — K%’ CF 1.90(11)

DT — K% CF 3.07(10) DY — KTK% CF 2.98(8)

D — 7ty CF 1.84(15) D — 7t/ CF 3.95(34)

D° — K7~ DCS 1.48(7) X 1074 D° — K979 DCS

D° — K% DCS D° — K%y’ DCS

DT — K% DCS Dt — KT 7% DCS 1.72(19) X 1072

D* — K*7 DCS 1.08(17) X 1072 Dt — K*n' DCS 1.76(22) X 1072

D} — K*K° DCS

DY — 7=t 0.143(3) 0.22(24)(11)

D' — K K* 0.398(7) —0.24(22)(9) Acp(KTK™) — Acp(mt ™) —0.65(18)
DT — Kdmw* 1.47(7) —0.71(19)(20) D* — gta a* 0.327(22) 1.7(42)
D* - K 7r*q* 9.51(34) —0.5(4)(9) D* — K07* 70 6.90(32) 0.3(9)(3)
D* - K"K~ 7~ 0.98(4) 0.39(61)
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approach. Within this approach, the amplitude is decom- e A AN
posed into parts corresponding to generic quark diagrams. w

The main contributions are the tree-level quark contribu- d u;
tion (7) and exchange quark diagrams (E). Their results ' '
can be summarized in the following way, for the process i w d

under consideration [56]: AN

Apog- 7+ = VEViua(T + E), 9) FIG. 1. Feynman diagram for CF processes: box contribution.
with
= (3.14 £ 0.06) X 1076 GeV

.. (10)
E = 1.537097 X 1076 - (12252 GeV,
where in NFA they can be approximately written as
G
7= a1 almh = mFgH (m?) (1)
_Gr 2\EKT ()2
E= arfp(mg — mz)Fy 7 (mp). (12)

Nz

In the rest of this work we are going to use the values
obtained by the experimental fit, given in Eq. (10).

L. CP ASYMMETRY IN D — K~ 7* WITHIN SM FIG. 2. Feynman diagram for CF processes: dipenguin

In the case of CF (and DCS) processes the corrections ~ contribution.
are very small (see diagrams in Figs. 1 and 2) and are
generated through box and dipenguin diagrams [57-59]. In G m2 G2m2
this section, we shall evaluate these contributions. ZF SABAY f(xy, xp) Oy = ZF Wb 0, (14
The box contribution is given as [59,60]
G where
AH = 2F 2W V*DVuDVUsVUdf(xU’ xD)uyMcLsy'“dL b, = /\?u/\gjf(xU: xp) (15)
(13)
|
= devud(vtjsvudfud + V:svcdfcd + V:ivvtdftd) + V:s Vus(v:svudfus + stvcdfcs + V:s thfts)
+ ViV VisVuafu + VisVeaf e + VisViafw)
= VjsVus[V:chd(fcs - fcd - fus + fud) + V:vvtd(fls - ftd - fus + fud)]
T Vo VulVesVealfer = fea = fup + fud) + VisViaFw = fra = Fun + fud)) (16)
with AgD, = VipVups /\’l)]U, =VipVyp,U=u,c,t,D=d,s, b,x, = (mq/mw)z, fup = fxy, xp) [61], and
Txy — 4 1 [y*logy xy\ x*logx xy
flxy) = + [ (1—2x+—)——(1—2y+ )]
40 —x(1—y) x—yL(1—y)? 4) (1-x)? 4

Numerically, one obtains
b, =3.6X 10770071, (17)

The quark masses’ values are taken at the m, scale as given in Ref. [1]. The other contribution to the Lagrangian is the
dipenguin and it gives [57,58,62]

A = - GF“S[A ) Eolep) AL Eolx) 5y, T4d, (54701 — a# ")y, Toc,

Gza _ _ G2a
= —SFTfpng”dL(g“”D —ranay, Tle, = S = p,0 (18)
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Pg = [)‘?MEO(XD)][)\éjdEO(xU)]
= [V&Vus(Eo(xs) — Eo(xg))
+ Vi Vs (Eo(xp) — Eox4))]
X [VeaVis(Eg(xe) — Eg(x,))
+ ViaVi(Eo(x,) — Eo(x,))],
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where T are the generators of SU(3)c. Numerically, p, =
—1.62 - e~ %002/ and the Inami functions are given by

1
m[x(l —x)(18 = 11x — x?)

—2(4 — 16x + 9x?) log (x)].
The operator O can be reduced as

Ey(x) =

(20)
(19)

O =5y,T%, (g""0 — 0+ 9"y, T c;, = 5y, T%d, O(ay"Tc,) + 5§Td adTc,,
= —¢*5y, Tedpiay T cy, — (m3Tds_p + mgsTdg.p) - (m T s p + m,aTcs_p) — q*5y,Tdiay*Tc,
—mgm $T%d T cp — mgm, ST dgiiTc; — mgm,5Td; uTc;, — mgm ST driT cp, (21)
where ¢ is the gluon momentum and N is the color number. This expression can be simplified using the fact that
1 1
Sy, Ted, iy Tec, =~ (0 ——@)
SYu Luy ‘L 2( AL

1

1
ETadLI/_lTaCR = _—i'yMCRL_l'}/’udL - ﬁEdL’ZCR

— A

1
ETadRﬁTaCL = _—E'}/I_LCLL_l’)/MdR - ﬁEdR’/_‘CL (22)

N

o 1 _

SCLMdL _ESO'I“,
_ _ o 1 _ _ L
ST dgiuTcp = — —5Scridg — Esa'#,,cRua“”dR - ﬁstucR.

1
ETadLb_lTaCL = — CLI/_lO"U“VdL - ﬁEdLﬁCL

—_ A=

N

Once taking the expectation values, one obtains
(0) = —¢* sy, Td iy T L) — mm (5Td iuTcg) — mym,(5TdgaTcy) — mym,(5TdiT )
— mym (STdgiuT%cg)
2
q 1 + mgm, 1) + Smy
=~——(1—-—=)X7 . + 1 ——= X7
2 ( NZ) D°K 4 ( NJ DK™ 8Nm,
Hence, one gets for the Wilson coefficients

Grag [q2< 1 ) mcms< 1>] e 0o
— b, — —(1——=])— 1—— ~2.8 X 10780004

R2mViV N 425V Vi L2 N? 4 N/ 1P
_ Gpmy, _ Gpag  Smgmj,
\/iﬁzvjsvud ' 4\/5773‘/65‘/;5 8Nm5

mpXyp- . (23)

2
GFmW

Aal =

(24)

Aa, = P = —2.0 X 107907,

where to obtain the last result we have used the fact that IV. NEW PHYSICS

for the decay D° — K~ z*, one can approximate g>=
(e p)*=(ps = pa)*=(pp— pr/2)* =(mp + mg)/2+
3m2 /4, by assuming that p,. = pp, p, = p,/2, and ag =~
0.3. It should be noticed that the box contribution is
dominated by the heavy quarks while the penguin is domi-
nated by the light ones. The direct CP asymmetry is then

_ AP = 1AP _ 2Irlsin (¢, — ¢y) sin (ag)))
|A]> + A2 1T+ rl?
= 1.4 X 10719,

With new physics, the general Hamiltonian is not only
given by O ,. The expressions of the expectation values of
these operators can be found in the Appendix. It is impor-
tant to notice that as expected, only two form factors
appear, namely, Xgi -+ and ng -+ Thus, it is important
to take into account the FSI interactions, as the first one is
identified as the E contribution and the second one is
identified as the T contribution. In the next subsections,
we shall calculate the Wilson coefficient for different
models of new physics. For the first case, we will be

Acp

(25)

with r = E/T, a; — a; + Aa[ = da; + |Aa,-| €Xp [lA¢l],
and ¢; = Aqg;sin A¢;/a;, and ay is the conserving phase
which appears in Eq. (10).

assuming an extra SM fermion family. The second ex-
ample will be to compute the CP asymmetry generated
by a new charged gauge boson as it appears, for instance, in
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models based on gauge group SU(2); X SU(2)i X
U(1)p_;, and our last subsection is dedicated to the effects
of CP asymmetry coming from new charged Higgs-like
scalar fields, applying it to the two-Higgs extension of the
SM (type II and type III).

A. Contributions to Ap from extra SM fermion family

A simple extension of the SM is the introduction of a
new sequential generation of quarks and leptons (SM4).
A fourth generation is not excluded by precision data
[63—70]. Recent reviews on consequences of a fourth gen-
eration can be found in Refs. [71-81].

The B — K7 CP asymmetry puzzle is easily solved by a
fourth generation [82—-84] with a mass within the following
range [82]:

400 GeV <m,, <600 GeV. (26)

The values of SM4 parameters compatible with the high
precision LEP measurements [64—66,69] are

1 mpyg
my, —mg, = (1 + g hlm) X 50 GeV (27)
Vi, b 1Vial = 0.04, (28)

where V is the CKM quark mixing matrix which is now a
4 X 4 unitary matrix. The direct search limits from LEPII

and CDF [85-87] are given by
m,, > 311 GeV mg, > 338 GeV. (29)

PHYSICAL REVIEW D 87, 075017 (2013)

Direct searches by the ATLAS and CMS collaborations
have excluded m,, <480GeV and m,, <350GeV [88-90].
Thanks to the LHC, these limits are moving very quickly.
Recently, ATLAS reported a new limit on m,, > 656 GeV
at 95% confidence level [91], above the tree-level unitarity
limit, m,, <+/47/3v =504 GeV. But SM4 is far from
being completely understood. Most of the experimental
constraints are model dependent. For instance, it has been
shown in Ref. [92] that the bound on m,,, should be relaxed
up to m,, > 350 GeV if the decay u, — ht dominates. The
recent LHC results which observe an excess inthe H — yy
corresponding to a Higgs mass around 125 GeV [93,94]
seem to exclude the SM4 scenario [95,96], but these results
are based on the fact that once we include the next-to-lead-
ing order electroweak corrections, the rate o(gg— H)X
Br(H—yvy) is suppressed by more than 50% compared
to the rate including only the leading order corrections
[95,97-101]. This could be a signal of a nonperturbative
regime which in SM4 can be easily reached at this scale
due to the fourth generation strong Yukawa couplings.
Therefore, direct and model-independent searches for
fourth generation families at collider physics are still nec-
essary to completely exclude the SM4 scenario.

The CP asymmetry in the model with a fourth family is
easy to compute, as the contributions come from the same
diagrams in the SM after adding just an extra u, = ¢’ and
d, = b'. Similarly, in Ref. [90] it has been found that new
CKM matrix elements can be obtained (all consistent with
zero and for m;, = 600 GeV) to be

V. 0.0084(62 V. 0.07(8

S14 = |Vub’| = 0017(14), Sy = | cb | = ( ), S34 = M = ( )

Cl4 Cl4 C14Co4 C14Co4
VMS

Vgl = Vsl = 0.01(1), [Vl = 0.07(8), [Vip| = 0.998(6), [Vl = 0.98 tan 6, = % s 30)
ud
_ |Vub| S o o ° _ * L
S13 = Cu , 13 =7y =68 [Vep| = le13cas3 — “13”14“24| = C13€24523-

The two remaining phases (¢4 and ¢,,) are unbounded.
Thus, the absolute values of the CKM elements for the
three families remain almost unchanged but not their
phases. From these values one obtains

513 = 0.00415,
S14 = 0016,

S = 0225,
Soq4 = 0006,

Sy3 = 004,
S3g = 0.04.

3D

For a fourth sequential family, the maximal value for the
CP violation is obtained as

Acp=~—1.1x 1077, (32)

where one uses |V,,/| = 0.06, |V, = 0.03, |V,,| = 0.25,

¢14 = _29, ¢24 = 13
This maximal value is obtained when the parameters

mentioned above are varied in the range allowed by the

experimental constraints, according to Eq. (30) in a “three
sigma’ range. The phases are varied in the whole range
from — 7 to 7r. Thus, one can obtain an enhancement of a
thousand, which may be large but is still very far from the
experimental possibilities.

B. A new charged gauge boson in left-right models

In this section, we shall look to see what could be the
effect on the CP asymmetry coming from a new charged
gauge boson coupled to quarks and leptons. As an example
of such models, we apply our formalism to a well-known
extension of the Standard Model based on extending the
SM gauge group to include a gauge SU(2)g [102-106]. So
now, our gauge group defining the electroweak interaction
is given by SU(2); X SUQ2)g X U(1)g_;. This SM exten-
sion has been extensively studied in previous works
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(see for instance Refs. [107-111]) and their para-
meters have been strongly constrained by experiments
[1,112-116]. Recently, CMS [117,118] and ATLAS
[119,120] at the LHC have improved the bound on the scale
of the Wi gauge boson mass [121]. The new diagrams
contributing to D — K7 are similar to the SM tree-level
diagrams where W, is replaced by a Wy. These diagrams
contribute to the effective Hamiltonian in the following way,
assuming no mixing between W; and Wy gauge bosons:

j-[L = &( SR )2V1§cs

\/5 8LMy,
X VRud(C/IE’}/MCRI/_t'}/’udR + CQIZYMCREVMCZR) +H.c.
G

==Lv*v ,(c,0,+c,0,)+H.c., (33)

V2

where g; and gy are the gauge SU(2); and SU(2) cou-
plings, respectively. my and my, are the SU(2), and
SU(2)g charged gauge boson masses, respectively. Vi is
the quark mixing matrix which appears in the right sector of
the Lagrangian similar to the CKM quark mixing matrix.
This new contribution can enhance the SM prediction for the
CP asymmetry, but it is still suppressed due to the limit on
My, which has to be of order 2.3 TeV [121] in the case of
nonmixing left-right models.

In Refs. [122,123] it has been shown that the mixing
between the left and the right gauge bosons can strongly
enhance any CP violation in the charm and muon sectors.
This left-right (LR) mixing is restricted by deviation to
nonunitarity of the CKM quark mixing matrix. The
results were that the LR mixing angle called £ has to be
smaller than 0.005 [124] and the right scale M bigger than
2.5 TeV [121]. If the left-right symmetry is not manifest
(essentially, that g could be different from g; at the uni-
fication scale), the limit on the My scale is much less
restrictive and the right gauge bosons could be as light as
0.3 TeV [125]. In such a case, ¢ can be as large as 0.02, if
large CP violation phases in the right sector are present
[109], and still be compatible with experimental data
[123,126,127]. Recently, precision measurement of the
muon decay parameters done by the TWIST Collaboration
[128,129] put a model-independent limit on ¢ to be smaller
than 0.03 (taking g; = gg). Letus now compute the effect of
the LR mixing gauge boson on our CP asymmetry. So first,
one defines the charged current mixing matrix [122]

iGF &R [ — ( + 2
AA = — —= 28| —c, VEVR [ X7+ =
2 g L e\ Tos Ty X

— Vi V{fd(z %l AN = ¢

K ot

iG g * Y/ (7R* at
= T; Zﬁ g(vcs Vfd - va Vud)(alXDOK—

where )(77+ and XDO are defined as

DO v DO
XK —at

) + cIV{?;*Vud(X”

PHYSICAL REVIEW D 87, 075017 (2013)
W\ [ cosé  —siné \(W,
Wg e?siné e“cosé J\ W,
1 — w
~( (), (34)
elﬂ)f el(l) W2

where W, and W, are the mass eigenstates and & ~ 1072,
Thus, the charged current interaction parts become

L=——=Uy,(g VP, + grEVRPR)DW]

1
N
Uy, (—g VP, + grVRPR)DWS,  (35)

=l -

where V = Vg and VR = e/“ VR Once one integrates out
the W in the usual way and, neglecting the W, contributions
given its mass is much higher, one obtains the effective
Hamiltonian responsible for our process:

AGr[ - * 8R soRx
Heff=$[clsyﬂ(v PL +E§VR PR)L.S
X cﬁy”(VPL + g—R§VPR) d

8L ud
+ C2§0(’}/M<V*PL +§_R§VR*PR)
L

cs

X cﬁﬁﬁw(vm + g—R§VPR) da] +He, (36)
8L ud

where «, B are color indices. It is easy to check that taking
the limit £ — 0, one obtains Eq. (5), with the only difference
coming from the ¢, terms, because the Fierz transformation
has been applied. The terms of the effective Hamiltonian
proportional to ¢ are

G g = £ - 7
A}[eff = Tg g_Rf[CISYMVcsCLuyMV{fddR
L
+ 15y, VE crity* V,qdy,
+ 25,7, Viscrgiigy* VE drg,

+ czia)/MVf;‘cRBﬁﬂy“VuddLa] + H.C., (37)

The contribution to the amplitude proportional to £ is then
given by

2
+ =

D° DY
ok~ T X kaﬁ)

1 - 1.
N DOK*) + C2V§s Vud<2/\/DOXI€27T+ + NXEOK*)]

+ 2P XD ) = - ?RE(V?:‘VW — VEVR)T — 2xP°E),  (38)
L

K 7@
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2

at m,

X (mc - ms)(mu + md) (39)
Do mp

X

B (mc + mu)(ms - md)‘
The CP asymmetry becomes

4(gr/81)é

—ORESLIS (14 2P Im(VE*V,, — VE VR )Im(r),
V:SVL,d|1+r|2( X )m( cs Yud cs ud) m(r)

Acp=
(40)

with r = E/T. For a value as large as &~ 1072, the
asymmetry can be as large as 0.1. Also, we should note
that to obtain these results, we have used the fact that the
chiralities do not mix under strong interactions if the quark
masses are not taken into account. This is approximately
the case in the evolution of the Wilson coefficients from
my to m,, as the quarks in the loop are the down quarks;
this is contrary to a process like b — sy, where the quarks
in the QCD corrections are the up quarks and, in that
case, a strong effect from top quarks could be expected
[130-133]. In our case, as a first approximation, the QCD
corrections to the Wilson coefficient coming from the
running of the renormalization group from my to m,. can
be safely neglected.

C. Models with charged Higgs contributions

Our last example of new physics is to consider the
contribution to the effective Hamiltonian responsible for
the D® — K~ 7r* process due to new charged Higgs fields.
The simple SM extensions which include new charged
Higgs fields are the two-Higgs doublet models (2HDMs)
[134,135]. Usually, it is used to classify these 2HDMs in
three types: types I, II, or III (for a review, see Ref. [136]).
In 2HDM type Il models (like the minimal supersymmetric
Standard Model), one Higgs couples to the down quarks
and charged leptons and the other Higgs couples to up type
quarks. LEP has performed a direct search for a charged
Higgs in type II 2HDM and they obtained a bound of
78.6 GeV [137]. Recent results on B — 7v obtained by
BELLE [5] and BABAR [6] have strongly improved the
indirect constraints on the charged Higgs mass in type II
2HDM [138]:

myg+ > 240 GeV at 95% C.L. (41)

2HDM type IIl is a general model where both Higgs couple
to up and down quarks. Of course, this means that 2HDM
type III can induce flavor violation in the neutral current
and thus it can be used to strongly constrain the new
parameters in the model. We shall focus our interest on
the two-Higgs doublet of type III, as the other two can be
obtained from type III by taking some limits.
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As in our previous sections for models of physics be-
yond the Standard Model, our strategy is to compute the
Wilson coefficients contributing to the processes under
consideration in the two-Higgs doublet model of type III,
to check the consistency of our results with previous
studies on these models and to use constraints coming
from related D processes [139-142] in order to get an
estimate of the maximum CP asymmetry that can be
generated in the D — K channel.

In the 2HDM of type III, the Yukawa Lagrangian can be
written as [139,140]

L§fT = 04, [V ea HY — € Hildig
- Q;L[YuieahHS* + fung]M,'R + H.c, 42)

where €,, is the totally antisymmetric tensor, and e?j

parametrizes the nonholomorphic corrections which
couple up (down) quarks to the down (up) type Higgs
doublet. After electroweak symmetry breaking, L& gives
rise to the following charged Higgs-quark interaction
Lagrangian:

£?_§£ = l/_lf]._ﬂ;f;iLReffPRdl‘ + ﬁfFIL;IfidIfLeffPLd[, (43)

with [140]

3
. " - mg.
Fz}f’Reﬂ = Z sin vi]( vd, 8]1 - 6;-][4 tan B),
' j=1 d (44)

3 m
Fi]f—d{uerf = Z cos B(U—uf Ojf — ej‘;‘ tan ,B)Vj,-.
j=1 u

Here v, and v, are the vacuum expectation values of the
neutral component of the Higgs doublets, V is the CKM
matrix, and tan 8 = v, /v,. Using the Feynman rule given
in Eq. (43), we derive the effective Hamiltonian resulting
from the tree-level exchanging charged Higgs diagram that
governs the process under consideration. We can express
the effective Hamiltonian as

G 4
Hete = —=ViVia > CH(w) 0 (1), (45)
£f \/5 d; M Mr

where CI are the Wilson coefficients obtained by pertur-
bative QCD running from My-= scale to the scale u rele-
vant for hadronic decay, and Qf’ are the relevant local
operators at low energy scale u =~ m,. The operators can
be written as

Q{i = (§PRC)(ﬁPLd),
Q3 = (5P c)(aPd),

Q4 = (5P c)(aPgd),
Q) = (5Pgc)(@Pgd),

(46)

and for the Wilson coefficients CH, at the electroweak
scale, they can be expressed as
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i V2

3 3
m m

e (S (s, - ean)( S cos (" 1
1 GFV:SVudm%1<-_1COS'8 ﬂ(vu jl — € tan B ]; cos BV, o,

V2
GF V:s Vudmfi

GF V:s Vudm
2
.

# 2
GF cs Vude

Having deriving the effective Hamiltonian which governs
the process under consideration, we proceed to discuss the
experimental constraints on the parameters e?j, where
q = d, u, relevant to our decay mode. The flavor-changing
elements 6?/- for i # j are strongly constrained from flavor-
changing neutral current (FCNC) processes in the down
sector because of tree-level neutral Higgs exchange. Thus,
we are left with only €|, €,. Concerning the elements €
we see that only €}, €}, can significantly affect the Wilson
coefficients without any CKM suppression. Other €;; terms
will be so small that the CKM suppression will be of orders
A or A? or higher, and so we neglect them in our analysis.
One of the important constraints on e?j, where g = d, u,
can be obtained by applying the naturalness criterion of ’t
Hooft to the quark masses. According to the naturalness
criterion of 't Hooft, the smallness of a quantity is only
natural if a symmetry is gained in the limit in which this
quantity is zero [140]. Thus, it is unnatural to have large
accidental cancellations without a symmetry forcing these
cancellations. Applying the naturalness criterion of ’t
Hooft to the quark masses in the 2HDM of type III, we
find that [140]

|Uu(d) G?J(M)l = |V[j-| max [md[_(u’_), md/_(uj)], (48)
which leads to

|Vij| max [md,-(u,); mdb/-(ub/-)]

(
Cg{ _ L(Z cos ,BV]-I(ﬂ oj1 — 63‘1*
(3

el = (49)
! V@)
u(d)

0.10f 1 L.0p

0.05} 1 0.5p

< o000} L o0of
£ £

—0.05} 1 -0.5¢

—0.10F 1 -1.0p

-1.0 -05 0.0 0.5 1.0
Re(e"n)

—0.10 =0.05 0.00 0.05 0.10
Re(€'2)

FIG. 3 (color online).
Right: tan 8 = 100.

Constraints on €5,. Left: tan 8 = 10.
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— €}, tan ,8))

3
Z sin BVU(’Z—j ;1 — € tan ,8) (Z sin BVZk( 8 — €43 tan B))

k=1 (47)

(kz sin szk( " 810 — €5 tan ,8))

fan )

Clearly from the previous equation, €, €¢,, €4, will be
severely constrained by their small masses while €5, will
be less constrained. Clearly from Eq. (49), the constraints
imposed on €5, are tan 5 dependent. We now apply the
constraints imposed on the real and imaginary parts of €%,
corresponding to two different values of tan 8, namely, for
two cases tan 8 = 10 and tan 8 = 100, using Eq. (49). In
Fig. 3 we show the allowed regions for the two cases.
Clearly the constraints are sensitive to the value of tan 3
where the constraints are weak for large values of tan 3.
Since C and CY are proportional to €%,, they will be
several orders of magnitude larger than C§ and Cf. In
fact, this conclusion can be seen from Eq. (47) and thus in
our analysis we drop C¥ and CI. Now, possible other
constraints on €4, can be obtained from D — D mixing
and K — K mixing. For K — K mixing, the new contribu-
tion from the charged Higgs mediation corresponding to a
top quark running in the loop will be much more dominant
than the contribution in the case with the charm quark
running in the loop. This is due to the dependency of the
contribution on the ratio of the quark mass running in the
loop to the charged Higgs mass. Thus, the expected con-
straints from K — K mixing might be relevant on €%, and
€4, but not on €5,. In fact, as mentioned in Ref. [140], the
constraints on €%, and €5, are even weak and €%, and €%,
can be sizable. By a similar argument we can neither use
the process b — s7y nor the electric dipole moment (EDM)
to constrain €%,. Regarding D — D mixing, one expects a
similar situation to that in K — K about the dominance of
the top quark contribution. However, due to the CKM
suppression factors, the top quark contribution will be
smaller than the charm contribution.

1. D — D mixing constraints

In the following we discuss the possible constraints on
€4, from D — D mixing. We start by deriving the effective
Hamiltonian that contributes to D — D mixing due to
diagrams with charged Higgs mediation. In our calcula-
tions, we take into account only box diagrams that con-
tribute to D — D mixing mediated by exchanging a strange
quark and a charged Higgs. Other contributions from box
diagrams mediated by down or bottom quarks and charged
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Higgs are suppressed by the CKM factors. Since the SM
contribution to D — D mixing is very small, we neglect its
contribution and its interference with charged Higgs me-
diation contribution. Thus, the effective Hamiltonian for
this case can be written as

_ 1 4 - -
A2 = Ci(w)Qi(w) + Ci(m)Qi(w),  (50)

1

HE i

-1

where C;, C; are the Wilson coefficients obtained by
perturbative QCD running from My scale to the scale u
|

= (Symev (3o

mA%IZ(xS) .
C,= T (Z sin

H® \j=1

3
me
X (Z COS BV:Z(‘U_ 5n2 - GZ;
= u

tangs)).

Q-W(Zs ,BVZJ( 85 ejztan,l%))(Zsm,BVIk( 581 — egztan,@))(gcos,l?vn(i'jﬁn

H*
(Z cos ,8Vn2< £8,, — € tan ,8))

where x;, = m2/m?> my,-, and the integrals are defined as

follows:
_ox+ 1 —2x,1n (x,)
Il(-xs) - (XS — 1)2 (xs _ 1)3 ’ (53)
L) — -2 (x; + 1) In(x,)

(xs - 1)2 (xs - ])3

The Wilson coefficients C; are given by
=~ _ Ly

C, = o 2<ZCOS,8 2(—5 —eltanﬁ))

k=1 u
~ m%IZ(xv) > s c u 2
3 2
X (Z sinﬁV1k<—8k2 ekztanﬁ)) ,
k=1
C; = Cs, C,=C,. (54)

Our operators Q;, Q,, and Q, given in Eq. (51) are
equivalent to their corresponding operators given in
Refs. [141,142], while the operators Q, and QZ are equivalent
to Q¢ and O, given in the same references, respectively.

« (Mg 2 my
szj(vd 6]2 - 6;»12 tan B)) (Z COS BVkQ(U”a
Il (xs) : . « (M d d s my
Cy= Py (Z sin BVZJ.(— O0jp— €} tan B))(Z sin BV1k< Ok — €5, tan B))(Z cos ,BVIZ(—
™ \i3 Va =1 Yy
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relevant for hadronic decay and Q;, Q; are the relevant
local operators at the low energy scale

0, = (aPpc)(@Pyc),
Q4 = (ﬁPLC)(ﬁPRC),
(51)

Q, = (ay*Pc)ay,PLc),
Q3 = (uy*Pc)iay,Pgo),

where we drop color indices and the operators Q; can be
obtained from Q; by changing the chirality L < R. The
Wilson coefficients C;, are given by

2~ €htan B)) (Z sin ,8V1k< S8y — €4, tan B))z,

2
k1~ € tan ,3))
8, — € tan B))

— €} tan ,B))

(52)

[

Moreover, Qs, given in Eq. (51), can be related to Qs in
Refs. [141,142] by Fierz identity. For the rest of the operators,
Q; and Q,, they are equivalent to Qs and Q, in
Refs. [141,142] since their matrix elements are equal. Thus,
the set of the Wilson coefficients C; and C;, for i running from
1 to 4 that we derived above, are subjected to the con-
straints given in Refs. [141,142], which in our case read

[ mpy= 2
C |=57x1077 24
1G] [ 1 TeV]
S
|Gy | =1.6%1077 lmT{*V
c
- : (55)
'm -+ 72
C,l=32x107 24
1G5l |1 TeV
[ + 12
| Cy | = 5.6 X 1078| 2
| 1 TeV ]

The constraints on C; — C, are similar to those on C; — C,.
As can be seen from Eq. (55), the constraints on the Wilson
coefficients will be strong for small charged Higgs masses.
With the explicit expressions for the Wilson coefficients
given above, we can proceed now to derive the constraints
on €4, using the upper bound on C,, for instance.
Keeping terms corresponding to first order in A, where
A is the CKM parameter, we find that, for mpy= =
300 GeV and tan 8 = 55,
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C, X 10" = 3(—53.6¢€%, — 12.7€4, + 0.007)?
X (—12.4€Y — 53.4€4 + 0.007)%.  (56)
While for my= = 300 GeV and tan 8 = 500, we find

Cy X 10" = 3.6(—487.1€4, — 115.0€4, + 0.06)
X (—112.5€% — 486.7€% + 0.007)2.  (57)

In both Egs. (57) and (56) we can drop terms propor-
tional to € to a good approximation, as they have small
coefficients in comparison to €5,, and also since effj’»d with
i # j are always smaller than the diagonal elements e?‘;d.
On the other hand, we know that €¢, cannot be large to
not allow flavor-changing neutral currents, and so we can
also drop terms proportional to 6‘1’2 in Eqgs. (57) and (56)
to a good approximation. Thus, we are left with €$, and
€, in both Egs. (57) and (56). Comparing their coeffi-
cients shows that €}, has a large coefficient and thus we
can drop €4, terms. An alternative way is to assume that
€5, terms are the dominant ones, in comparison to the
other ef‘jtd terms, and proceed to set upper bounds on €5,.
In fact, even if we consider other Wilson coefficients
rather than C,, this conclusion will not be altered. Under
the assumption €/, = €4, = €}, = 0 and using the upper
bound corresponding to my= = 300 GeV on C,, given
by Eq. (55), one obtains

| C, | = 1.4 X 1078, (58)

Clearly from Egs. (57)—(59) the bounds that_ can be
obtained on €5, will be very loose, and thus D — D mixing
cannot lead to strong constraints on €5,.

2. D,— 7v constraints

The decay modes D, — 7v, where ¢ = d or g = s, can
be generated in the SM at tree level via W boson mediation.
Within the 2HDM of type III under consideration, the
charged Higgs can mediate these decay modes at tree level
also and hence, the total branching ratios, following a
similar notation in Ref. [140], can be expressed as

Gzlvc |2 m% 2
B(D; —7tv)= —Fgﬂ_q m%f,z)quq(l — m%) p,
2 cqx cq®
><|1+ "o, (G —GT) |
(me +my)m, Ceir
(59)
where we have used [143]
/o m%
0lgy’c|D,) = ——_, 60
0lgy>clD,) (. + m,) (60)

where the SM Wilson coefficient is given by Cgf; =
4GpV.,/ /2 and the Wilson coefficients C5? and C% at
the matching scale are given by

PHYSICAL REVIEW D 87, 075017 (2013)

Criny =L LRRLLHT 1z tan B, 61)

with the vacuum expectation value v = 174 GeV and
I‘ﬁf (RLH™ can be read from Eq. (44). Setting the charged
Higgs contribution to zero and fp = 248 £2.5 MeV
[144], we find that BSM(D} — 77v) =9.5 X 107* and
BM(DF — rty) = (5.11 £ 0.11) X 1072, which are in
close agreement with the results in Refs. [145—-147]. The
experimental values of these branching ratios are given by
B(Dj—11r)<2.1X1073 [148], while B(D] — 77v) =
(5.38 = 0.32) X 1072 [149]. Keeping the terms that are
proportional to the dominant CKM elements, we find
forg =d

[H RLet — cog BV, (— €Y, tan B)

. (62)
FfId*LReff — sinBVH(@ — etlil tan B)’
Uy
while for ¢ = s we find
HERLeff _ Me _
Iz = cos BV22<— — €}, tan ,8)
v (63)

. m
H*LReff _ ; s _ d
s = sin ’szz(vd €5, tan ,8).

Clearly from the last two equations, we need to consider the
decay mode D — 7" » to constrain €4,. For tan 8 = 10
we find that

[HRLET 5 1073 =~ 0,71-968.6€%,

i (64)
[HTLReMt 3% 1073 ~ 5.3 - 9686.0€4,.

Clearly the coefficient of €4, is 1 order of magnitude larger
than €5, and for larger tan 8 one expects it to be larger.
However, €4, is severely constrained by the naturalness
criterion and we expect the term proportional to €5, to be
larger; in our analysis we can drop the €9, term and proceed
to obtain the required constraints. We show in Figs. 4 and 5
the allowed regions for the real and imaginary parts of €5,
corresponding to two different values of the charged Higgs
mass, namely, my= = 150 GeV and my= = 180 GeV, and
for different values of tan 8. Our objective here is to show
the dependency of the constraints on my= and tan 3. We see
from the figures that for tan 8 = 140, the constraints be-
come loose with increasing my=. It is important to empha-
size that such a large value for tan 8 is compatible with
supersymmetry-inspired two-Higgs doublet models, as
shown in Ref. [150]. This is expected, as Wilson coeffi-
cients of the charged Higgs are inversely proportional to the
square of my;+ and thus their contributions to B(D} — 7" v)
become small for large my=, which in turn means that the
constraints obtained are loose. Another remark from Fig. 4
is that, for a fixed Higgs mass, the constraints become
strong with increasing tan 8, which is also expected from
Eq. (61). This in contrast to the constraints derived by
applying the naturalness criterion, where we showed that
the constraints become loose with increasing tan (.
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FIG. 4 (color online). Allowed 20 regions for the real and
imaginary parts of €%, from B(D;] — 77 v). Left: tan 8 = 117.
Right: tan 8 = 140. In both cases we take my= = 150 GeV.
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FIG. 5 (color online). Allowed 20 regions for the real and

imaginary parts of €4, from B(D] — 7" v) corresponding to
tan 8 = 140 and my- = 180 GeV.

3. CP violation in charged Higgs

The total amplitude including the SM and charged Higgs
contribution can be written as

1 ‘ +
A= (P X (- CD WX

(65)

1 1 0 0
- (ch O+ 2 (CH = P cf))x,lg, i
. P . PP
with Xp!p = ifp Ap p Fy* *(mp ), Ap p = mp — mp,
and Y™ and XDO were previously defined as
2

Tt — maz

X (mc - ms)(mu + md) (66)
DO m%)

X

B (mc + mu)(ms - md)‘

The form of the amplitude, ‘A, shows how a charged Higgs
contribution can affect only the short distance physics
(Wilson coefficients) without any new effect on the long
range physics (hadronic parameters). Thus, the strong
phase will not be affected by including charged Higgs
contributions, while the weak phase will be affected. We
can rewrite Eq. (65) in terms of the amplitudes 7 and E
introduced before in the case of the SM as follows:
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A = ViV, (TMH + ESMEH), (67)

where
TS 314X 1076 = %@MW f oy = ) FRK ()

ESM+H =153 X 10766122"1'

ﬁaiM”fD(m%( — m2)FE™(m3), (68)
where
et = (et e et (e - )
= (a, + Aa, + x™ (CH = C1)) (69)

1
a§M+H = _(Cl2 + Aaz + ﬁ(C{I - XDOCZI)>, (70)
The CP asymmetry can be obtained using the relation
_ AP - AP
| A7 + | AJ?

_ 2|TSMHH||ESMHH | 5in (¢ — ¢b) sin(—arg)
- |TSM+H + ESM+H|2 ’

Acp

(71)

with ¢p; = Arg[a?M™H]and @y = Arg(xg). As an example
let us take Re(e,) = 0.04, Im(€},) = 0.03, which is an
allowed point for tan 8 = 10. In this case we find that for
a value of my==500GeV we find that Acp = —3.7 X
1073, while for my = 300 GeV we find that Acp =~ —1 X
1074, Let us take another example where Re(e4,) = —0.5,
Im(ey,) = —0.3, which is an allowed point for tan 8 =
100. Repeating the same steps as above, we find that for
my+ = 250 GeV the predicted A-p = 1.5 X 1072, Clearly
in charged Higgs models the predicted CP asymmetry is
very sensitive to the value of tan 8 and to the value of the
Higgs mass.

V. CONCLUSION

In this paper, we have studied the Cabibbo favored
nonleptonic D° decays into K~ 7. We have shown that
the Standard Model prediction for the corresponding CP
asymmetry is strongly suppressed and out of experimental
range, even when taking into account the large strong
phases coming from the final state interactions. Then we
explored new physics models, taking into account three
possible extensions, namely, extra family, extra gauge
bosons within left-right grand unification models, and extra
Higgs fields. The fourth family model strongly improved
the SM prediction of the CP asymmetry but still the
predicted CP asymmetry is far out of the reach of LHCb
or a SuperB factory such as SuperKEKB. The most prom-
ising models are nonmanifest left-right extensions of the
SM where the LR mixing between the gauge bosons per-
mits us to get a strong enhancement in the CP asymmetry.
In such a model, it is possible to get CP asymmetry of
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order 10%, which is within the range of LHCb and the next
generation of charm or B factories. The nonobservation of
such a huge CP asymmetry will strongly constrain the
parameters of this model. In multi-Higgs extensions of
the SM, the 2HDM type III is the most attractive, as it
permits us to solve the puzzle coming from B — 7v and
at the same time give a large contribution to this CP
asymmetry depending on the charged Higgs masses and
couplings. A maximal value of 1.5% can be reached with a
Higgs mass of 300 GeV and large tan .
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APPENDIX: OPERATORS AND OTHER DEFINITIONS

We start by defining X,’;Z' p,» Where P; denotes a pseudoscalar meson, as follows:

Xpip, = ifp, Ap,p Fo* (mp), (A1)
where A3 , = m3} — m} . In terms of X', we find that
(m* iy, ysdlOXK ™ |5y ,clD%) = =X70 - (K~ 7" [5y,dl0)0lay, ysclD®) = X2° .
(o aysdlOXK el D) = = ey =y ")
(K~ 7" |5d)|0)0liysc|D%) = — mp D = —XDUXI’??f.

Using Eq. (A2) we get

(mc + mu)(ms - md) Ko

(K7t |O\|D°y =(K~ 7" 5y cpity,d |D°) = (7" |iy ., IOXK ™ |5y, ID%)

1 v
+N<K7 7|5y, d |0)0liay e ID°) = X7

—lfo .

0K~ N K 7w

(K=o Dy =(K~ 7" iy 157, d |D°) = (K~ 7" |5y ,,d,10)0 iy, D)

1
+N<7T+ |y, d |OXK |5y, ID0)y = —XD" . +—X7

1_ .
N Dk~

1
(K~ 7" |5y yegity, dg|D%) = (7™ |y ,dg|OXK ™ |5y, cx|D°) +N(K_ 75y ,dgl0X0liay,cg| D)= —(K~7*|0,|D°)

1
(K=t iy g5y, dg| D)y =(K~ 7|5y ,dgl0)0lidy,cg|D°) {7 @y udrlOXK™ 57, cr|D%)=—(K~7"|0,|D°)

2 +
(K™ |5y ety dgl DY) = (" iy ,dglOXK |57, 1D%) = (K™ 7" [3ds plO)Olitcs - p| D) = =X,
2
(K=" |ayue, 5y, dgI DY) =(K™ " [5y,,dgl0)Oliy e |D%) = id s plOXK ™ [Sc5—p| D) =
2 v
(K™ |5y uepity udi D) = (o iy, d L 0XK 15y uex| D) = (K™ 7[5 plO)Oliics pID°) = X,

2 )
(K™ lity  cpsyud |D") = (K™ " |57, [0X0liy , cpl D) — (" |ads plOXK ™ |5cg pID%) =Xx7

and for the scalar ones

2

_ Dy D
k-~ NA X
2
_yvD° vyt
XK*H—F_NX Xl ok~

2
-i-—)(DOXII?SW+

k- TN
_ z/\/ﬂ'* X7T+
K- mt N DK’
(A3)
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_ _ _ + + 1 _ _ _ 1 + +
(K~ 7" |5c iid, |D°) = x™ XTow — ﬁ/\/DO ,L()?f (K~ mtiic, 5d,|D%) = XDUX,??W+ - ﬁ/\/” X7
+ + 1 _ _ _ 1 + +
(K~ 7" |5cgiidg|D%) = —x™ X7 + oI x”'X2° . (K wtlidcg3dg| DOy = —xP' XD .+ X" XGok-
_ o I— 1 _ o 1 + Ad
(K™ 5oL idgl DY = —x™ Xz +5 X2 (Kl 5dglD%) = xPXR L+ SoX (AD)
_ _ _ + + 1 _ _ _ 1 +
(K=" |5cpind, |D%) = x™ X7) ﬁxllgfw+ (K=" |iicgsd, |D%) = —xP'x2" | — ﬁxgoK_,
where Fierz’s ordering has been used,
(1}1‘1'2&(1_#3‘1’4& = (&1‘1’4)L(‘_ﬂ3\1’2)b (l_ﬁﬁl’zh(l_ﬁz‘pzt)ze = _2(17/1‘1’4)S+P(%_03‘1’2)S—P
_ — - _ 1 - -
A osepPsthyssp = =20 1YysepP3thosep — 3 I (L= ys)o?" hahs(1 = ys)o,, ¥, (A5)
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