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We review the known results on the bosonic spectrum in various Nambu-Jona-Lasinio models both in

condensed matter physics and in relativistic quantum field theory including 3He-B, 3He-A, the thin films

of superfluid 3He, and QCD (Hadronic phase and the color-flavor locking phase). Next, we calculate the

bosonic spectrum in the relativistic model of top quark condensation suggested in [Phys. Lett. B 221, 177

(1989)]. In all considered cases, the sum rule appears, which relates the masses (energy gaps)Mboson of the

bosonic excitations in each channel with the mass (energy gap) of the condensed fermion Mf asP
M2

boson ¼ 4M2
f. Previously, this relation was established by Nambu for 3He-B and for the s-wave

superconductor. We generalize this relation to the wider class of models and call it the Nambu sum rule.

We discuss the possibility to apply this sum rule to various models of top quark condensation. In some

cases, this rule allows us to calculate the masses of extra Higgs bosons that are the Nambu partners of the

125 GeV Higgs.
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I. INTRODUCTION

It is difficult to overestimate the role of the Nambu-Jona-
Lasinio (NJL) approximation in field theory (i.e., the ap-
proximation with the effective four-fermion interaction)
[1]. It gives qualitative understanding of the formation of
fermion condensates in a number of models that describe
various physical problems from superconductivity and
superfluidity [2] to top-quark condensation [3]. However,
any NJL model is only a low-energy approximation to the
microscopic theory. The NJL models are not renormaliz-
able. Therefore, they are to be considered as the phenome-
nological models with the finite ultraviolet cutoff �. In
most of the papers on the NJL models, the physical quan-
tities are evaluated in one-loop approximation (i.e., in the
leading order in 1=N expansion). It is worth mentioning
that, formally, the contributions of higher loops to various
physical quantities may be strong. For example, in
Refs. [4,5], it has been shown that the next-to-leading
(NTL) order approximation to the fermion mass MT in
the simplest model of top-quark condensation is weak
compared to the one-loop approximation only if MT��.
Actually, all dimensional parameters of the relativistic
NJL models (calculated nonperturbatively or taking into
account higher orders of the perturbation theory) are typi-
cally of the order of the cutoff unless their small values are
protected by symmetry.

Nevertheless, there is another way to look at the NJL
models. We can consider the one-loop approximation for
the calculation of various quantities like fermion and boson
masses (i.e., the mean field approximation or the leading
order in 1=N expansion). The higher loops are simply
disregarded. This is usually done in the NJL approximation

to QCD [6] or technicolor [7], where all dimensional
parameters are of the order of the ultraviolet cutoff so
that the corrections to the leading-order 1=N approxima-
tion are not so large. (For the results of the nonperturbative
numerical lattice investigation of the NJL model, see, for
example, Ref. [8]). However, this is also done in many
papers on the models of top-quark condensation (TC) [3,9],
where the cutoff is assumed to be many orders of magni-
tude larger than the mass of the top quark. There were only
a few papers on the next-to-leading-order approximation
(see, for example, Refs. [4,5]). Besides, in the evaluation of
the Standard Model fermion masses in the technicolor
theory due to the extended technicolor (ETC) interactions
[7], the effect of the ETC is taken into account through the
effective four-fermion term. No loop contributions due to
this term are considered. However, those loop contribu-
tions would give values of masses ��2

ETC, �ETC � MT .

The justification may be based on the assumption that we
deal with the phenomenological model that is to be con-
sidered at the tree level (ETC), or in one loop (TC) without
taking into account higher-loop contributions. However,
the more rigorous explanation is that there exist the con-
tributions of the microscopic theory due to the trans-�
degrees of freedom that are not taken into account in the
NJL approximation. Those contributions cancel the domi-
nant higher-loop divergences. Therefore, the one-loop re-
sults (TC) and tree-level results (ETC) dominate. (See also
the discussion in Sec. III A.) In this paper, we assume that
this pattern takes place in the models of top-quark con-
densation. This means that there exist the contributions to
the Higgs boson masses and to the quark masses that come
from the energies larger than � and are not accounted for
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by the NJL model. They are assumed to cancel the qua-
dratic divergent contributions to the (squared) Higgs boson
masses and linear divergent contributions to the quark
masses. The consideration of the possible mechanisms
that may provide this are outside the scope of the present
paper. We only mention that there exists the situation,
when such a pattern is realized. Namely, in quantum hydro-
dynamics, there formally exist the divergent contributions
to various physical quantities (for example, to the vacuum
energy). Nevertheless, the hydrodynamics may be consid-
ered with these divergent contributions subtracted, and this
is how classical hydrodynamics appears as a low-energy
approximation to quantum theory. The origin of this can-
cellation is well-known [10]. It is provided by the thermo-
dynamical stability of the vacuum. Recently, it was
suggested that the similar mechanism is responsible for
the cancellation of the ultraviolet divergences in vacuum
energy (quantum gravity) and for the cancellation of the
quadratically divergent contribution to the Higgs boson
mass in the Weinberg-Salam model [11].

Based on this assumption, we expect that in the relativ-
istic models of top-quark condensation quantitative pre-
dictions of the one-loop NJL approximation may be as
accurate as in the BCS models of superconductivity or
superfluidity. It is worth mentioning that, in microscopic
theories of top-quark condensation, there is no confinement
(otherwise, the top quark would be confined into the re-
gions of space smaller than 1 TeV�1). In this aspect, these
theories differ essentially from QCD, in which the absence
of confinement in the NJL approximation does not allow
us to use it widely for the consideration of low-energy
physics. (For the attempts to include the description of
confinement to the NJL approximation, see Ref. [12].)

More specifically, we investigate the particular case of the
NJL model suggested in Ref. [9]. We calculate its bosonic
spectrum and establish the relation between the masses of
bosonic excitations and the fermion masses. This relation is
similar to the relation found in 3He-B and in the s-wave
superconductors between the energy gaps of the scalar
excitations and the fermion energy gap. This relation was
first noticed in Ref. [2] by Nambu. In the formM2

1 þM2
2 ¼

4�2, it is valid in the effective NJL-like model of 3He-B for
the boson energy gapsM1;2 existing at each value of J ¼ 0,
1, 2, where J is the quantum number corresponding to the
total angular momentum of the Cooper pair. It relates them
to the constituent mass of the fermion excitation � existing
due to the condensation. The similar relation was also
discussed in the Nambu-Jona-Lasinio approximation [1] of
QCD, where it relates the�-meson mass and the constituent
quark mass M� � 2Mquark. (In the nonrelativistic BCS the-

ory, the role of the masses of the fermionic and bosonic
excitations is played by the energy gaps in the fermionic
and bosonic spectrums, respectively.) Recent discussion of
Higgs modes in condensed matter systems can be found in
Refs. [13–17] and in references therein.

We introduce the notion of the Nambu sum rule that is
the generalization of the above-mentioned relations to the
theories with condensed fermions (such that there is the
single fermion, for which the constituent mass Mf is

essentially larger than the masses of the other fermions).
This sum rule reads X

M2
H;i � 4M2

f: (1)

In the left-hand side of this equation, the sum is within the
given channel over the composite scalar excitations such
that the mentioned fermion with mass Mf contributes to

their formation. We do not give here the general proof of
this sum rule. Instead, we consider several models in which
it holds. In addition to our results on the bosonic spectrum
of the above-mentioned top-quark condensation model, we
review several NJL models, for which the bosonic spec-
trum is already known.
Recall that the recent experimental results [18,19] on the

125 GeV Higgs exclude the appearance of the other Higgs
bosons within the wide ranges of masses (approximately
from 130 GeV to 550 GeV). However, this announced
exclusion is related only to the particle with the same cross
section as the only standard Higgs boson of the Standard
Model. The particles that have the smaller cross sections
are not excluded. To be more explicit, we refer to the recent
data of CMS Collaboration [20]. In Fig. 4 of [20], the solid
black curve separates the region where the scalar particles
are excluded (above the curve) from the region where they
are not excluded. For example, the particle with mass
around 200 GeV and with the cross section about 1=3 of
the Standard Model cross section is not excluded by these
data. The similar exclusion curve was announced by
ATLAS [21].
This is the analogy with the superconductivity and

superfluidity that prompts that the Higgs boson may be
composite. (See Refs. [22–24] for the foundation of
the Higgs mechanism in quantum field theory.) In our
opinion, the models of the top-quark condensation
[3,4,7,9,25–29] are of special interest as they relate the
Higgs boson to the only known Fermi particle (top quark)
with the mass of the same order as the Higgs boson mass.
Therefore, we have in mind the pattern of top-quark
condensation dealing with the Nambu sum rule, and, in
the right-hand side (rhs) of Eq. (1), the top-quark mass
stands. For the review of the conventional technicolor, we
refer to Refs. [7,30–32]. The so-called top-color assisted
technicolor that combines both technicolor and top-color
ingredients was considered, for example, in Refs. [33–37].
For the related models based on the extended color sector,
see Refs. [38,39] and references therein. The top seesaw
mechanism was considered in Ref. [40]. We also mention
the attempts to consider the recently found 125 GeV
resonance as a top pion [29].
An interesting consequence of the Nambu sum rule with

the top-quark mass is that, if there are only two states in the
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given channel, then the partner of the 125 GeV Higgs
should have the mass around 325 GeV. It is worth mention-
ing that in 2011 the CDF Collaboration [41] announced the

preliminary results on the excess of events in the ZZ ! llll
channel at the invariant mass �325 GeV. The CMS
Collaboration also reported a small excess in this region
[42]. Although the particle with the cross sections of
the Standard Model Higgs is excluded at this mass, this
exclusion does not work for the particles with smaller
cross sections. Originally, the mentioned excess of events
was treated as a statistical fluctuation. However, in
Refs. [43,44], it was argued that it may point out the
possible existence of a new scalar particle with mass
MH2 � 325 GeV.

The paper is organized as follows. In Sec. II, we consider
the condensed-matter NJL models of 3He. In Sec. II A,
we review the hydrodynamic action for 3He. Next, in
Sec. II B, we consider the bosonic spectrum in the NJL
model of 3He-B. (This model was considered originally
in this respect by Nambu). We present the simple method
for the calculation of the bosonic spectrum in this model. In
principle, this method with some modifications can be
applied to the other models of this section, although we
do not present the corresponding calculations. In Sec. II C,
we consider the 3D A phase of the superfluid 3He. In this
case, the fermions are gapless. However, the Nambu sum
rule Eq. (1) works if, in its rhs, the average of the angle-
dependent energy gap is substituted. In Sec. II D, we con-
sider two-dimensional (2D) thin films of 3He. There are
two main phases (a and b), in which the Nambu sum rule
works within the effective 2D four-fermion model similar
to that of 3He-B.

Section III is devoted to the relativistic NJL models. In
Sec. III A, we describe the top-quark condensation model
of Ref. [9] and its particular case considered in this paper.
In Sec. III B, we calculate the bosonic spectrum of the
model. In Sec. III C, we present the other example of the
relativistic model, in which the Nambu sum rule holds, i.e.,
the NJL model of the color superconductor in the so-called
color-flavor locking (CFL) phase. In the corresponding
four-fermion effective model, there are two different fer-
mionic energy gaps. Both of them are related to the bosonic
masses by the relation similar to the ordinary relation
between the constituent quark mass and the mass of the
sigma meson. In Sec. III D, we consider the analogy with
the Veltman identity for the vanishing of the quadratic loop
divergencies in the scalar boson masses.

The model of Ref. [9] considered in Sec. III A and III B
suffers from various problems, and a lot of physics is to be
added in order to make it realistic. However, this is the first
example in which the Nambu sum rule in the nontrivial
form appears in the relativistic model. There may appear
the other nontrivial (and more realistic) models of the top-
quark condensation (and the other technicolorlike models)
in which there are several composite Higgs bosons, for

which the masses are related by the Nambu sum rule. We
suggest looking for such schemes based on the analogy
with superfluid 3He (we refer to Ref. [45] and to the
references therein).

II. NAMBU SUM RULES IN HELIUM-3
SUPERFLUID

A. ‘‘Hydrodynamic action’’ in 3He

According to Ref. [46], 3He may be described by the
effective theory with the action

S ¼
Z

dtd3x ��s

�
i@t þ�þ 1

2m
�

�
�s

� 1

2

Z
dt
Z

d3x
Z

d3yuðx� yÞ
�X

s;s0
��sðx; tÞ�sðx; tÞ ��s0 ðy; tÞ�s0 ðy; tÞ: (2)

Here, � is an anticommuting spinor variable, s ¼ �, �
is the chemical potential, and uðxÞ is the interatomic po-
tential. Then, the integration over the ‘‘fast’’ Fermi fields
(i.e., those with sufficiently large values of momenta) gives
the effective action for the modes living near the Fermi
surface. Assuming imaginary time and the spin-triplet
p-wave pairing (i.e., the Cooper pairing in the state with
orbital angular momentum L ¼ 1 and spin angular mo-
mentum S ¼ 1), in the first approximation, this effective
action can be written as

Slow ¼ X
p;s

�asðpÞ�ðpÞasðpÞ � g

�V

X
p;i¼1;2;3

�JiðpÞJiðpÞ; (3)

where

p¼ ð!;kÞ; k̂¼ k

jkj ; �ðpÞ ¼ i!�vFðjkj � kFÞ

JiðpÞ ¼ 1

2

X
p1þp2¼p

ðk̂1 � k̂2Þa�ðp2Þ�ia�ðp1Þ���: (4)

Here, a�ðpÞ is the fermion variable in momentum space,
vF is Fermi velocity, kF is Fermi momentum, and g is the
effective coupling constant. The authors of Ref. [46]
proceed with the bosonization using the following trick.
The unity is substituted into the functional integral that
is represented as 1� R

D �cDc exp ð1g
P

p;i;� �ci;�ðpÞci;�ðpÞÞ,
where ci;�, (i, � ¼ 1, 2, 3) are bosonic variables. These

variables may be considered further as the field of the
Cooper pairs, which serves as the analog of the Higgs field
in relativistic theories. The shift of the integrand in D �cDc
removes the four-fermion term. Therefore, the fermionic
integral can be taken. As a result, we arrive at the hydro-
dynamic action for the Higgs field c:

Seff ¼ 1

g

X
p;i;�

�ci;�ðpÞci;�ðpÞ þ 1

2
logDetMð �c; cÞ; (5)
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where

Mð �c; cÞ ¼
ði!� vFðjkj � kFÞÞ�p1p2

1
ð�VÞ1=2 ½ðk̂1 � k̂2Þc�ðp1 þ p2Þ���

� 1
ð�VÞ1=2 ½ðk̂1 � k̂2Þc�ðp1 þ p2Þ��� �ði!� vFðjkj � kFÞÞ�p1p2

0
@

1
A: (6)

B. Nambu sum rules in 3He-B

In the B phase of 3He, the condensate is formed in the
state with J ¼ 0, where J ¼ Lþ S is the total angular
momentum of Cooper pair [45]

cð0Þi� ðpÞ ¼ ð�VÞ1=2C�p0�i�: (7)

This corresponds to the symmetry-breaking scheme
G ! H with the symmetry of physical laws G ¼
SOLð3Þ � SOSð3Þ �Uð1Þ and the symmetry of the degen-
erate vacuum states H ¼ SOJð3Þ. The parameter C satis-
fies the gap equation

0 ¼ 3

g
� 4

�V

X
p

ð!2 þ v2
fðjkj � kFÞ2 þ 4C2Þ�1: (8)

The value� ¼ 2C is the constituent mass of the fermion

excitation. There are 18 modes of the fluctuations �ci� ¼
ci� � cð0Þi� around this condensate. Tensor �ci� realizes the
reducible representation of the SOJð3Þ symmetry group
of the vacuum (acting on both spin and orbital indices).
The mentioned modes are classified by the total angular
momentum quantum number J ¼ 0, 1, 2.

According to Refs. [47,48], the quadratic part of the
effective action for the fluctuations around the condensate
has the form

Sð1Þeff ¼
1

g
ðu; vÞ½1� g�� u

v

 !
; (9)

where �ci�ðpÞ ¼ upi� þ ivpi�, and the polarization opera-

tor at k ¼ 0 is given by

� ¼ �uu 0

0 �vv

 !
: (10)

At each value of J ¼ 0, 1, 2, the modes u and v are
orthogonal to each other and correspond to different values
of the bosonic energy gaps.
At k ¼ 0, the polarization operator can be represented as

�ð!Þ ¼
Z 1

0
dz

�ðzÞ
zþ!2

; (11)

where the spectral function ��P jFQ!ffj2, and jFQ!ffj2
is the probability that the given mode Q (in the case of
3He-B, the quantum number Q ¼ J) decays into two
fermions.
At J ¼ 0, the v bosonic mode is gapless and can easily

be obtained using the gap equation. Also, this follows from
the fact that this is the Goldstone mode, which comes from
the brokenUð1Þ symmetry. Next, for any J, we have (

ffiffi
t

p ¼
�þ þ ��; kþ ¼ �k�; �2� � v2

fðjkj � kFÞ2 ��2 ¼ 0):

�uðtÞ � 	ðt� 4�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

t

s
SpG�1ð�þ; kþÞOðJÞ

u G�1ð���; k�ÞOðJÞ
u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

t

s
½ðt=2��2Þ � 
ðJÞ�2�	ðt� 4�2Þ

�vðtÞ � 	ðt� 4�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

t

s
SpG�1ð�þ; kþÞOðJÞ

v G�1ð���; k�ÞOðJÞ
v

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

t

s
½ðt=2��2Þ þ 
ðJÞ�2�	ðt� 4�2Þ: (12)

Here,

G�1ð�; kÞ ¼ ð�� vFðjkj � kFÞÞ 2Cðk̂�Þ
�2Cðk̂�Þ ð�þ vFðjkj � kFÞÞ

 !
; Oij

u;v ¼ 0 k̂iþ�j

�k̂iþ�j 0

 !
; Oð0Þ ¼ 1ffiffiffiffi

D
p Oii;

½Oð1Þ�ij ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðD� 1Þ=2p O½ij�; ½Oð2Þ�ij ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðDþ 1Þ=2� 1
p �

Ofijg � 1

D
Okk�ij

�
;

(13)
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with D ¼ 3 and


ðJÞ ¼ SpVOðJÞVOðJÞ

SpOðJÞOðJÞ ; (14)

with

V ¼ 0 k̂þ�

�k̂þ� 0

 !
: (15)

In the v channel at J ¼ 0, the energy gap is equal to
zero, which leads to the condition

const
Z �2

4�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

t

s
dt ¼ 3

g
; (16)

where � is the ultraviolet cutoff. The bosonic energy gaps

EðJÞ
u;v are defined by the equation

const
Z �2

4�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

t

s
t� 2�2ð1� 
ðJÞÞ

t� ½EðJÞ
u;v�2

dt ¼ 3

g
; (17)

with the same constant as in Eq. (16). Comparing these two
equations, we come to the following Lemma.

Lemma II.1.—The energy gaps are given by

EðJÞ
u;v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2ð1� 
ðJÞÞ

q
; (18)

which proves the Nambu sum rule for 3He-B:

½EðJÞ
u �2 þ ½EðJÞ

v �2 ¼ 4�2: (19)

Explicit calculation of Eq. (14) gives 
J¼0 ¼ 
J¼1 ¼ 1,
and 
J¼2 ¼ 1

5 . Thus, we get immediately the result ob-

tained in Ref. [48] via the direct solution of the equation
Detðg�ðiEÞ � 1Þ ¼ 0:

(1) J ¼ 0: For J ¼ 0, there is one pair of the Nambu
partners (the gapless Goldstone sound mode and the
so-called pair-breaking mode with the energy gap
E ¼ 2�):

Eð0Þ
1 ¼ 0; Eð0Þ

2 ¼ 2�: (20)

(2) J ¼ 1: For J ¼ 1, there are three pairs of Nambu
partners (three gapless Goldstone modes—spin
waves and three corresponding pair-breaking modes
with the energy gap E ¼ 2�):

Eð1Þ
1 ¼ 0; Eð1Þ

2 ¼ 2�: (21)

(3) J ¼ 2: For J ¼ 2, there exist five pairs—five
so-called real squashing modes with the energy

gap E ¼ ffiffiffiffiffiffiffiffi
2=5

p ð2�Þ and, correspondingly, five
imaginary squashing modes with the energy gap

E ¼ ffiffiffiffiffiffiffiffi
3=5

p ð2�Þ:
Eð2Þ
1 ¼

ffiffiffiffiffiffiffiffi
2=5

p
ð2�Þ; Eð2Þ

2 ¼
ffiffiffiffiffiffiffiffi
3=5

p
ð2�Þ: (22)

(Zeeman splitting of the imaginary squashing mode
in a magnetic field has been observed in Ref. [49];
for the latest experiments, see Ref. [50].)

C. Nambu sum rules in 3He-A

In the A phase of 3He, the condensate is formed in the
state with Sz ¼ 0 and Lz ¼ 1 [45]. In the orbital sector,
the symmetry breaking in 3He-A is similar to that in the
electroweak theory: Uð1Þ 	 SOLð3Þ ! UQð1Þ, where the

quantum number Q plays the role of the electric charge
(see, e.g., Ref. [51]), while in the spin sector, one has
SOSð3Þ ! SOSð2Þ. According to Ref. [52], one has

cð0Þi� ðpÞ ¼ ð�VÞ1=2C�p0ð�i1 þ i�i2Þ��3

¼ ð�VÞ1=2C�p0

0 0 1

0 0 i

0 0 0

0
BB@

1
CCA; (23)

where C satisfies the gap equation

0¼ 1

g
� 2

�V

X
p

1� k̂23

!2þv2
fðjkj�kFÞ2þ4C2ð1� k̂23Þ

: (24)

The A phase is anisotropic. The special direction in
the orbital space appears, which is identified with the
direction of the spontaneous orbital angular momentum
of Cooper pairs, which is chosen here along the z axis. In
this phase, fermions are gapless. However, the value

�ð	Þ ¼ 2C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k̂23

q
¼ �0 sin 	 may be considered as the

technical gap depending on the direction in space that
enters the expressions to be considered below. (Here, 	 is
the angle between the anisotropy axis and the direction of
the momentum k.)
In the BCS theory of 3He-A, all bosonic modes are triply

degenerate. This is the consequence of the hidden symme-
try of the BCS theory applied to 3He-A, which, in particu-
lar, gives rise to nine gapless Goldstone modes instead of
five modes required by symmetry breaking [53,54]. On the
language of ci�, this hidden symmetry leads to the repre-
sentation of the one-loop effective action as the sum of
the three terms. Each of those terms depends on ci� with a
definite value of � ¼ 1, 2, 3. The term with ci3 is trans-
formed into the term with ci2 via the substitution ci3 ! ici2.
The term with ci2 is transformed into the term with ci1 via
the substitution ci2 ! ci1. Among five Goldstone bosons
corresponding to the breakdown pattern Uð1Þ 	 SOLð3Þ 	
SOSð3Þ ! UQð1Þ 	 SOSð2Þ, there are u11 þ v21, u12 þ
v22, u23 � v13 that are transformed to each other by the
above-mentioned transformation. Also, there are the
Goldstone modes u33, v33. The latter modes may be trans-
formed by this transformation to u31, u32, v31, v32.
Therefore, four additional gapless modes appear in weak
coupling limit. Recall that, in the strong coupling regime,
these four modes become gapped.
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The values of the energy gaps are given by the solutions
of the equation Detðg�ðiEÞ � 1Þ ¼ 0. Exact solutions of
the given equations are presented in Ref. [52]. The energy
gaps are complex-valued; that means that the states are not
stable. (The decay into the massless fermions is possible.)
However, the real parts of the energy gaps can be evaluated
in the approximation when the effective action at k ¼ 0 is
represented as the sum of the two terms: the first term
corresponds to ! ¼ 0, while the second term is propor-
tional to !2. Such a calculation gives the mass term for the
modes of the field ci� with the contribution due to the terms
depending on higher powers of ! disregarded. This pro-
cedure gives six unpaired gapless Goldstone modes and
two pairs of modes (triply degenerated) that satisfy a
version of the Nambu sum rule. In this case, the role of
the square of the fermion mass is played by the angle
average of the square of the anisotropic gap:

��2 
 h�2ð	Þi ¼ 2

3
�2

0: (25)

The Nambu pairs are the following:
(1) One (triply degenerated) pair of bosons (the phase

and amplitude collective modes in Nambu terminol-
ogy) is formed by the ‘‘electrically neutral’’ (Q ¼ 0)
massless Goldstone mode and the ‘‘Higgs boson’’
also with Q ¼ 0:

EðQ¼0Þ
1 ¼ 0; EðQ¼0Þ

2 ¼ 2 �� ¼
ffiffiffiffiffiffiffiffi
8=3

p
�0: (26)

(2) The other (triply degenerated) pair represents the
analog of the charged Higgs bosons in 3He-A with
Q ¼ �2 (see, e.g., Ref. [54]). These are the so-
called clapping modes for which the energies are

EðQ¼2Þ
1 ¼ EðQ¼�2Þ

2 ¼ ffiffiffi
2

p
�� ¼ ffiffiffiffiffiffiffiffi

4=3
p

�0: (27)

Lemma II.2.—One can see that the spectrum of fermions
and bosons in anisotropic superfluid 3He-A also satisfies
the Nambu conjecture written in the form

E2
1 þ E2

2 ¼ 4 ��2 (28)

(for each of the two pairs listed above) with the ‘‘average
fermion gap’’ given by Eq. (25).

Alternatively these values may be obtained if, in
Eq. (2.16) of Ref. [52], the values of �2ð	Þ are substituted
by their averages ��2 
 h�2ð	Þi ¼ 2

3 �
2
0. Then, the integrals

are omitted, and we obtain the above-listed values of
the gaps.

As it was mentioned above, in the anisotropic systems in
which the fermionic energy gap has zeroes, the spectrum of
massive collective modes has an imaginary part due to
radiation of the gapless fermions. That is why the Nambu
rule is not obeyed for the pole masses but is obeyed for the
mass parameters that are real, since they are determined at

! ¼ 0. In the systems, in which radiation is absent, such as
isotropic fully gapped superfluid 3He-B, the pole masses of
the collective modes coincide with their mass parameters.

D. Superfluid phases in 2 þ 1 films

The same relations (26) and (27) take place for the
bosonic collective modes in the quasi-two-dimensional
superfluid 3He films. There are two possible phases in
thin films, the a phase and the so-called planar phase
(b phase in the terminology of Ref. [55]). Both phases have
isotropic gap � in the 2D case, as distinct from the 3D case
in which such phases are anisotropic with zeroes in the gap.
We have the effective action for the bosonic degrees of

freedom, Eqs. (5) and (6) with the 2� 3 matrix ci�. The
following two forms of these matrices correspond to the
a and b phases [55]:

cð0Þi� ðpÞ ¼ ð�VÞ1=2C�p0

1 0 0

i 0 0

 !
ða-phaseÞ

cð0Þi� ðpÞ ¼ ð�VÞ1=2C�p0

1 0 0

0 1 0

 !
ðb-phaseÞ:

(29)

Let us consider the second possibility (the planar b
phase). We have the symmetry-breaking pattern SOð2Þ 	
SOð3Þ 	Uð1Þ ! SOð2Þ. Correspondingly, there are four
gapless Goldstone modes. Among them, there are u13
and u23 modes. Modes v13 and v23 are their partners with
the energy gaps 2�. The analysis is similar to that of the
s-wave superconductor.
As for the modes uij, vij with i, j ¼ 1, 2, the analysis is

similar to that of the 3He-B phase. The spectral densities
�u;v differ from those of Eq. (12) by the kinematic factorffiffiffiffiffiffiffi
1=t

p
instead of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2=t

p
. Next, we substitute D ¼ 2

into Eq. (13) and get

EðJÞ
u;v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2ð1� 
ðJÞÞ

q
; J ¼ 0; 1; 2: (30)

Direct calculation of Eq. (14) gives 
J¼0 ¼ �
J¼1 ¼ 1,
and 
J¼2 ¼ 0. (In this case, J is not the total momentum of
the Cooper pair.)
Lemma II.3.—The resulting spectrum in the b phase is

Eð0Þ
u;v ¼ 2�; 0; Eð1Þ

u;v ¼ 0; 2�;

Eð2Þ
1;u;v ¼ ffiffiffi

2
p

�; Eð2Þ
2;u;v ¼ ffiffiffi

2
p

�:
(31)

In the a phase, the symmetry breaking is SOð2Þ 	
SOð3Þ 	Uð1Þ ! Uð1ÞQ 	 SOð2Þ with three Goldstone

modes. Acting as above, for the b phase (in this case, the
u and v modes are mixed unlike the b phase), or applying
the results of Ref. [55], one obtains
Lemma II.4.—These modes of the a phase form two

pairs of Nambu partners (triply degenerated), with Q ¼ 0
and jQj ¼ 2:
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EðQ¼0Þ
1 ¼ 0; EðQ¼0Þ

2 ¼ 2� and

EðQ¼þ2Þ ¼ ffiffiffi
2

p
�; EðQ¼�2Þ ¼ ffiffiffi

2
p

�:
(32)

Note that, since masses of Q ¼ þ2 and Q ¼ �2 modes
are equal, the Nambu sum rule necessarily leads to the
definite value of the masses of the ‘‘charged’’ Higgs
bosons.

It is worth mentioning that, in principle, the derivation of
the energy gaps for the a phase with minor modifications
may be applied also for the evaluation of the real parts of
the energy gaps of the 3D A phase. In such calculations
dealing with the equations that are the analogs of Eq. (14),
we need to substitute the angle averaged fermionic
gap (25).

Because of the common symmetry-breaking scheme in
the electroweak theory and in 3He-A, we consider the
energy gaps listed above as an indication of the existence
of the Higgs boson with mass

MH ¼ ffiffiffi
2

p
MT: (33)

This mass is about 245 GeV, which is roughly twice the
mass of the lowest-energy Higgs boson.

III. NAMBU SUM RULES IN THE RELATIVISTIC
MODELS OF TOP-QUARK CONDENSATION

A. Effective NJL model for the dynamical electroweak
symmetry breaking

In this section, we consider the extended NJL model of
top-quark condensation. This model was suggested in
Ref. [9] by Miransky and coauthors and generalizes the
more simple models (see, for example, Refs. [3,56,57]). It
includes all six quarks. At the present moment, we do not
wish to define the realistic theory aimed to explain dy-
namical electroweak symmetry breaking and the formation
of fermion masses. Our objective is to demonstrate how
the Nambu sum rule (probably, in the modified form) may
appear in the relativistic models of the general kind.

The most general form of the four-fermion action (for
the model with six quarks) has the form

S ¼
Z

d4xð ��½ir���þ gð ���A;L�
�B
R Þð �� �� �B;R�

�� �A
L Þ

� ½YYþ��A �� �B

�� �A�B
þ gð ���A;L�

�B
R Þð �� �� �B;L�

�� �A
R Þ

� ½WWþ��A �� �B

�� �A�B
Þ: (34)

Here, �T
�A ¼ ðu; dÞ; ðc; sÞ; ðt; bÞ is the set of the doublets

with the generation index �. Tensors W, Y contain cou-
pling constants. We consider the particular case of this
model, when W ¼ 0, while tensor Y is factorized:

Y�A �� �B

�� �A�B
¼ L�

��R
��
�I

�B
B�

A
�A
; (35)

where L, R, I are Hermitian. Here, it is taken into account
that the electroweak symmetry has to be preserved. The

given four-fermion action approximates the microscopic
theory. We suppose that this unknown microscopic theory
has the approximate Uð2� 3ÞL 	Uð2� 3ÞR symmetry
that is broken softly down to Uð2ÞL 	Uð2ÞL 	Uð2ÞL 	
Uð1ÞR 	 . . . 	Uð1ÞR. In the zeroth-order approximation,
all eigenvalues of matrices L, R, I are equal to each other.
In the next approximation, this symmetry is violated softly,
and the eigenvalues of L, R, I receive small corrections.
Remark III.1.—The field theory with action Eq. (34) is

not renormalizable. The ultraviolet divergences become
stronger and stronger when the number of loops is in-
creased. Therefore, Eq. (34) describes the phenomenologi-
cal low-energy theory. It has sense only when a finite
ultraviolet cutoff � is specified. The predictions of this
model become independent of the regularization scheme
only for the characteristic energies E of the processes much
smaller than �. The physical quantities may, in principle,
be evaluated using the 1=NC perturbation theory. The
leading terms in the expansion in the powers of 1=NC

correspond to the mean field approximation and are limited
to the one-loop diagrams. Most of the practical calculations
in the NJL-like models are performed in this approxima-
tion. (For the review of the calculations in NJL approxi-
mation applied to the models of top-quark condensation,
see, for example, Ref. [4] and references therein.) The NTL
order approximation corresponds to the number of fermion
loops larger than one, or, equivalently, to the appearance of
meson loops [5]. It has been shown that the NTL contri-
butions to various dimensional quantities are small com-
pared to the leading-order 1=NC results only for Mt ��.
For 5Mt � �, due to the NTL contribution, the Higgs
condensate vanishes [5]. Rough consideration of the NTL
(and higher) contributions to the scalar meson (Higgs
boson) masses gives the values of the order of � unless
these mesons are protected from being massive by
symmetry. (For example, the Goldstone theorem protects
the Goldstone bosons from masses if the chiral symmetry
is broken spontaneously.)
The model considered in this paper corresponds to the

condition � � MT . Correspondingly, the one-loop results
in the complete field model with action Eq. (34) are not
valid either for the fermion masses or for the masses of the
bosonic excitations if one considers the model nonpertur-
batively or sums higher-loop contributions. The one-loop
prediction of the appearance of the dynamical chiral sym-
metry breaking may be incorrect as well. However, we
suggest considering action Eq. (34) as the action of the
effective theory, in which only the leading 1=NC (i.e., one-
loop) contribution is taken into account, while the higher-
loop corrections are to be disregarded. Strictly speaking,
this means that the quantum field theory considered here
is not the one with the action of Eq. (34). Namely, the
complete action of this theory is to contain additional terms
that cancel the quadratically divergent contributions to the
fermion and meson masses. For example, the dominant
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contributions to the meson masses of the diagrams with K
four-fermion vertices are �M2

H � gK�2K�2. Assuming that
the one-loop gap equation works, we get g� 1

�2 . As a

result, the higher-loop contributions to the Higgs boson
masses are �M2

H ��2 like in the Weinberg-Salam model,
in which the loop corrections give quadratically divergent
contributions to the Higgs boson masses. This results in the
so-called hierarchy problem. One can see, therefore, that
the hierarchy problem of the Standard Model is reflected
by the effective theory with the action of Eq. (34). In the
same way, the linear divergent contributions to the fermion
masses appear due to the higher loops. The above-
mentioned additional terms to be added to this action are
to cancel these divergent contributions to meson and
fermion masses. If so, the higher-loop contributions both
to the fermion and boson masses are suppressed by the
powers of E

� , where E is the characteristic energy of the

considered processes.
At a first glance, it is difficult to imagine the reason-

able mechanism for the appearance of such terms.
However, there exists the theory in which, in a similar
situation, such terms do exist. Namely, in quantum
hydrodynamics [10], there formally exist the divergent
contributions to various quantities (say, to vacuum en-
ergy) due to the quantized sound waves. The quantum
hydrodynamics is to be considered as a theory with finite
cutoff �. The loop divergences in the vacuum energy are
to be subtracted just like for the case of the NJL model
of this section. In hydrodynamics, the explanation of
such a subtraction is that the microscopic theory to
which the hydrodynamics is an approximation works
both at the energies smaller than and larger than �,
and this microscopic theory contains the contributions
from the energies larger than �. These contributions
exactly cancel the divergences that appeared in the
low-energy effective theory. This exact cancellation oc-
curs due to the thermodynamical stability of vacuum. In
Ref. [11], it was suggested that a similar pattern may
provide the mechanism for the cancellation of the diver-
gent contributions to vacuum energy in quantum gravity
and divergent contributions to the Higgs boson mass in
the Standard Model. Namely, the contributions of the
trans-� degrees of freedom to the given quantities ex-
actly cancel the divergent contributions of the effective
low-energy theories (correspondingly, of gravity and of
the Weinberg-Salam model). We suppose that, in our
case of the NJL model, the contributions of the trans-
� degrees of freedom cancel the dominant divergences
in the bosonic and fermionic masses leaving us with the
one-loop approximation as an effective tool for the
evaluation of physical quantities.

B. One-loop effective action for the bosonic modes

Via the suitable redefinition of the fermions, we make
matrices L, R, I diagonal. We denote

L ¼ diagðLud; Lcs; LtbÞ; R ¼ diagðRud; Rcs; RtbÞ;
I ¼ diagðIup; IdownÞ; yu ¼ LudRudIup;

yd ¼ LudRudIdown; yc ¼ LcsRcsIup;

ys ¼ LcsRcsIdown; yt ¼ LtbRtbIup;

yb ¼ LtbRtbIdown yud ¼ LudRudIdown;

ydu ¼ LudRudIup; yuc ¼ LudRcsIup;

ycu ¼ LcsRudIup; yus ¼ LudRcsIdown;

ysu ¼ LcsRudIup; . . . . . .

(36)

We can rescale the coupling constants in such a way
that

yq ¼ 1þ �yq; yq1q2 ¼ 1þ �yq1q2 ; (37)

where j�yqj, j�yq1q2 j � 1. The values of �yq, �yq1q2
satisfy

�yq1q2 þ �yq1q2 ¼ �yq1 þ �yq2 : (38)

The whole symmetry of Eq. (34) is UL;1ð2Þ 	Uð2ÞL;2 	
Uð2ÞL;3 	Uð1Þu 	 . . . 	Uð1Þb. As in the previous

sections, we introduce the bosonic variable c�B�A and

insert into the functional integral the expression 1�R
D �cDc exp ð� i

g

P
p �c

�B
�AðpÞc�A�BðpÞÞ. We arrive at the

action

Seff ¼ � 1

g

X
p

�c�B�AðpÞc�A�BðpÞ þ logDetMð �c; cÞ; (39)

where

��p1
Mð �c; cÞ�p2

¼ ��p1
p̂��p2

�p1p2
� 1

ð�VÞ1=2
� ðY�A �� �B

�� �A�B
c �� �A
�� �B
ðp1 � p2Þ

� ��p1;�;A;L
��B
p2;R

þ H:c:Þ: (40)

The equation that defines the vacua of the model is

�

�c�A�B
Seff ¼ 0: (41)

The solution of this equation corresponds to the stable
vacuum if, at the vacuum value of c, we have

Det �2

�c�A
�

�c�
0A0

�0
Seff  0. This occurs if the masses of all

Higgs bosons are real. Suppose that the vacuum is CP
invariant and the vacuum value of c is equal to

cð0Þ�A�B ðpÞ ¼ ð�VÞ1=2C�A
�B�p0 2 R: (42)

We also require that the mass matrix for the fermions

M�A
�B ¼ Y�A �� �B

�� �A�B
C �� �A

�� �B
is Hermitian; then, Eq. (41) in one-

loop approximation has the form
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C�A
�B ¼ ig

2ð2�Þ4 Y
�A �� �B

�� �A�B

Z
Tr

�
1

l��M

�
�� �A

�� �B
d4l

¼ 2igNC

ð2�Þ4 Y�A �� �B

�� �A�B

Z � M

l2 �M2

�
�� �A

�� �B
d4l: (43)

Here, NC ¼ 3 is the number of colors.
This equation has many different solutions that corre-

spond to different vacua. We consider here only the case
in which the matrices C and M are diagonal, so that
there exist the condensates hq �qi and nonzero masses
for all quarks. We also imply that the t-quark mass and
the t-quark condensate dominate. The quark masses
Mq ¼ yqCq satisfy the equations

0 ¼ 1

gNC

� 2i

ð2�Þ4 y
2
q

Z � 1

l2 �M2
q

�
d4l

¼ 1

gNC

� y2q

8�2

�
�2 �M2

q log
�2

M2
q

�
; (44)

where � is the ultraviolet cutoff. If we set

g ¼ 8�2

�2NC

; (45)

then at � � Mq from the gap equations, it follows that

M2
q

�2
log

�2

M2
q

¼ 2�yq: (46)

The given vacuum does not exhaust all possible vacua of
the model. Further, we shall imply that the external con-
ditions (and the values of couplings) are such that the given
vacuum wins the competition between all possible vacua.
The symmetry-breaking pattern is UL;1ð2Þ	Uð2ÞL;2	

Uð2ÞL;3	Uð1Þu	 . . .	Uð1Þb!Uð1Þu	 . . .	Uð1Þt	Uð1Þb.
Therefore, we expect the appearance of 12 Goldstone
bosons. Only three of them are to be eaten by Z and W
bosons. In order to make the other modes massive, the
gauge fields may be added, which become massive due to
the symmetry breaking and absorb the mentioned extra
Goldstone bosons.

C. Higgs bosons masses

The bosonic masses can be calculated as follows. As
in Sec. II, at k ¼ 0, the polarization operator can be
represented as

�ð!Þ ¼
Z 1

0
dz

�ðzÞ
zþ!2

; (47)

with the spectral function �.
In the scalar/pseudoscalar q �q channel, we have

(ð ffiffi
t

p
; 0Þ ¼ pþ þ p�; p2� ¼ M2

q):

�S
q �qðtÞ ¼

1

32�2
	ðt� 4M2

qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

q

t

s
Spð�p� þMqÞð�pþ �MqÞ ¼ 1

16�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

q

t

s
ðt� 4M2

qÞ	ðt� 4M2
qÞ

�P
q �qðtÞ ¼

1

32�2
	ðt� 4M2

qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16M2

q

t

s
Spi�5ð�p� þMqÞi�5ð�pþ �MqÞ ¼ 1

16�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

q

t

s
t	ðt� 4M2

qÞ:
(48)

Integrals in Eq. (47) are ultraviolet divergent. The regularization may be introduced in such a way that the upper limit in
each integral is substituted by the finite cutoff (which may depend on the channel). Next, the ðq �qÞ condensate provides the
symmetry breaking. There should be Goldstone bosons corresponding to the broken symmetry. This provides that the P
excitation in the ðq �qÞ channel is massless [the corresponding bilinear appears via the application of the generator of the
broken symmetry to ðq �qÞ]. Then, we have �P

q �qð0Þ ¼ �S
q �qð2iMqÞ, which means that the massive scalar excitation appears

with mass 2MT . The same result can be obtained in the neutral channels q �q via the direct calculation of the polarization
operator:

1

gNC

��S
q �qðiEÞ ¼

1

gNC

þ iy2q

2ð2�Þ4
Z

d4lSp
1

l��Mq

1

ðp� lÞ��Mq

¼ ðp2 � 4M2
qÞy2qIðMq;Mq; pÞ

1

gNC

��P
q �qðiEÞ ¼

1

gNC

þ iy2q

2ð2�Þ4
Z

d4lSpi�5 1

l��Mq

i�5 1

ðp� lÞ��Mq

¼ ðp2Þy2qIðMq;Mq; pÞ;
Iðm1; m2; pÞ ¼ i

ð2�Þ4
Z

d4l
1

ðl2 �m2
1Þ½ðp� lÞ2 �m2

2�
: (49)

Here, the gap equation is used. We get
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MP
q �q ¼ 0; MS

q �q ¼ 2Mq (50)

for q ¼ u, d, c, s, t, b.
Remark III.2.—The calculations of the bosonic spectrum

in the NJL models suffer from the ambiguity that appears
when the shift of the variable is performed in the integralR

d4l
ðl�pÞ2�m2 ! R

d4l
l2�m2 . In fact, this change of variables is

not rigorous and results in the appearance of the new
surface terms. This is a very well-known problem of the
NJL models. (See, for example, Ref. [58].) The resulting
contributions due to the surface terms were evaluated in
Eq. (37) of Ref. [58]. From Ref. [58], it follows that, in the
limit of large cutoff �, the extra contributions to Eq. (50)
vanish. It should be stressed that this problem does not
appear in the dimensional regularization. In the lattice

regularization, momentum space is the four-dimensional
torus, and the shift of the integration variable in the inte-

grals like
R

d4l
ðl�pÞ2�m2 is performed easily. Instead, in both

cases, their own problems appear like the fermion doubling
problem. However, in the approach through the dispersion
relation, Eq. (48), this problem does not appear, while the
final result is again 2Mq. This justifies indirectly the shift

of the variable in Eq. (49), l� p ! l. Anyway, the phe-
nomenologically justified value of the NJL calculations in
QCD and in the other models allows us to disregard the
mentioned problem and to perform the shift of the integra-
tion variables in the calculation of the bosonic spectrum.
In each channel that includes two different quarks, q1,

q2, the polarization operator is a 2� 2 complex matrix P .
For its components, we have

1

gNC

��
q1;L �q2;R
q1;L �q2;R

ðiEÞ ¼ 1

gNC

þ iy2q1q2
4ð2�Þ4

Z
d4lSp

1

l��Mq1

ð1� �5Þ 1

ðp� lÞ��Mq2

ð1� �5Þ

¼ ðp2 �M2
q1 �M2

q2Þy2q1q2IðMq1 ;Mq2 ; pÞ �
iy2q1q2
ð2�Þ4

Z
d4l

1

l2 �M2
q1

� iy2q1q2
ð2�Þ4

Z
d4l

1

l2 �M2
q2

þ ð1þ q1q2Þ
iy2q1q2
ð2�Þ4

Z
d4l

1

l2 �M2
q1

þ ð1� q1q2Þ
iy2q1q2
ð2�Þ4

Z
d4l

1

l2 �M2
q2

¼ ðp2 �M2
q1 �M2

q2Þy2q1q2IðMq1 ;Mq2 ; pÞ þ q1q2y
2
q1q2JðMq1 ;Mq2Þ;

where
1

y2q1q2
¼ 1þ q1q2

2y2q1
þ 1� q1q2

2y2q2
: (51)

For the cross-terms,

��
q2;L �q1;R
q1;L �q2;R

ðiEÞ ¼ iyq1q2yq2q1
4ð2�Þ4

Z
d4lSp

1

l��Mq1

ð1� �5Þ 1

ðp� lÞ��Mq2

ð1� �5Þ

¼ 2Mq1Mq2yq1q2yq2q1IðMq1 ;Mq2 ; pÞ: (52)

At � � Mq1 >Mq2 , we get JðMq1 ;Mq2Þ � ½M2
q1 �M2

q2�IðMq1 ;Mq2 ; pÞ �
M2

q1
�M2

q2

16�2 log�2=M2
q1 (here, � is the ultra-

violet cutoff of the NJL model). Therefore,

1

gNC

� P q1q2ðiEÞ ¼
½E2 �M2

q1ð1� q1q2Þ �M2
q2ð1þ q1q2Þ�y2q1q2 2Mq1Mq2yq1q2yq2q1

2Mq1Mq2yq1q2yq2q1 ½E2 �M2
q1ð1þ q2q1Þ �M2

q2ð1� q2q1Þ�y2q2q1

 !

� 1

16�2
log�2=M2

q1 (53)

Each state is doubly degenerate (we mark the correspond-
ing states by þ or �). We come to

Lemma III.3.—In the considered toy model, we have two
excitations in each q �q channel for q ¼ u, d, c, s, t, b,

MP
q �q ¼ 0; MS

q �q ¼ 2Mq; (54)

and four excitations (i.e., two doubly degenerated excita-
tions) in each q1 �q2 channel (for q1 � q2 ¼ u, d, c, s, t, b)
with masses:

M2
q1q2 ¼ M2

q1 þM2
q2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

q2 �M2
q1Þ22q1q2 þ 4M2

q1M
2
q2

q
;

(55)

where q1q2 are given by

q1q2 ¼
2�yq1q2 � �yq2 � �yq1

�yq2 � �yq1
¼ q2q1 : (56)

The Nambu sum rule has the form
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½Mþ
q1 �q2

�2 þ ½M�
q1 �q2

�2 þ ½Mþ
q2 �q1

�2 þ ½M�
q2 �q1

�2
� 4½M2

q1 þM2
q2�; q1 � q2

½MP
q �q�2 þ ½MS

q �q�2 � 4M2
q: (57)

Remark III.4.—At jq1q2 j< 1, all considered bosonic

masses are real, and there are no tachyons, which means
that the vacuum is stable.

Since the top quark mass is much larger than the other
fermion masses, the Nambu sum rule in the form of Eq. (1)
with the top quark mass in the rhs holds in all channels that
include the top quark. The other boson masses are much
smaller.

Remark III.5.—Among the mentioned Higgs bosons,
there are 12 Goldstone bosons that are exactly massless
[in the channels tð1� �5Þ �b, t�5 �t, cð1� �5Þ�s, c�5 �c,
uð1� �5Þ �d, u�5 �u, b�5 �b, s�5 �s, d�5 �d]. There are Higgs
bosons with the masses of the order of the t-quark
mass ½tð1� �5Þ �b; t�t; tð1� �5Þ �s; t�5 �c; tð1� �5Þ �d; t�5 �u�.
The other Higgs bosons have masses much smaller than
the t-quark mass.

As it was mentioned above, the simplest relativistic
models of the kind discussed in this section were consid-
ered in Refs. [1,3,56]. In these models, the neutral Higgs
bosons have masses 0 or 2MT . However, the model con-
sidered in Ref. [56] has the charged Higgs bosons with

masses � ffiffiffi
2

p
MT . Actually, our derivation of the masses in

t �q channels is similar to that of Ref. [56] for the charged
Higgs bosons.

A further generalization of the model of Ref. [56]
was considered in Ref. [57], in which three scalar
Higgs doublets are to be introduced; the fourth genera-
tion of quarks with large masses is involved. In this
model, there are two charged scalar Higgs modes with

masses MH�
1 , MH�

2 and two pseudoscalar modes with

masses MA
1 , M

A
2 that satisfy the relation 2

P
ið½MH�

i �2 �
½MA

i �2Þ � 4M2
T .

D. Nambu sum rules in dense QCD

Among the other relativistic systems, where the ana-
logues of the Nambu sum rules were observed, we would
like to mention QCD in the presence of finite chemical
potential. First, let us notice the normal phase with the
broken chiral symmetry (both T and� are small compared
to the QCD scale �QCD). We already mentioned in the

introduction that, in this phase, the NJL approximation
leads to the Nambu sum rule in the trivial form M� ¼
2Mquark.

In dense QCDwith�>�QCD, there may appear several

phases with different diquark condensates. Among them,
there is, for example, the CFL phase. In the phenomeno-
logical models of this phase, the three quarks u, d, s are
supposed to be massless. The condensate is formed
[59,60]:

h½c i
��ti�2�0�5c j

�i ��I
J���J�

ijI � ð�VÞ1=2C���I�ijI:
(58)

There are 18 scalar fluctuations of � around this con-
densate (there are also 18 pseudoscalar fluctuations with
the same masses [61]). The symmetry-breaking pattern is
SUð3ÞL 	 SUð3ÞR 	 SUð3ÞF 	Uð1ÞA 	Uð1ÞB ! SUð3ÞCF.
That is why there are 9þ 9 massless Goldstone modes.
Among the remaining 9þ 9 Higgs modes, there are two
octets of the traceless modes and two singlet trace modes.
Correspondingly, the quark excitations also form singlets
and octets. The singlet fermionic gap �1 is twice larger
than the octet fermionic gap �8 (see Sec. 5.1.2. of
Ref. [60]). Applying the technique similar to that which
we developed for the consideration of 3He-B, we get the
scalar singlet and octet masses M1 ¼ 2�1, M8 ¼ 2�8.
This may also be derived from the results presented in
Refs. [62,63]. Thus, for the CFL phase of the color super-
conductor, we have the Nambu sum rules in the trivial
form.

E. Nambu sum rule and Veltman identity

The condition for the cancellation of the quadratic di-
vergences in the mass of the Higgs boson was discussed in
a number of papers (see, for example, Refs. [64–68] and
references therein). In the case of the single Higgs boson
and in the absence of the gauge fields, this condition reads
3M2

H ¼ 4
P

fM
2
f. Here in the left-hand side, the scalar

boson mass stands, while in the rhs, the sum is over the
fermions. If the model contains only triply degenerated
quarks, this relation is reduced to

M2
H ¼ 4

X
f

M2
f: (59)

There is an obvious analogy between this identity and the
Nambu sum rule, Eq. (1). Let us consider this analogy in
more details.
In this particular case, the bare action for the model

that involves the scalar doublet c and the fermion fields
�q has the form

Seff ¼ 1

2

X
p

�cðpÞ
�
p2 þM2

H

2

�
cðpÞ

� �2

8

X
p1�p2¼p3�p4

�cðp1Þcðp2Þ �cðp4Þcðp3Þ

þX
p

��pp��p

� X
q;p¼p1�p2

ðyqcðpÞ ��p1;q;L
�q
p2;R

þ H:c:Þ: (60)

MH is equal to the bare mass of the scalar. Masses of the

fermions are related to this value as Mq ¼ yqMH

� The origin

of Eq. (59) is in the expression for the one-loop correction
to the Higgs mass
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�ð2Þ � i3�2

2ð2�Þ4
Z

d4l
1

l2 �M2
H

þ i3�2

2ð2�Þ4
Z

d4l
1

l2
þX

q

iNCy
2
q

ð2�Þ4
Z

d4lSp
1

l��Mq

1

ðp� lÞ��Mq

��������p¼0

¼ 2NC

X
q

ð�4M2
qÞy2qIðMq;Mq;0Þ ��2

X
q

4NCiM
2
q

M2
Hð2�Þ4

Z
d4l

1

l2 �M2
q

þ 3i�2

2ð2�Þ4
Z

d4l
1

l2 �M2
H

þ 3i�2

2ð2�Þ4
Z

d4l
1

l2

� �2

16�2

�2

M2
H

�
3M2

H � 4NC

X
q

M2
q

�
: (61)

This expression looks similar to Eq. (49). However, their
origins are different. For example, the condition for the
cancellation of quadratic divergences relies on the identity
NC ¼ 3, while, in the derivation of the Nambu sum rule,
this was never used. The Nambu sum rule, Eq. (1), in the
models considered above works for any number of colors.
Also, in Eq. (61), the number of the components of the
scalar is important. Therefore, we come to the conclusion
that the nature of Veltman identity, Eq. (59), differs from
the nature of the Nambu sum rule. Their coincidence at
NC ¼ 3 in the absence of the gauge fields is, presumably,
an accident.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have calculated the bosonic spectrum in
the particular case of the model suggested byMiransky and
coauthors in Ref. [9] that involves all six quarks. Our
model appears when the constraints on the values of the
coefficients are imposed. These constraints come from the
supposition that the microscopic theory approximated
by the given NJL model has the large symmetry. This
Uð2� 3ÞL 	Uð2� 3ÞR symmetry is broken softly down
to Uð2ÞL 	Uð2ÞL 	Uð2ÞL 	Uð1ÞR 	 . . . 	Uð1ÞR. In the
zeroth-order approximation, the parameters Lud, Lcs, Ltb,
Rud, Rcs, Rtb, and Iup, Idown of the Lagrangian Eq. (34) are

equal to each other, and all quarks acquire equal masses. In
this approximation, the symmetry Uð2� 3ÞL 	Uð2� 3ÞR
is preserved. In the next approximation, this symmetry is
violated, and the elements of matrices L, R, I receive small
corrections that provide the validity of the Nambu sum rule
and the difference in quark masses.

At the present moment, we do not intend to consider this
model as realistic. Our aim was to demonstrate how the
sum rule Eq. (1) emerges in relativistic models.
Nevertheless, in principle, one may try to update this
model in order to move it toward a realistic theory. In order
to do this, one needs to provide large masses for the
light scalar bosons of this model. It is worth mentioning
that the energy scale of the microscopic theory that has the
considered NJL model as an approximation should be
essentially larger than 1 TeV. To pass the existing con-
straints on the flavor-changing neutral current, we need

½1=g�1=2  103 TeV [7]. This implies that �  103 TeV.
The large value of � is also necessary in order to provide
the realistic value of FT � 245 GeV. In addition, one must

provide that the production cross sections of the composite
Higgs bosons with 130 GeV<MH < 550 GeV are much
smaller than that of the Standard Model Higgs.
The unknown microscopic theory should provide that

the trans-� degrees of freedom give contributions that
exactly cancel the dominant divergent higher-loop contri-
butions to the fermion and the boson masses of the effec-
tive theory given by Eq. (34) (in order to produce the
masses of the excitations much smaller than the cutoff).
Such a cancellation may occur due to the mechanism
similar to that of quantum hydrodynamics [10]. Namely,
in quantum hydrodynamics, there exists the ultraviolet
cutoff�, and the divergent contributions to vacuum energy
are present. These contributions, however, are exactly can-
celled by the contributions of the trans-� degrees of free-
dom of the microscopic theory. The cancellation occurs
due to the thermodynamical stability of the vacuum. We
imply that such a mechanism works in the unknown micro-
scopic theory having the NJL model with action Eq. (34) as
a low-energy approximation. This cancellation allows us to
use a one-loop approximation to the NJL model for the
calculation of various quantities just like the classical
hydrodynamics can be used disregarding divergent loop
contributions.
Our analysis prompts that, in the realistic model, which

inherits the structure of the considered toy model, the
Nambu sum rule may appear in the form of Eq. (1). If so,
it gives an important constraint on the bosonic spectrum.
The Nambu sum rule generalizes the relation noticed by
Nambu in Ref. [2]. According to this sum rule, the sum of
the composite scalar boson masses squared (within each
channel) is equal to 2Mf squared, whereMf is the mass of

the heaviest fermion that contributes to the formation of the
given composite scalar boson. (It is implied that the single
fermion dominates in the formation of this state, i.e., its
mass is essentially larger than the masses of the other
fermions that contribute to the given composite boson.)
Originally, this sum rule was considered by Nambu in
3He-B and in the conventional superconductivity. In the
present paper, we also consider how the Nambu sum rule
emerges in 3He-A including the thin films. We mention the
analog of this sum rule in QCD at finite chemical potential.
We feel it is natural to suppose that the top quark

contributes to the formation of the composite Higgs bo-
sons. The other composite scalar bosons would have much
smaller masses. The fact that such states are not observed
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means that the formation of these states is suppressed. For
example, the light scalar bosons may be eaten by some
extra gauge fields that acquire masses due to the Higgs
mechanism. It is worth mentioning that the Nambu sum
rule alone cannot predict the masses of all composite Higgs
bosons. There exist infinitely many possibilities. Below,
we list a few of them that seem to us interesting and
instructive. In all these cases, it is implied that, in the rhs
of Eq. (1), the top quark mass stands.

(1) If there are two (doubly degenerated) Higgs bosons
in the channel that contains the 125 GeV Higgs, then
the partner of the 125 GeV boson should have mass
around 210 GeV.

(2) If there are only two states in this channel, then the
partner of the 125 GeV Higgs should have the mass
around 325 GeV. Then, the two Higgs masses
MH1 ¼ 125 GeV and MH1 ¼ 325 GeV satisfy the

relations MH1 ¼
ffiffiffiffiffiffiffiffi
1=8

p ð2MTÞ, MH2 ¼
ffiffiffiffiffiffiffiffi
7=8

p ð2MTÞ.
These relations are to be compared with Eq. (22).

(3) In the channel with two states of equal masses, the
245 GeV Higgs bosons should appear in analogy
with 3He-A considered in Sec. II. Again, a certain
excess of events in this region has been observed by
ATLAS in 2011 (see, for example, Ref. [69]).

(4) There is an interesting possibility that there exist
eight Higgs bosons of equal masses in a certain
channel. Then, the Nambu sum rule predicts MH ¼
125 GeV, i.e., the value of mass reported recently as
the candidate for the mass of the Standard Model
Higgs boson.

(5) If, in the given channel, there are only two Higgs
bosons, and one of them is Goldstone boson, the
other one should have mass around 350 GeV. [This
is the case of the t�t channel in the original model of

top-quark condensation by Bardeen and coauthors
[3]. Thus, the discovery of the 125 GeVHiggs boson
excludes this model. This also excludes the majority
of the technicolor models considered so far, includ-
ing the so-called walking technicolor models
(substitute the mass of the technifermion instead
of the top-quark mass into the Nambu sum rule).]

We did not consider in this paper the possibility that
the order parameter in the relativistic NJL model has the
structure of the space-time tensor as in 3He (see,
e.g., Refs. [70–74]). The simplest models of this kind
appear as a modification of our toy model with the action
of Eq. (34), where ���ðpþÞOij�

�ðp�Þ stands instead of

���;LðpþÞ��
Rðp�Þ. Here, Oij is the space-time tensor com-

posed of gamma matrices and momenta p� [75].
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