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The weakly interacting massive particle paradigm for dark matter is currently being probed via many

different experiments. Direct detection, indirect detection and collider searches are all hoping to catch a

glimpse of these elusive particles. Here, we examine the potential of the International Linear Collider (ILC)

to shed light on the origin of dark matter. By using an effective field theory approach we are also able to

compare the reach of the ILC with that of the other searches. We find that for low mass dark matter

(< 10 GeV), the ILC offers a unique opportunity to search for interacting massive particles beyond any

other experiment. In addition, if dark matter happens to only couple to leptons or via a spin dependent

interaction, the ILC can give an unrivalled window to these models. We improve on previous ILC studies

by constructing a comprehensive list of effective theories that allows us to move beyond the nonrelativistic

approximation.
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I. INTRODUCTION

Weakly interacting massive particles (WIMPs) are one
of the leading candidates to solve the dark matter puzzle
[1]. Primarily this is due to the fact that a neutral particle
that interacts with roughly the strength of the weak force
naturally gives the correct relic abundance. In addition
many theoretical models predict that the masses of these
states should exist around the scale of electroweak symme-
try breaking, e.g., supersymmetry (SUSY) [2,3], universal
extra dimensions (UED) [4], Little Higgs [5,6] etc.

Currently, this WIMP paradigm is being actively ex-
plored in a number of different ways. Perhaps the most
well known are the direct detection searches that aim to
observe interactions between the dark matter and an atomic
nucleus [7]. As these are extremely low rate experiments,
the detectors are typically placed deep underground to
reduce background. The annihilation of dark matter into
standard model particles in high density regions of our
universe offers another potential method to see a signal,
e.g., Ref. [8].

In particle colliders here on Earth the same interac-
tions may be probed in the production of dark matter.
Unfortunately, the fact that WIMPs are neutral and only
weakly interacting means that they cannot be detected

directly in these experiments. Therefore collider based
searches must rely on particles produced in combination
with the dark matter candidates. If dark matter is produced
directly, one possibility is to use initial state radiation
(ISR), such as gluon jets, or photons, that will recoil
against the WIMPs.
This idea was first explored in a model independent

approach for the International Linear Collider (ILC) using

monophotons in a nonrelativistic approximation [9,10].

Later, detailed detector studies have been performed to

understand the full capabilities of the ILC for such a

signature [11–15]. Furthermore the same signature has

been considered in the case of SUSY [16,17]. At the

LHC (Large Hadron Collider) and Tevatron similar signals

have also been studied but with a monojet signal [18–30].

All of these papers used the idea of parametrizing the dark

matter interactions in the form of effective operators. This

has the advantage that the bounds can be compared with

those coming from direct detection and also that a

nonrelativistic approximation is not required to compare

with the relic density measurement. These methods have

now been used by the LHC experiments to set bounds

on different effective operators that are competitive with

other methods [31,32]. In addition, LEP (Large Electron-

Positron Collider) data has been reinterpreted to determine

corresponding constraints [33].
In this paper we take the effective field theory approach

to dark matter and apply this to an ILC search [34–36]. To
apply the effective field theory in a consistent way we
assume that the dark matter particles can only interact
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with the standard model fields via a heavy mediator. The
mediator is always assumed to be too heavy to be produced
directly at the ILC and thus can be integrated out. For our
model choices we consider the possibility that the dark
matter candidate could be a scalar, a Dirac (or Majorana)
fermion or a vector particle. The same choices are taken for
the heavy mediator and all combinations are considered.
The collider phenomenology can vary significantly,
depending on whether the mediator is exchanged in the
s- or t-channel and consequently we examine both. In
addition, we also study the different ways in which the
mediator can couple to both the dark matter and standard
model particles. We note that using the effective field
theory approach allows us to move away from the non-
relativistic approximation that had previously been used in
ILC studies. This can be especially important if the dark
matter candidate happens to be light.1

For all models we compare the reach of the ILC with
the bounds derived from direct and indirect detection. We
also calculate the couplings expected to lead to the correct
relic density and see whether the ILC can probe these
regions of parameter space. We also note that an ILC
search is complementary to that at the LHC thanks to the
different initial state.

The paper is laid out as follows. We begin in Sec. II by
explaining how we derive the effective field theories for
the dark matter interactions and we explicitly give the
Lagrangian for both the full and effective theory.
We also describe the benchmark models that we use
throughout the study. In Sec. III we describe the various
astrophysical constraints on our effective theories. We
begin with the calculation of the relic density abundance
before moving on to explain the bounds from direct and
indirect detection.

Section IV describes in detail the potential search for
dark matter at the ILC. Here we explain the calculation of
the signal rate and the dominant backgrounds that were
considered. In addition we detail how the ILC detectors
are modeled to account for relevant experimental effects.
We find that the polarization of incoming beams is par-
ticularly important for many models of dark matter to
discriminate the signal and background. We also inves-
tigate the advantage of a doubling of the ILC energy toffiffiffi
s

p ¼ 1 TeV.
In Sec. V we present the results of the paper. We begin

by examining the potential bounds of the ILC on the
effective coupling of the dark matter model at the collider.
Afterwards, we combine these results with those from
direct and indirect detection to understand for which mod-
els and mass ranges the ILC presents a unique opportunity
to discover dark matter. Finally in Sec. VI we conclude and
summarize the main results of our work.

II. MODELS

A. General motivation

The idea of parametrizing the interaction of a dark
matter particle with standard model particles by using
effective operators is not new, see for example
Refs. [19,33,35,36,38,39]. Many authors construct a list
of effective 4-particle-interactions with Lorentz-invariant
combinations of ��, @� and spinor-/vector-indices up

to mass dimension 5 or 6. In many cases there is no
explanation how those operators may arise in an
underlying fundamental theory. That makes it difficult to
judge how exhaustive the lists of operators are, whether
interference between different operators should be taken
into account and how the effective model is connected to
realistic fundamental theories and their couplings.
We follow the effective approach introduced in Ref. [36]

by starting from different fundamental theories with given
renormalizable interactions between standard model
fermions and the hypothesized dark matter particles that
are mediated by a very massive particle. In general we
assume that the dark matter particle is colorless, an SU(2)
singlet and carries no hypercharge. However, we also
mention possible models where the dark matter candidate
may be charged under SU(2).
From these theories we deduce effective 4-particle-

vertices for energies significantly smaller than the mass
of the mediator. Working with these effective operators,
one can deduce information about the effective coupling
and propagate this information to the parameters of the
corresponding underlying fundamental theory. The effec-
tive approach allows us to reduce the dimensionality of the
parameter space and more easily compare the different
experimental searches.

B. Deriving effective Lagrangians

We start with a list of fundamental Lagrangians taken
from Ref. [36]. However we do not perform a nonrelativ-
istic approximation, since we are interested in the
phenomenology of this Lagrangian at a high energy
experiment and therefore the results for our effective
operators differ. We also use a different method to evaluate
the effective vertices, motivated in Ref. [40], which uses
the path integral formalism.
We give one explicit example for the derivation of the

effective operators and only mention specific peculiarities
for the other cases, which are apart from that calculated
similarly. Let c be a standard model fermion and � a
complex scalar field representing the dark matter candi-
date. For our example, we assume the mediator to be a real
vector field, Z�, with massM� (we will keep this notation
for the mediator mass throughout). We further assume that
the vector particle couples only to left-chiral fermions. The
relevant terms in the UV completed Lagrangian are then
given by

1The mass determination of a light neutralino dark matter
candidate at the ILC has been discussed in Ref. [37].
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L UV ¼ 1

2
M2

�Z
�Z� � 1

4
ð@�Z� � @�Z�Þð@�Z� � @�Z�Þ

þ g�ð�y@��þ �@��yÞV� � gl �c��PLcV�;

(1)

� 1

2
Z�½ðh�M2

�Þg�� � @�@��Z� þ F�Z�; (2)

where the function F� is given by

F� � g�ð�y@��� �@��yÞ þ gl �c��PLc : (3)

We have not included the kinetic terms for �, c , as they are
not relevant for the computation of the effective
Lagrangian. In this particular example, gl and g� are

dimensionless couplings whose definitions can change
depending upon the precise model studied and we shall
use this notation throughout. We have included the kinetic
term for Z�, the heavy mediator field. After integrating it
out we obtain the effective Lagrangian,

Leff ¼ 1

2M2
�

F�F� (4)

� g�gl

M2
�

�c��PLc ð�y@��� �@��
yÞ: (5)

Cases with different spin for the dark matter or the
mediator particle are evaluated similarly. The full list of
models with their respective fundamental and effective
Lagrangians is given in Table I. We only want to give
some special remarks:

(i) For spin-1=2 mediators, the Dirac propagator has
only one power of M� in the denominator,

1

6p�M�

� � 1

M�

� 6p
M2

�

: (6)

We therefore get two effective vertices after expand-
ing the Lagrangian up to order 1=M2

�.

(ii) Some effective operators give derivatives on the
standard model fermion fields. These are not negli-
gible, since they only vanish if the Dirac equation
i6@c ¼ mc can be used and the fermion mass m is
small. This is not the case for e.g., heavy quark
contributions in the annihilation sector and pro-
cesses with off-shell fermions.

(iii) We use the same list of effective operators for
the cases of real scalar (� ¼ �y), real vector
(�� ¼ �y

�) or Majorana fermion [41] dark matter

fields. However, we would like to mention that for
consistency we do not introduce additional factors
of 1=2 in the couplings as is often done in the case
of real fields.

C. Benchmark models

The effective operators described above have multiple
independent parameters to describe the effective coupling,
for example g�, gl, gr and M� in the scalar dark matter,

vector mediator (SV) case or gs, gp andM� in the fermion

dark matter, scalar mediator (FS) case in Table I.
Considering the full range of parameters would lead to a

plethora of scenarios, well beyond the scope of this paper.
Thus we restrict our analysis to specific benchmark models
(see Table II) with constraints on the individual couplings
such that only one overall multiplicative factor remains.
The effective coupling constant G for each model is then
defined as G � gigj=M

2
�.

When comparing different experimental approaches to
dark matter, a large dependence can be seen on the size of
the interaction to different SM particles. We shall con-
sider two cases for the set of SM particles that interact
with dark matter: (i) all leptons (ii) all SM fermions. In
addition, two variants of coupling strength are chosen. In
one scenario all SM particles couple with the same
strength; this is called universal coupling. In the second
they have a coupling proportional to their mass, which we
call Yukawa coupling. Since the latter strongly enhances
dark matter couplings to the top quark, NLO contributions
gain extra weight and might become dominant effects.
This is particularly true for models that include fermion
vector bilinears �c��c , for which a virtual top quark pair
can already be produced at 1-loop level through addi-
tional photon or gluon radiation. For those we expect
significant deviations from the tree-level approximation
and a full NLO description might be necessary to derive
reasonable results here. We therefore omit the Yukawa-
case for this class of models. However, models with only
(pseudo)scalar or axialvector bilinears need at least 2
loops to get a nonvanishing matrix element. We expect
these contributions to be suppressed strongly enough to
keep the tree level approximation valid.
For models with fermionic mediators, the leading

term has only a 1=M� dependence, which is why we define
G � gigj=M� for these. We also choose two possible

values for M� to represent different suppression scales
of the respective second order terms. Models with real
fields that are trivially connected to the corresponding
complex cases by multiplicative prefactors are not taken
into account separately. We also omit models with
left-handed couplings that are related to the respective
right–coupled cases. Information on these can easily be
extracted from the related models by rescaling the corre-
sponding result accordingly.

D. Consistency of models

We have chosen to include all possible combinations
of spin (0, 1=2, 1) for the mediator and dark matter candi-
date so that our results can be compared with the full range
of operators already consider in the literature e.g.,
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Refs. [18–23,26,36,38,39]. We would also like to make
clear that our models should not be considered full ultra-
violet completions to the standard model. Instead they are
meant to illustrate the possible dominant interactions that
dark matter may have with standard model fermions.

Nevertheless, some of the new interactions included
may induce SU(2) violating couplings or additional forms
of electroweak symmetry breaking. However we choose
not to ignore these models since a full high energy theory
may include cancellations that alleviate these issues. In

TABLE I. List of interaction vertices for S(calar), F(ermion) and V(ector) dark matter, �, before and after integrating out the heavy
mediator scalar field �, spinor field � or vector field Z� with mass M�. c denotes the standard model fermion. @X�� � @�X� �
@�X�. Fermionic tS and tV models denote cases where the mediator is exchanged in the t-channel. Note that all Lagrangians are
hermitian by construction.

DM Med. Diagram
�LUV

�Leff

S S

g��
y��þ �c ðgs þ igp�

5Þc�
g�
M2

�

�y� �c ðgs þ igp�
5Þc

S F

��ðgs þ gp�
5Þc�þ �c ðgs � gp�

5Þ��y
1

M�
½ðg2s � g2pÞ �c c�y�þ i

M�
�y �c ðg2s þ g2p � 2gsgp�

5Þ��@�ðc�Þ�

S V

g�ð�y@��� �@��
yÞZ� þ �c��ðglPL þ grPRÞcZ�

g�
M2

�

�c��ðglPL þ grPRÞc ð�y@����@��
yÞ

F S

��ðgs1 þ gp1�
5Þ��þ �c ðgs2 þ gp2�

5Þc�
1

M2
�

��ðgs1 þ igp1�
5Þ� �c ðgs2 þ igp2�

5Þc

F V

�c��ðgl1PL þ gr1PRÞcZ� þ ����ðgl2PL þ gr2PRÞ�Z�

1
M2

�

�c��ðgl1PL þ gr1PRÞc ����ðgl2PL þ gr2PRÞ�

F tS

��ðglPL þ grPRÞc�þ �c ðglPR þ grPLÞ��
1

M2
�

�c ðglPR þ grPLÞ� ��ðglPL þ grPRÞc

F tV

�c��ðglPL þ grPRÞ�Z� þ ����ðglPL þ grPRÞcZ�

1
M2

�

�c��ðglPL þ grPRÞ� ����ðglPL þ grPRÞc

V S

�g��
����þ �c ðgs þ igp�

5Þc�
� g�

M2
�

����
�c ðgs þ igp�

5Þc

V F

� ����ðglPL þ grPRÞ�� þ �c��ðglPL þ grPRÞ��y
�

1
M�

½glgr �c����c�y
��� þ i

M�
�y
�
�c������ðg2l PL þ g2rPRÞ@�ðc��Þ�

V V

ig�½Z��
y
�@��� þ Z���@�

�� þ �y
���@Z

��� þ �c��ðglPL þ grPRÞcZ�

ig�
M2

�

�c��ðglPL þ grPRÞc ½��@�y
�� � �y;�@��� þ @�ð�y

��� � �y
���Þ�
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order to be more concrete, we now now list some of the
problems that the full high energy may introduce:

(i) For any model with a single t-channel mediator that
couples to more than one standard model particle,
the interaction will violate some combination of
lepton flavor, quark flavor and gauge charges. A
solution to this problem is to relax the constraint
that we have a single mediator and instead consider
the possibility that there exists a degenerate set of
intermediate particles in the model. A motivation for
this kind of model comes from SUSY where a spec-
trum of degenerate squarks and sleptons would lead
to this phenomenology.

(ii) Any model with an s-channel scalar mediator either
violates isospin symmetry or the mediator has to
carry SU(2) charge. In the second case dark matter
also has to be charged under SU(2). Consequently it
now has the possibility to interact with both the Z
and the Higgs boson. A similar argument holds for
hypercharge. Since those particles have a relatively
low mass, the effective approach put forward in this
paper is no longer strictly valid. For low momentum
exchanges, these interactions can be expected to be
dominant and thus our results are no longer reliable
for direct detection, relic density or indirect detec-
tion. However, in case of the ILC a large coupling to
the newmediator may still mean that this interaction
is dominant and could give relevant bounds.

(iii) Similarly, for t-channel interactions the mediator
has to carry appropriate quantum numbers to allow
for a consistent coupling to standard model fermi-
ons. In case of a bosonic mediator, one mediator
can only couple either to left or to right handed
fermions because of their differing gauge charges.

However, again a mass degenerate set of mediators
with different quantum numbers could lead to
mixed left-right-interacting scenarios. If the media-
tor itself is a fermion, its chiral components have to
be put into different standard model gauge repre-
sentations in order to give valid couplings. In all
these cases, it can be made sure that dark matter
keeps its singlet nature and does not interact with
any additional standard model particles.

(iv) In the case of an SU(2) violating coupling, new
forms of electroweak symmetry breaking and
contributions to electroweak precision measure-
ments can be expected. However, as stated above
since we do not have the complete high energy
theory it is impossible to know if these contribu-
tions can be cancelled by some additional states in
the theory. Thus we include all possible models for
completeness.

(v) When we introduce vector dark matter models we
simply add the particle by hand with a set mass.
Evaluating the high energy cross section at the ILC
leads to terms with leading s=M4

� dependence and

for small dark matter masses these are divergent.
Since only spontaneously broken gauge theories can
lead to a consistent theory with massive vector
particles [42] our phenomenological models cannot
constitute a full theory. However, one can still find
perturbatively valid results for mass ranges that do
not violate unitarity and we study these bounds.

III. ASTROPHYSICAL CONSTRAINTS

Any model which aims to describe dark matter, for
example through a WIMP, has to agree with present data.
It has to give the correct relic abundance, and must
be consistent with the bounds from direct and indirect
detection searches [43–45].

A. The relic abundance

We first consider the best measurement of the relic
abundance from WMAP-7 [43],

�DMh2 ¼ 0:1099� 0:0056: (7)

We employ the solution of the model dependent
Boltzmann equation obtained in Ref. [35],

�DM
0 h2 � 1:04� 109 GeV�1

xf

mPl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðxfÞ

q
ðaþ 3b=xfÞ

:

(8a)

Here mPl is the Planck mass. xf ¼ M�=Tf is the inverse

freeze-out temperature, Tf, rescaled by the WIMP mass,

M�. It is implicitly given by the equation,

TABLE II. Benchmark models with specific values for the
coupling constants shown in Table I. In the case of ‘‘FS’’ and
‘‘FV,’’ the couplings ‘‘1’’ and ‘‘2’’ are always set equal.

Operators Definition Name

SS, VS, FS, gp ¼ 0 scalar

gs ¼ 0 pseudoscalar

SF, SFr: gp ¼ 0, M� ¼ 1 TeV scalar_low

gp ¼ 0, M� ¼ 10 TeV scalar_high

gs ¼ 0, M� ¼ 1 TeV pseudoscalar_low

gs ¼ 0, M� ¼ 10 TeV pseudoscalar_high

SV, FV, FtV, gl ¼ gr vector

FtVr, VV: gl ¼ �gr axialvector

gl ¼ 0 right–handed

FtS, FtSr: gl ¼ gr scalar

gl ¼ �gr pseudoscalar

VF, VFr: gl ¼ gr, M� ¼ 1 TeV vector_low

gl ¼ �gr, M� ¼ 10 TeV vector_high

gl ¼ gr, M� ¼ 1 TeV axialvector_low

gl ¼ �gr, M� ¼ 10 TeV axialvector_high

FVr: gl ¼ 0 right-handed
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xf ¼ ln

�
cðcþ 2Þ

ffiffiffiffiffiffi
45

8

s
1

2�3

gmplM�ðaþ 6b=xfÞffiffiffiffiffi
xf

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðxfÞ

q �
: (8b)

g�ðxfÞ denotes the relativistic degrees of freedom in equi-

librium at freeze-out and is given in Ref. [46]. a and b are
the first two coefficients of the nonrelativistic expansion of
the thermally averaged annihilation cross section,

h	vi � aþ bv2 þOðv4Þ; (9)

where v is the relative velocity of the colliding particles.
Here the center-of-mass energy squared is approximated
by [38,39],

s � 4M2
� þM2

�v
2 þ 3=4M2

�v
4: (10)

g are the internal degrees of freedom of the WIMP. c is an
order unity parameter which is determined numerically in
the solution of the Boltzmann equation and we set this
parameter to 0.5. In the cases where we have the same
effective operator our results agree with Refs. [38,39], up
to the normalization (see Appendix A).

In order to set constraints, we must determine the total
relic density, which is the sum of the relic density of the
particle and the antiparticle (if the latter exists). This means
the relic density for a complex particle-pair is two times the
density of a real particle. If we consider the WMAP result
as an upper bound on the relic density, i.e., allowing for
other dark matter, then this corresponds to a lower bound
on the effective coupling of the WIMP to the SM particles.
If we require ourWIMP to be the only dark matter, we shall
also obtain an upper bound on the effective coupling.

The strict interpretation that our model only contains a
heavy mediator and a single WIMP ensures that there are
no resonances or coannihilations. However we also note
that in many full theories that contain dark matter, a
‘‘coannihilation’’ regime can exist that can significantly
alter the relic density in the universe. Whilst the coannihi-
lation mechanism cannot be incorporated into the strict
definition of our model, it may actually have no observable
effect on the collider based phenomenology. An example
of such a feature could be stau coannihilation in SUSY that
would not change the ILC production process of the light-
est supersymmetric particle. Another example is that a
more complicated model may contain resonant annihila-
tions. Both of these examples can significantly weaken the
relic abundance bounds.

B. Direct detection

We shall also impose bounds on our operators from
the direct detection searches for WIMP dark matter. The
experiments are designed to measure the recoil energy
from the scattering between a (dark matter halo) WIMP
and the target nucleus. The interactions are difficult to
detect since the energy deposited is quite small, 1 to
100 KeV, [1]. These experiments give an upper limit for

the cross section between the dark matter and the nucleus
of the target. One drawback is that in the cases where the
WIMP does not couple to quarks, the coupling can only
occur through loop diagrams.
The direct detection experiments give a much stronger

bound on spin independent (SI) interactions than on spin
dependent (SD). The reason is that in the SI case the
interaction with all nucleons add coherently which enhan-
ces the corresponding cross section by the atomic number
squared. However, the spins of the nucleons cancel if they
are paired. Thus SD interactions are only enhanced for very
special nuclei.
The SI interactions are scalar or vector interactions in

the s-channel, the axialvector and tensor interactions in the
s-channel give a SD interaction. Note that due to the low
kinetic energy of the WIMPs the cross section should be
computed in the nonrelativistic limit. In that case the
pseudoscalar interaction, �c�5c , vanishes.
The t=u-channel diagrams are cast into a sum of

s-channel diagrams via the Fierz identities. From this
only the SI parts are employed, since any SD contribution
is negligibly small. Tensor interactions occur only via the
Fierz identities, since we do not consider fundamental
tensor interactions. However, since Fierz identities will
always give at least one SI contribution, tensor terms can
be dropped.
For the SI interactions we shall consider the limits set by

the XENON experiment [44]. These are the most recent
and set the strictest limits over a broad parameter range.
For the SD interactions we consider the XENON10 data
[47] since XENON100 gives no statement on SD interac-
tions. The smaller data set along with the physical reasons
mentioned above lead to a bound that is 	106 times
weaker than for the SI interactions. The calculations for
the WIMP-nucleus cross sections follow Ref. [36] and for
identical models we find the same results. See Appendix B
for the complete list of cross sections.

C. Indirect detection

We also consider the indirect detection searches for dark
matter. These are much more model dependent, as the dark
matter is seen via an agent, for example neutrinos, which
could also be produced via other means. Specifically we
shall consider the PAMELA experiment [45] which mea-
sured an excess of positrons that could potentially originate
from dark matter annihilation.
To implement this we need to compute the propagation

of the produced positrons and electrons from the source to
the earth. This is described by the diffusion-loss equation
[48],

@c

@t
�r½Kðx; EÞrc � � @

@E
½bðEÞc � ¼ qðx; EÞ: (11)

Here c ðx; EÞ ¼ dneþ=dE is the positron density per en-
ergy. Kðx; EÞ is the diffusion coefficient which describes
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the interaction with the galactic magnetic field. bðEÞ
denotes the energy loss due to synchrotron emission and
inverse Compton scattering. qðx; EÞ is the source term due
to dark matter annihilation. We note that convection and
reacceleration terms are ignored as these do not apply to
positrons [49].

We use the conventional formalism [50,51] to derive a
solution of Eq. (11). It is also possible to use the so-called
extended formalism that takes the corrections from sources
in the free propagation zone into account as well as those
from the diffusion zone. However, this increases the
runtime of the calculation considerably while only giving
a small correction that is less than the measurement error.
To perform the numerical comparison we use the cored
isothermal dark matter density profile [52] and the galactic
propagation model M2 [50].

The above choices result in the following positron flux,

�eþðEÞ ¼ 
eþ
4�

c ðr
; z
; EÞ; (12)

c ðr; z; EÞ ¼ �E
�2

Z �max

�
d�Sfð�SÞIðr; z; �; �SÞ; (13)

Iðr; z; �; �SÞ ¼
X
i

X
n

J0

�
ir

R

�

� sin
n�ðzþ LÞ

2L
exp ð�!i;nðt� tSÞÞRi;n;

(14)

!i;n ¼ K0

��
i

R

�
2 þ

�
n�

2L

�
2
�
: (15)

Here �E, R, K0, L are parameters which describe the M2
propagation model. They are set to the standard choices
[50,51] �E ¼ 1016 s, R ¼ 20 kpc as well as to the M2
propagation model L ¼ 1 kpc, K0 ¼ 0:00595 kpc2=Myr,
� ¼ 0:55. fð�Þ is the energy distribution of the positrons
from the annihilation and is generated with PYTHIA8 [53].
Ri;n are the coefficients of the Bessel-Fourier expansion of

Rðr; zÞ,

Rðr; zÞ � �h	vi
�
�ðr; zÞ
M�

�
2
; (16)

�ðr; zÞ ¼ �

�
r

r

�
�
�
1þ ðr
=rsÞ
1þ ðr
=rÞ

�ð
��Þ=
: (17)

Here h	vi is the thermally averaged annihilation cross
section. We include all possible final states, not just those
resulting in positrons. Furthermore � ¼ 1=2 for real par-
ticles and 1=4 for complex particles. r
 ¼ 8:5 kpc is the
distance of the solar system from the galactic center. �
 ¼
0:3 GeVncm3 is the local dark matter density and  ¼

 ¼ 2, � ¼ 0, rS ¼ 5 kpc are chosen according to the
cored isothermal dark matter density distribution [50,51].
PAMELA measures the ratio �eþ=ð�e� þ�eþÞ, where

the fluxes, �e� , contain the flux from dark matter annihi-
lation and from any astrophysical background. The back-
ground we take is [48]

d�e�bg

dE
¼

�
0:16��1:1

1þ 11�0:9 þ 3:2�2:15
þ 0:7�0:7

1þ 110�1:5 þ 600�2:9 þ 580�4:2

�
GeV�1 cm�2 s�1 sr�1; (18a)

d�eþbg

dE
¼ 4:5�0:7

1þ 650�2:3 þ 1500�4:2
GeV�1 cm�2 s�1 sr�1; � � E=GeV: (18b)

The quantity we compare to PAMELA is

�eþ

�eþ þ�e�
¼ �eþ� þ�eþbg

�eþbg þ�eþ� þ�e�� þ�e�bg
; (19)

and we note that �eþ� ¼ �e��.
We find an upper bound on the annihilation cross section

by assuming that all of the excess comes from dark matter.
However, it is possible that other background sources
contribute and thus we also allow models that produce a
flux smaller than the one seen.

In addition to constraining models of dark matter from
the positron flux, PAMELA also measures the antiproton
flux. For models that couple to quarks, these bounds can be
very constraining [54] but since we are primarily interested
in a direct correspondence with the ILC, we do not con-
sider these.

We also note that for dark matter masses above	1 TeV,
the FERMI-LAT [55] experiment may provide competitive

bounds from inverse Compton scattering [56,57].
However, since we are only interested in models that can
be probed at the ILC we ignore them here. In the case of
Majorana dark matter, hard photon emission from brems-
strahlung may also offer a possibility to probe these models
but we do not consider this here [58].
The ICECUBE Collaboration also sets limits on heavier

dark matter masses via annihilations into neutrino final
states [59,60]. In addition these bounds may be competitive
for spin dependent interactions but we do not consider the
limits in this study.

IV. DARK MATTER SEARCH AT THE ILC

A. Radiative production of dark matter

For the ILC search, we look at the process eþe� ! ���
with a hard photon being the only detected particle in the
final state, Fig. 1. We determine the polarized differential
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cross section for this process with respect to the relative
photon energy x � 2E�=

ffiffiffi
s

p
and its polar angle � by inte-

grating over the full phase space of the final state dark
matter particles. The results for this calculation are given in
Table III, with further explanation of the abbreviations
used given in Appendix C 1. Previous ILC studies, e.g.,
Refs. [9,14], have used the Weizsäcker-Williams ap-
proximation for soft photons. This formula relates the
differential photon cross section to the total pair production
cross section eþe� ! �� with a reduced center of mass
energy s ! ŝ � sð1� xÞ and multiplied by the kinemati-
cal function Fx�,

d	½eþe� ! �����
dxd cos��

� Fx�	̂½eþe� ! ����: (20)

Due to the soft collinear approximation used, we expect that
the above equation will perform poorly for large angle and
high pT photons. We compare the analytical result to this
approximation to test the reliability. In Table III we put
terms in bold, which are purely caused by our analytical
treatment. The corrections are either of the form of an
additional kinematical factor Vx�, mostly appearing
in models with vector mediators, or completely new
terms that typically appear in t-channel interactions.
Since lim x!0Vx� ¼ 1 and lim x!0ðAiÞ ¼ 0, the WW-
approximation is in agreement with our full result for small
energies. In Fig. 2 we show the respective photon energy
distributions for different models in both the WW-
approximation and the full analytical treatment. The curves
behave quite congruently with differences visible in the
high energy sector. Since most of the signal events lie in
the low energy part, the approximation gives accurate
results for counting experiments. A shape dependent analy-
sis would need to use the analytical result to estimate the
correct threshold behavior for high energies. Our subse-
quent analysis is performed with the full analytical cross
section.

TABLE III. Analytical differential cross sections for the process eþe� ! ��� in the various effective models. Terms in bold do not
appear in the Weizsäcker-Williams approach and are given in Appendix C 1 where we also define all used abbreviations. Models with a
suffix ‘‘r’’ correspond to the case of real particles. Cross sections for SSr, FSr and VSr are twice as large as in the complex case while
SV and VV vanish completely for real particles.

Model d	
dxd cos�

SS 
̂Fx�

32�M4
�

Gsþpg
2
�Cs

SF 
̂Fx�

32�M2
�

½G2
s�pCs þ 
̂2 ŝ

12M2
�

Vx�½ðgs þ gpÞ4CR þ ðgs � gpÞ4CL� þASF�
SFr 
̂

16�M2
�

½Fx�G
2
s�pCs þASFr�

SV ŝ
̂3Fx�

96�M4
�

Vx�½g2l CL þ g2rCR�g2�
FS ŝ 
̂ Fx�

16�M4
�

GsþpCs½g2s
̂2 þ g2p�
FV 
̂Fx�

48�M4
�

Vx�½Glþrŝ
̂
2 þ 3ðgl þ grÞ2M2

��½g2l CL þ g2rCR�
FVr ŝ
̂3Fx�

48�M4
�

Vx�ðgl � grÞ2½g2l CL þ g2rCR�
FtS Fx�
̂

48�M4
�

G2
lþr½Vx�ðŝ�M2

�Þ þAFtS�
FtSr 
̂Fx�

192�M4
�

G2
lþr½3ðŝ� 2M2

�ÞCP þ Vx�2ðŝ� 4M2
�ÞCV�

FtV 
̂Fx�

48�M4
�

½6G2
lrCsðŝ� 2M2

�Þ þ ðŝ�M2
�ÞVx�ðg4l CL þ g4rCRÞ�

FtVr 
̂Fx�

48�M4
�

½12G2
lrCsðŝ� 2M2

�Þ þ ðŝ� 4M2
�ÞVx�ðg4l CL þ g4rCRÞ�

VS 
̂Fx�

128�M4
�M

4
�

Gsþpg
2
�Csð12M4

� � 4M2
�ŝþ ŝ2Þ

VF 
̂Fx�

3840�M4
�M

2
�

½40G2
lrCsð7M4

� � 2M2
�ŝþ ŝ2Þ þ 1

M2
�

ðg4l CL þ g4rCRÞð40M6
� � 22M4

�ŝþ 56M2
�ŝ

2 þ 3ŝ3Þ þAVF�
VFr 
̂Fx�

3840�M4
�M

2
�

½60G2
lrCsð12M4

� � 4M2
�ŝþ ŝ2Þ þ 1

M2
�

ðg4l CL þ g4rCRÞð320M6
� � 1044ŝþ 32M2

�ŝ
2 þ ŝ3Þ þAVFr�

VV ŝ
̂3Fx�Vx�

3840�M4
�M

4
�

½g2l CL þ g2rCR�g2�ðM4
� þ 20M2

�ŝþ ŝ2Þ

FIG. 1. Diagrams for radiative pair production of dark matter.
Terms in which the heavy mediator can emit a photon are
neglected.

DREINER et al. PHYSICAL REVIEW D 87, 075015 (2013)

075015-8



When we restrict the various couplings in our model
according to the benchmark scenarios, Table II, most of the
cross sections simplify and have only one polarization
dependent term Ci. To determine the polarization leading
to the best signal to background ratio, we only need to
consider cases with different Ci. We therefore classify our
models as follows:

Scalar-like:	pol ¼ CS	unpol;

Vector-like:	pol ¼ CV	unpol;

Right-like:	pol ¼ CR	unpol;

Left-like:	pol ¼ CL	unpol:

(21)

Models with t-channel mediators usually have multiple
terms with different polarization behavior and do not fall
into one of the basic polarization classes given in Eq. (21).
We choose the following polarization settings for those:

(i) Models with fermionic mediators are classified
according to their leading term, which is always
scalar-like.

(ii) All other models have both scalar-like and vector-
like parts of about the same size. We analyze them
in a vector-like scenario that naturally leads to a
better background suppression.

B. Standard model background for monophotons

We consider the two leading dominant standard model
background contributions after selection, determined with
a full ILD (International Linear Detector concept) detector
simulation [14,61]. All numbers here and in the following
paragraphs refer to the nominal ILC center of mass energy
of 500 GeV [62]. We also consider the case of an increased
energy of 1 TeV and mention the differences later.

(i) Neutrinos from eþe� ! � ���ð�Þ form a polarization
dependent background. The leading contribution
comes from t-channelW-exchange, which only cou-
ples to left-chiral leptons. Additional smaller contri-
butions come from s-channel Z-diagrams with both
left- and right-chiral couplings. We also consider the
case of one additional undetected photon, which
contributes with a size of roughly 10%.

(ii) Bhabha scattering of leptons with an additional hard
photon, eþe� ! eþe�� has a large cross section
but a very small selection efficiency, since both final
state leptons must be undetected. It has been deter-
mined to give a contribution of the same order of
magnitude as the neutrino background, after appli-
cation of all selection criteria. It is mostly polariza-
tion independent [14,61].

Other background sources (like additional soft photons or
photons faking electrons) contribute with less than 1%
compared to the neutrino background and are therefore
omitted [61].

C. Data modeling

To evade the use of a full detector simulation, we build
on the results of Refs. [14,61]. For the signal and mono-
photon neutrino background, we generate the events by
ourselves with the given phase space criteria. We then
apply the ILD estimates for the energy resolution as well
as the reconstruction and selection efficiencies2 and com-
pare the final energy distributions. For the diphoton neu-
trino and Bhabha background, we model the final
distributions directly from the given results performed
with a full detector simulation [14,61].
For the generation of signal and monophoton neutrino

events we use CALCHEP [63]. We produce signal events for
all benchmark scenarios with dark matter masses ranging
from 1 to 240 GeV. To avoid collinear and infrared diver-
gences, we limit phase space in the event generation to
E� 2 ½8 GeV; 250 GeV� and cos�� 2 ½�0:995; 0:995�.
Initial state radiation (ISR) and beamstrahlung signifi-
cantly change the width and position of the neutrino
Z0-resonance, Fig. 3(a), and are taken into account. We
set the accessible parameters in CALCHEP according to the
ILD letter of intent [64] to 645.7 nm for the bunch size,
0.3 mm for the bunch length and a total number of particles
per bunch of 2� 1010.
The finite resolution of the detector components and the

use of selection criteria to reduce beam-induced back-
ground are taken into account by applying the following
steps to both signal and background data. First, we shift the
photon energy, given in GeV, according to a Gaussian
distribution by taking into account the estimated resolution
of the ILD detector components [64],

�E�

E�
¼ 16:6%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� in GeV
p � 1:1%: (22)

Afterwards we further limit the phase space to reduce
background processes in the Z0-resonance peak at
242 GeV and additional collinear photons from ISR,
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FIG. 2 (color online). Comparison of tree level photon energy
distributions in the WW-approximation and the analytical solu-
tion for M� ¼ 50 GeV, j cos��jmax ¼ 0:98 and

ffiffiffi
s

p ¼ 1 TeV.

(a) SV, (b) FtS.

2From here on, the expression ‘‘efficiency’’ abbreviates
‘‘reconstruction and selection efficiencies.’’
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E� 2 ½10 GeV; 220 GeV�; cos�� 2 ½�0:98; 0:98�:
(23)

The additional angular cut ensures a good photon recon-
struction within the detector. Finally a random elimination
of events is used to simulate the efficiency factor for
reconstruction and selection determined in Ref. [61]. The
efficiency consists of an energy dependent part �1 and a
constant part �2 that are applied successively,

�1 ¼ 97:22%� ðE� inGeVÞ � 0:1336%;

�2 ¼ 96:8%:
(24)

Figure 3 shows how these settings affect the signal and
background spectrum and Fig. 4 shows a stacked histogram
of the dominant background processes along with a ex-
ample dark matter signal. In Table IV we show how the
total number of events in each of the background processes
is affected by the incoming lepton polarization.

D. Analysis

We are interested in determining the upper bound on the
effective coupling constants that the ILC can find for each
individual model under the assumption that no signal
events are measured. We perform a counting experiment
by using the TROLKE [65] statistical test. We determine the
total number of background events along with its statistical
and systematic fluctuation �NB and exclude coupling

constants which would lead to a larger number of signal
events than the 90% confidence interval of the background-
only assumption.

E. Systematic uncertainties

Systematic uncertainties play an important role in
determining the total error on the background, �NB, and
for estimating the bounds on the effective couplings. There
are two dominant contributions, motivated in Ref. [61]
which we now discuss.
The experimental efficiency given in Eq. (24) will be

determined at the real experiment by measuring the
Z0-resonance peak, which is theoretically known to a
very good accuracy. Systematic uncertainties on that value
are given by the finite statistics of this measurement and
further broadening of the peak by unknown beam effects.
These errors can be extrapolated down to the dark matter
signal region at small photon energies and, since the same
efficiency factor is used for signal and background, is
highly correlated between those two. This global uncer-
tainty will therefore approximately cancel in the determi-
nation of the maximum coupling Geff .
Cancellation will not take place for model dependent

effects however. This is due to the fact that the signal
energy distribution depends on the unknown mass of the
dark matter particle and the underlying interaction model.
Therefore, the correct function �ðE�Þ for the signal will be
different from the used neutrino background efficiency
given in Eq. (24). Since we do not know the model a priori,
we use the same value for both and introduce an error on
the determination of the signal events, NS. Compared to
Ref. [61], we use a conservative value of �� ¼ 2%.
Since the neutrino spectrum depends on the incoming

lepton’s polarization P�, any fluctuation within those pa-
rameters will give additional systematic uncertainties on
the number of expected background events. One cannot use
the information from measuring the Z0-resonance in this
case to infer information in the low energy signal range
because of the polarization dependence of the shape itself.
Given the assumed accuracy of at least �P=P ¼ 0:25%
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FIG. 3 (color online). Photon energy distribution before and
after application of beam effects (ISRþ beamstrahlung) and
detector effects (resolutionþ efficiency) for (a) unpolarized
neutrino background and (b) unpolarized FS scalar signal with
M� ¼ 150 GeV. Distributions are normalised to 106 tree level

events.
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FIG. 4 (color online). Photon energy distributions of the most
dominant background contributions (stacked) compared to an
example signal (FS Scalar, M� ¼ 150 GeV) with a total cross

section of 100 fb. All spectra are taken after selection for an
unpolarized initial state.

TABLE IV. Total number of events in the different background
sources after application of all selection criteria. The numbers
are given for an integrated luminosity of 1 fb�1 in different
polarization settings. Numbers in brackets are taken from
Ref. [61] which employed a proper detector simulation.

P�=Pþ ��� ���� eþe��

0=0 2257 (2240) 226 (228) 1218 (1229)

þ0:8=� 0:3 493 (438) 49 (43) 1218 (1204)

�0:8=þ 0:3 5104 (5116) 510 (523) 1218 (1227)
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[64] with a possible improvement to 0.1% at the ILC, we
can derive the corresponding error on the polarized number
of background events. As an example we show the left-
handed background,

Npol

Nunpol

¼ ð1þ PþÞð1� P�Þ;

�Npol

Nunpol

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P�ð1þ PþÞ�2 þ ½Pþð1� P�Þ�2

q �P

P
:

(25)

From the numbers in Table IV, we assume an identical
polarization dependence for ��� and ���� events and no
dependence for the Bhabha background.

F. Polarization settings

Polarization can be used to significantly increase the
number of signal events according to Eq. (21) but also
increases the systematical contribution to the total back-
ground error, �NB via Eq. (25). We are interested in the
settings for each individual model that leads to the largest
NS=�NB ratio allowing for the strictest bounds on Geff . In
Table V we give the total number of background events in
different polarization settings P� ¼ �0:8 and Pþ ¼
�0:3=� 0:6 that are feasible at the ILC [62]. We give

the statistical fluctuation for integrated luminosities of
50 fb�1 as well as for 500 fb�1. Since the latter will give
ten times as much events in all channels, we reduce the
statistical error accordingly to give a value comparable to
the small luminosity case. We also give the systematic
error that is dominated by the polarization uncertainty for
two estimates of the polarization error �P=P ¼ 0:25% and
0.1% [66]. Finally we give the total errors adding all
combinations of individual errors in quadrature.
On the signal side, we look at the different classes

derived in Sec. II with respect to their polarization depen-
dence. For comparison, we use a common reference value
of 500 unpolarized events for an integrated luminosity of
50 fb�1 and derive the corresponding number of events for
polarized input.
We look for the maximum ratio r � NS=�NB and the

results for the best settings are displayed in Table VI. In
most cases the largest possible polarization for the incom-
ing leptons enhances the result. For high statistics and a
nonreduced polarization error, the systematic uncertainty
from increased polarization may outweigh the gain in the
number of signal events though. In those cases, which
appear only in scalar- and left-coupling models, less po-
larized beams lead to better results.

TABLE V. Total amount of background events, NB, with statistical error, �stat, systematic error, �sys, and the total error, �tot. The
subscripts 50 and 500 denote the integrated luminosity in inverse femtobarn. In case of a ten times larger luminosity, one will get ten
times as many events in all channels; to better compare to the error of the low luminosity case, we give ~�stat

500 � �stat
50 =

ffiffiffiffiffiffi
10

p
. The

polarization uncertainties are set to 0.25% (P) and 0.1% ( ~P).

P�=Pþ NB �stat
50

~�stat
500 �

sys
P �

sys
~P

�tot
50P �tot

50 ~P
~�tot
500P

~�tot
500 ~P

0=0 184998

þ0:8=þ 0:3 97568 312 99 312 125 441 336 327 159

þ0:8=þ 0:6 102365 320 101 385 154 500 355 398 184

þ0:8=� 0:3 87974 297 94 169 68 341 304 193 116

þ0:8=� 0:6 83177 288 91 104 42 307 291 138 100

�0:8=þ 0:3 341597 584 185 351 140 682 601 396 232

�0:8=þ 0:6 404970 637 201 501 200 811 668 546 284

�0:8=� 0:3 212851 461 156 233 93 517 471 275 173

�0:8=� 0:6 148478 385 122 337 135 512 408 359 182

TABLE VI. Determination of the best ratio r � NS=�NB with �NB given by the different total errors determined in Table V. NS

describes the number of polarized signal events for the different classes described in Sec. II with a common reference value of 500
unpolarized events for an integrated luminosity of 50 fb�1. We only show the polarization signs with the largest ratios. We mark the
numbers which lead to the best signal to background ratio in bold.

IA type P�=Pþ NS r50P r50 ~P r500P r500 ~P

Scalar þ0:8=þ0:3 620 1.41 1.85 1:90 3.90

þ0:8=þ0:6 740 1:48 2:08 1.86 4:02
Vector þ0:8=�0:3 620 1.82 2.04 3.21 5.34

þ0:8=�0:6 740 2:41 2:54 5:36 7:40
Left �0:8=þ0:3 1170 1.72 1.95 2:95 5.04

�0:8=þ0:6 1440 1:78 2:16 2.64 5:07
Right þ0:8=�0:3 1170 3.43 3.85 6.06 10.09

þ0:8=�0:6 1440 4:69 4:95 10:43 14:4
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G. Increasing
ffiffiffi
s

p
to 1 TeV

We also consider the possibility of a doubled center of
mass energy. This changes the previous analysis as follows:

(i) We generate events in a larger photon energy range
E� 2 ½8 GeV; 500 GeV� and reduce it to the interval
½10 GeV; 450 GeV� after performing the energy
resolution shift �E=E. This again reduces back-
ground events from the Z0-resonance, which now is
positioned at 496 GeV.

(ii) Dark matter signal processes can now be produced
with masses up to 490 GeV.

(iii) We use our previously modeled distribution for the
Bhabha background and rescale it by a factor of
1=4, taking into account that the full cross section
for that process is approximately proportional to
1=s.

(iv) We use, as a rough approximation, the same
ISR and beamstrahlung parameters in CALCHEP,
efficiency factors and systematic error estimates.

Tables VII, VIII, and IX summarize again the number
of background events per background scenario, the indi-
vidual error sources and the determination of the best
polarization setting for the increased center of mass energy.
In contrast to the Bhabha cross section that falls mainly
according to 	 / 1=s, the neutrino background gets
significant contributions from t-channel W�s, which give
s=m4

W -terms in the evaluation of the total cross section.

The left-handed neutrino contribution therefore gets
enhanced whereas the Bhabha background becomes less
dominant in some polarization channels. This leads to a
larger relative polarization error and therefore a larger
impact on the size of the background fluctuation. In the
end, vector- and right-coupling models receive stronger
enhancement for polarized input than in the

ffiffiffi
s

p ¼
500 GeV case, whereas the other models suffer from the
larger impact of polarization on the total error and prefer
smaller polarization.

V. RESULTS

We begin by presenting the reach at the ILC in terms of
the effective coupling constant in Sec. VA. We then com-
pare these potential bounds with the couplings predicted by
the cosmological relic density and the bounds coming from
direct and indirect detection experiments. Of course we
would also like to discover a dark matter at the ILC and the
bounds provide an estimate of the potential sensitivity of
the collider.

TABLE VII. Total amount of background events (NB) and different error sources (see Table V) for
ffiffiffi
s

p ¼ 1 TeV.

P�=Pþ NB �S
50

~�S
500 �P

P �P
~P

�tot
50P �tot

50 ~P
~�tot
500P

~�tot
500 ~P

0=0 162437

þ0:8=þ 0:3 54649 234 74 380 152 446 279 387 169

þ0:8=þ 0:6 62791 251 79 469 188 531 314 476 203

þ0:8=� 0:3 38365 196 62 201 82 281 212 210 102

þ0:8=� 0:6 30223 174 55 125 50 214 181 137 74

�0:8=þ 0:3 357173 598 189 428 171 735 622 468 255

�0:8=þ 0:6 435979 660 209 612 245 900 704 647 322

�0:8=� 0:3 199561 447 141 284 114 530 461 317 181

�0:8=� 0:6 120755 348 110 411 165 538 385 425 198

TABLE VIII. Simulated and modeled number of events in the
different background sources after application of all selection
criteria for

ffiffiffi
s

p ¼ 1 TeV. The numbers are calculated for an
integrated luminosity of 1 fb�1 in different polarization settings.

P�=Pþ ��� ���� eþe�

0=0 2677 268 304

þ0:8=� 0:3 421 42 304

�0:8=þ 0:3 6217 622 304

TABLE IX. Determination of the best ratio r � NS=�NB (see Table VI) for
ffiffiffi
s

p ¼ 1 TeV.

Model P�=Pþ NS r50P r50 ~P r500P r500 ~P

Scalar þ0:8=þ0:3 620 1.39 2.22 1:60 3:7
þ0:8=þ0:6 740 1:39 2:36 1.55 3.65

Vector þ0:8=�0:3 620 2.21 2.92 2.95 6.08

þ0:8=�0:6 740 3:46 4:09 5:40 10:00
Left �0:8=þ0:3 1170 1.59 1.88 2.50 4:59

�0:8=þ0:6 1440 1:60 2:05 2.23 4.47

Right þ0:8=�0:3 1170 4.16 5.52 5.57 11.47

þ0:8=�0:6 1440 6:73 7:96 10:51 19:46
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A. ILC Bounds

We determine the 90% exclusion bound for the effective
coupling constant in each benchmark model for the best
case scenario. The integrated luminosity is set to 500 fb�1

and the systematic polarization error to �P=P ¼ 0:1%.
For each benchmark model we choose the polarization
setting that leads to the best signal to background ratio
for the corresponding polarization behavior according to
Tables VI and IX. Results for different polarization settings
can be found by rescaling the bound on the coupling

according to G0 ¼ G
ffiffiffiffiffiffiffiffiffi
r0=r

p
with r denoting the ratio

NS=�NB given in Table IX. We choose to present all of
the results for an ILC with a center of mass energy of 1 TeV
due to the increased range of dark matter masses that this

option can probe. In addition, smaller effective couplings
can be probed, mainly due to the falling Bhabha
background.
In Fig. 5 we show the derived bounds on the coupling

constants for an ILC center of mass energy of 1 TeV. The

hashed area denotes the region that either violates the tree

level approach with a too large dimensionless coupling

constant g2 > 4�, or by having a too small mediator

mass M� < 1 TeV, for the effective approach to be valid.

Note that the leading order in models with fermionic

mediators has a different mass dimension and therefore

gives a different definition for the effective coupling con-

stant Geff . If a model has no separate ‘‘pseudoscalar’’ or

‘‘axialvector’’ results, it is identical to the corresponding
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FIG. 5 (color online). 90% exclusion limits on the effective couplings accessible at the ILC with
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s

p ¼ 1 TeV. We only give
effectively allowed regions for models with dimensionless fundamental couplings g.
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‘‘scalar’’/‘‘vector’’ line due to identical cross section
formulas. For masses away from the threshold, the ILC
is able to exclude coupling constants down to the order
of 10�7 GeV�2 or 10�4 GeV�1, depending on the mass
dimension. This corresponds to a total cross section
(for the given phase space criteria) of about 0.3 fb.
Exceptions however arise for models with vector dark
matter that tend to have very strong exclusion limits for
small masses. This is caused by the 1=M4

� dependence in

the photon cross section, which leads to divergences for
very small vector boson masses. It has been shown [42]
that only spontaneously broken gauge theories can lead to
models with massive vector particles that are not divergent.
Therefore, our initial fundamental model cannot be the full
theory for all energies. In our effective approach, we
restrict the energy to a maximum and in that case one
can still receive perturbative valid results for mass ranges
that do not violate unitary bounds. However, the perturba-
tively allowed mass range cannot be given in this model
independent approach, since such an analysis needs more
information about the size of the individual couplings and
the relation between the mass of the mediator and the dark
matter mass itself. In summary, a more detailed fundamen-
tal theory is needed to evaluate the breakdown of pertur-
bation theory in this scenario.

We note that in models with fermionic operators, the
subleading order has a negligible effect, as can be seen

from the nearly identical lines for fermionic mediators with
different masses.

B. Combined results

The combined maximum exclusion limits for spin inde-
pendent DM-proton interaction at PAMELA, WMAP and
the ILC are shown in Figs. 6–8. We choose a subset of
models that couple to all standard model fermions and give
an overview of the bounds that we can expect. Other
models behave similarly and are therefore not shown again
separately. We can give the following statements about the
comparison of the ILC exclusion bound with the current
XENON limits:
(i) We have sensitivity to spin independent proton cross

sections for, as an example, the FV Vector model
down to 10�42 cm�2 or equivalently 10�3 fb, which
is an improvement of about four orders of magnitude
compared to current LEP [33] and two orders of
magnitude compared to current Tevatron [19] and
CMS [31] results.

(ii) An increased center of mass energy can lead to
stronger bounds by up to one order of magnitude.
It also allows a larger dark matter mass range to be
probed.

(iii) ILC bounds get significantly weakened if the inter-
action is Yukawa-like. At the ILC the mediator
must couple to electrons, which have a suppressed
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FIG. 6 (color online). Combined 90% exclusion limits on the spin independent dark matter proton cross section from ILC, PAMELA
and WMAP for a selection of scalar dark matter models.
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FIG. 7 (color online). Combined 90% exclusion limits on the spin independent dark matter proton cross section from ILC, PAMELA
and WMAP for a selection of fermionic dark matter models.
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FIG. 8 (color online). Combined limits on the spin independent dark matter proton cross section from ILC, PAMELA and WMAP
for a selection of vector dark matter models.
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Yukawa coupling. The production cross section is
thus small, leading to weaker bounds.

(iv) Models with scalar mediators give weaker bounds
than models with vector interactions. For fermionic
dark matter we observe a difference of about two
orders of magnitude, which is in agreement with
previously mentioned results from e.g., LEP. For
scalar and vector dark matter the difference is mass-
dependent and can increase to up to six orders of
magnitude, which is due to the different mass
dimension of the couplings.

(v) The WMAP bounds are for many effective models
very constraining, Figs. 6–9. However, we would
like to point out that these can be highly dependent
on the full theory whilst not affecting the ILC or
direct detection phenomenology. For example, an-
nihilation can occur via some resonance or as in
some SUSY models, coannihilation with staus or
stops.

In Fig. 9 we show some models which allow for lepton
couplings only. In that case, dark matter can only interact
with protons via photons through a fermion loop,
cf. Appendix. B 4. The loop factor significantly lowers
the cross section and therefore increases the bound in
the case of vector coupled models. Other models allow
quark couplings only at the 2-loop level or theoretically

completely forbid them [33]. In all cases, the ILC would
give the strongest exclusion bounds for dark matter lepton
couplings. For models with fermionic mediators there is an
extra subtlety when comparing the bounds. In particular
the exclusion limit at the ILC is mainly given by the
leading term in the operator expansion, which is scalar
like. Loop couplings can only happen for vector currents,
which in the case of a fermionic mediator is only given by
the subleading order and has an additional factor of 1=M2

�.

In that case, when translating any exclusion limits into
bounds on the WIMP-proton cross section, we need to
know the exact mass of the mediator. We show this in
Fig. 9 for the two different chosen suppression scales
‘‘Low’’ (M� ¼ 1 TeV) and ‘‘High’’ (M� ¼ 10 TeV),
Table II. In Fig. 10 we show the exclusion limits for the
spin-dependent interaction. In our case, only the model
with fermionic dark matter, a vector mediator and an
axial-vector coupling leads to such an interaction. In that
case, we compare with data from the previous XENON
experiment (XENON10), since no results for the
XENON100 phase were available when this study was
completed. Since in this scenario dark matter only couples
to a single nucleon on average because of the natural spin
antialignment in nuclei, the XENON bounds are not co-
herently enhanced by the atomic number and therefore
strongly lose sensitivity. The ILC would also give strongest
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FIG. 9 (color online). Combined limits for a selection of models with loop-coupling to leptons only. ‘‘Low’’ corresponds to M� ¼
1 TeV and ‘‘High’’ to M� ¼ 10 TeV, Table II.
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exclusion bounds over the whole accessible mass range
here.

VI. CONCLUSIONS

In this paper we considered a broad range of effective
models for dark matter and investigated the possibility that
these models could be explored at the ILC. The models
considered the possibility that dark matter was a new
scalar, fermion or vector particle and would be produced
at the ILC via a new, heavy intermediate state, the mediator
particle. For the mediator we also considered spins 0, 1=2
and 1. We obtained the corresponding effective theories by
integrating out the mediator field.

To be able to compare the reach of the ILC with the other
experimental searches, certain assumptions have to be
made on how the mediator and dark matter couples to
the standard model particles. We assume in all models
that interactions only occur with the standard model
fermions but the relative strength to different particles is
varied. In the simplest variant we choose that the coupling
is equal between all the standard model states. Another
choice is that the interaction scales with the mass of
the interacting standard model fermion, a ‘‘Yukawa-like’’
interaction. The last choice we make is the most optimistic
for ILC phenomenology with only the standard model
leptons interacting with the heavy mediator. Since the
produced dark matter particles will be invisible to the
ILC detectors, we require a radiated photon to be emitted
from the initial state that will recoil against missing
momentum. This topology provides a distinctive signal
with which to discover dark matter. For the ILC study,
we included the dominant backgrounds and most important
detector effects. In addition we considered the possibility
of using polarized initial states to reduce backgrounds and
improve the signal strength.

The effective theories that we consider provide an
efficient way to compare the reach of the ILC with other
methods to discover dark matter. First, we consider the
dark matter annihilation cross section required for the relic
density observed by WMAP. We also look at the direct

detection bounds at XENON by calculating the dark
matter-nucleon scattering cross section. In addition, we
include bounds from dark matter annihilation to positrons
from the PAMELA experiment.
In terms of the effective dark matter model, we found

that the ILC should be able to probe couplings
10�7 GeV�2, or 10�4 GeV�1 depending on the mass
dimension of the theory. In models that contain vector
dark matter, the ILC may be able to probe even weaker
couplings in the case of low dark matter mass.
To compare with astrophysical bounds, we found that

the ILC reach is strongly dependent on the exact dark
matter model. If we assume that dark matter is relatively
heavy (> 100 GeV) and interacts with a standard model
particle in proportion to its mass, then the ILC is uncom-
petitive. However, in the case that dark matter is relatively
light (< 10 GeV) then the bounds from the ILC are com-
petitive with astrophysical bounds in many models. In
addition, if dark matter happens to only interact with the
standard model leptons then the ILC offers a unique pos-
sibility to discover dark matter. For this reason, an ILC
search is complementary to those done at the LHC thanks
to the different initial state.
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APPENDIX A: CROSS SECTIONS FOR
ANNIHILATION

We give the full cross sections for annihilation of a pair
of dark matter particles with mass M� into a pair of
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FIG. 10 (color online). Combined limits on the spin dependent dark matter proton cross section.
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standard model fermions with mass mf. To find the expan-

sion coefficients in 	v � aþ bv2, we perform the non-
relativistic approximation s � 4M2

� þM2
�v

2 þ 3
4M

2
�v

4

[35]. Note that in order to find the correct result for the
v2 term in 	v, it is necessary to expand up to order v4

because of the appearance of
ffiffiffi
s

p
in the cross section

formulas.
The total cross section is then given as the sum of the

cross sections over all allowed final state fermions. This set
is restricted both by kinematics (mf  M�) and by the

assumed model. The latter also determines whether the
coupling Gf is universal or particle-dependent.

We define the mass ratio � � mf=M� and the velocities

of both particles 
X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

X=s
q

to compactify the

following expressions.
Some of our effective operators have been analyzed

before, for example Refs. [38,39], and we agree with the
respective results for the annihilation cross sections.
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�ð1� �2Þ3=2: (A16)

	FS
Ps ¼ G2

f

16�


f


�

s; (A17)

	v � G2
fM

2
�

2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ v2

8

�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
: (A18)

	FV
Vec ¼

G2
f

12�s


f


�

ðsþ 2M2
�Þðsþ 2m2

fÞ; (A19)

	v � G2
fM

2
�

2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
ð2þ �2Þ þ v2 �4þ 2�2 þ 11�4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
:

(A20)

	FV
Ax ¼

G2
f

12�s


f


�

½sðs� 4ðm2
f þM2

�ÞÞ þ 28m2
fM

2
��;
(A21)

	v � G2
fM

2
�

2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
�2 þ v2 8� 28�2 þ 23�4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
:

(A22)
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	FV
Ch ¼ G2

f

48�s


f


�

ðsðs�m2
f þM2

�Þ þ 4m2
fM

2
�Þ; (A23)

	v � G2
fM

2
�

8�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ v2 ð2� �2 þ 2�4Þ

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
: (A24)

	FVr
Ch ¼ G2

f

24�s


f


�

ððs� 4M2
�Þðs�m2

fÞ þ 6m2
fM

2
�Þ;
(A25)

	v � G2
fM

2
�

4�

�
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ v2 16� 32�2 þ 19�4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
:

(A26)

	FtS
Sc=Ps ¼

G2
f

48�s


f


�

ðsðs�M2
�Þ � 6mfM�s

þm2
fð16M2

� � sÞÞ; (A27)

	v � G2
fM

2
�

8�
ð1� �Þ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ v2 2� 16�þ 17�2

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
:

(A28)

	FtSr
Sc=Ps ¼

G2
f

96�s


f


�

ð5s2 þ 80m2
fM

2
�

� 2sð7m2
f þ 7M2

� � 6mfM�ÞÞ; (A29)

	v � G2
fM

2
�

8�
ð1� �Þ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ v2 14� 40�þ 29�2

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
:

(A30)

	FtV
Vec=Ax ¼

G2
f

24�s


f


�

ðsð4s� 7M2
�Þ � 6mfM�s

�m2
fð7s� 40M2

�ÞÞ; (A31)

	v � G2
fM

2
�

4�

�
ð3� 2�þ �2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q

þ v2 14� 12�� 31�2 � 18�3 þ 29�4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
: (A32)

	FtVr
Vec=Ax ¼

G2
f

12�s


f


�

ð7s2 þ 76m2
fM

2
�

� 4sð4m2
f þ 4M2

� � 3mfM�ÞÞ; (A33)

	v � G2
fM

2
�

2�

�
ð2� �Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q

þ v2 32� 24�� 64�2 � 36�3 þ 47�4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
: (A34)

	FtV
Ch ¼ G2

f

48�s


f


�

ð4m2
fM

2
� þ sðs�m2

f �M2
�ÞÞ; (A35)

	v � G2
fM

2
�

8�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ v2 ð2� �2 þ 2�4Þ

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
: (A36)

	FtVr
Ch ¼ G2

f

24�s


f


�

ððs� 4M2
�Þðs�m2

fÞ þ 6m2
fM

2
�Þ;
(A37)

	v � G2
fM

2
�

4�

�
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ v2 16� 32�2 þ 19�4

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �
:

(A38)

3. Vector WIMP

	VS
Sc ¼ G2

f

288M4
��s


f


�

ðs� 4m2
fÞð12M4

� þ s2 � 4M2
�sÞ;

(A39)

	v � G2
f

12�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q �
ð1� �2Þ þ v2

24
ð2þ 7�2Þ

�
: (A40)

	VS
Ps ¼ G2

f

288M4
��


f


�

ð12M4
� þ s2 � 4M2

�sÞ; (A41)

	v � G2
f

12�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q �
1þ v2

24

2þ �2

1� �2

�
: (A42)

	VV
Vec ¼

G2
f

432�M4
�


f
�ðsþ 2m2
fÞðs2 þ 20M2

�sþ 12M4
�Þ;

(A43)

	v � G2
f

4�
M2

�v
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
ð�2 þ 2Þ: (A44)

	VV
Ax ¼ G2

f

432�M4
�


f
�ðs� 4m2
fÞðs2 þ 20M2

�sþ 12M4
�Þ;

(A45)

	v � G2
f

2�
M2

�v
2ð1� �2Þ3=2: (A46)
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	VV Ch ¼ G2
f

864�M4
�


f
�ðs�m2
fÞðs2 þ 20M2

�sþ 12M4
�Þ; (A47)

	v � G2
f

16�
M2

�v
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
ð4� �4Þ: (A48)

	VF
Vec=Ax ¼

G2

4320�M4
�s


f


�

½8m4
fð�174M4

� þ 2M2
�sþ s2Þ þ 4M2

�sðs� 20M2
�Þ þ s2ð10M2

� þ 7sÞÞ

� 2m2
fð680M6

� þ 152M4
�ð5M2

� þ sÞ þ sð40M6
� þ 2M4

�ð70M2
� � 31sÞ � 240m3

fM�M
2
�ð10M2

� � s2Þ
� 120mfM

2
�M�sðM2

� � sÞ þM2
�ð76s2 � 40M2

�sÞ þ s2ð20M2
� þ 3sÞÞ�; (A49)

	v � G2

36�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
½ð1� �2Þðð5�2 þ 4ÞM2

� � 6�M�M� þ 5M2
�Þ þ

v2

24
ð�6�ð19�2 þ 2ÞM�M� þ 3ð25�2 þ 6ÞM2

�

þ ð83�4 þ 136�2 þ 156ÞM2
�Þ�: (A50)

	VFr
Vec=Ax ¼

G2
f

2160�M4
�s


f


�

½s4 þ 22m2
fM

2
� þ 13M4

� � 8s2ð8m4
f þ 15M2

�ðm2
f þM2

�Þ � 5mfM�ð4m2
f þ 5M2

�ÞÞ

� 32m2
fM

4
�ð37m2

f � 50mfM� þ 70M2
� þ 45M2

�Þ þ 2s3ð6m2
f � 20mfM� þ 16M2

� þ 15M2
�Þ

þ 8M2
�sð24m4

f þ 15M2
�ð4m2

f þ 3M2
�Þ � 50mfM�ð2m2

f þM2
�Þ þ 119m2

fM
2
� þ 40M4

�Þ; (A51)

	v � G2
f

9�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
½ð1� �2Þð3M2

� � 2�M�M� þ ð3�2 þ 4ÞM2
�Þ þ v2

24
ð3ð2þ 7�2ÞM2

� � 6�ð2þ �2ÞM�M�

þ ð16þ 30�2 þ 29�4ÞM2
�Þ�: (A52)

APPENDIX B: CROSS SECTIONS FOR
DIRECT DETECTION

We now give results for the dark matter-nucleon scat-
tering cross section at zero momentum transfer, 	0, for all
defined benchmark models. In a universal scenario, the
effective coupling is independent of the quark (Gq ¼ G),

whereas it grows proportionally to the quark mass in a
Yukawa-like model (Gq ¼ Gmq=me). We use the follow-

ing definitions:

fp
MP

� X
q¼u;d;s

fpq
Gq

mq

þ 2

27

�
1� X

q¼u;d;s

fpq

� X
q¼c;b;t

Gq

mq

;

(B1)

dp � X
q¼u;d;s

Gq�
p
q; (B2)

bp � 2Gu þGd; (B3)

~b p � bpM� þ 2Gumu þGdmd (B4)

with the numerical values for fpq and �p
q listed in

Refs. [67,68]

fpu ¼ 0:020� 0:004; (B5)

fpd ¼ 0:026� 0:005; (B6)

fps ¼ 0:118� 0:062; (B7)

�p
u ¼ �0:427� 0:013; (B8)

�p
d ¼ 0:842� 0:012; (B9)

�p
s ¼ �0:085� 0:018: (B10)

Further more we define the reduced mass of the WIMP
proton system,

� � M�Mp

M� þMp

: (B11)

The cross sections can be evaluated in a nonrelativistic
approximation for the WIMP and by using the quark
proton form factors listed above. See e.g., Ref. [36]. If a
model is not listed, its scattering cross section equals zero,
e.g., for pseudoscalar interactions that always vanish in a
nonrelativistic model. Again, we agree with the respective
results in Refs. [38,39] for comparable operators.
Cross sections for real final state particles can easily be

derived from the following list by setting the vector form

DREINER et al. PHYSICAL REVIEW D 87, 075015 (2013)

075015-20



factors bp and ~bp to zero and rescaling fp and dp by a

factor of 2.

1. Scalar WIMP

	0
SS Sc ¼

�2

4�M2
�

f2p; (B12)

	0
SV Vec ¼

�2

�
b2p; (B13)

	0
SF Sc ¼

�2

4�

�
þfp þ

~bp
M�

�
2
; (B14)

	0
SF Ps ¼

�2

4�

�
�fp þ

~bp
M�

�
2
; (B15)

	0
SV Chi ¼

�2

4�
b2p: (B16)

2. Fermion WIMP

	0
FS Sc ¼

�2

�
f2p; (B17)

	0
FV Vec ¼

�2

�
b2p; (B18)

	0
FV Ax ¼ 3

�2

�
d2p; (B19)

	0
FV Chi ¼

�2

16�
b2p; (B20)

	0
FVr Chi ¼ 3

�2

�
d2p; (B21)

	0
FtS Sc ¼

�2

16�
ðbp þ fpÞ2; (B22)

	0
FtS Ps ¼

�2

16�
ðbp � fpÞ2; (B23)

	0
FtV Vec ¼

�2

�
ð1=2 � bp � fpÞ2; (B24)

	0
FtV Ax ¼

�2

�
ð1=2 � bp þ fpÞ2; (B25)

	0
FtV Chi ¼

�2

16�
b2p: (B26)

3. Vector WIMP

	0
VS Sc ¼

�2

4�M2
�

f2p; (B27)

	0
VF Vec ¼

�2

4�

�
�fp þ

~bp
M�

�
2
; (B28)

	0
VF Ax ¼

�2

4�

�
þfp þ

~bp
M�

�
2
; (B29)

	0
VF Chi ¼

�2

4�
b2p; (B30)

	0
VV Vec ¼

�2

�
b2p: (B31)

4. Photon loop

If the WIMP only couples to leptons, the WIMP-proton
interaction can only happen at the loop level. In that case, a
low energy photon that couples to a virtual lepton pair
interacts with the whole proton. This only happens for
models with s-channel vector bilinears �c��c , i.e., models

which include either a, bp, or a, ~bp, term in the low energy

tree level cross section. Results can therefore be derived as
follows:

	Loop
0 ¼ 2

em

81�2
F2ðq2Þ	Tree

0 jreduced; (B32)

where the reduced cross section has to be understood as the

tree level cross section given above after setting bp, ~bp ¼ 1

and fp, dp ¼ 0. This ensures that we only take the vector

interaction parts. If the tree level cross section includes a
bp term, the loop factor is given as

Fðq2Þ � X
l

Glfðq2; mlÞ: (B33)

For ~bp terms, it reads

Fðq2Þ � X
l

ðml þM�ÞGlfðq2; mlÞ: (B34)

In both cases, the loop function can be evaluated as

fðq2; mÞ � 1

q2
½5q2 þ 12m2 � 6ðq2 þ 2m2Þ
qarcoth
q

� 3q2 lnm2=�2�; (B35)


q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=q2

q
: (B36)

We follow the conservative assumption of a maximum
scattering angle to find q2 ¼ �4�2v2 with � describing
the reduced mass of the WIMP nucleus system and
v ¼ 500 km=s being the typical escape velocity of a
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WIMP in a dark matter halo. Because of the new
q-dependence of the cross section and the fact that the
photon only couples to the protons inside the nucleus, the
official XENON results have to be rescaled according to

	Loop ¼ 	Tree

�
Fð~q2Þ
Fðq2Þ �

A

Z

�
2
; (B37)

where ~q ¼ qðMN ¼ MPÞ uses the reduced mass � of the
WIMP proton system instead. This weakens the cross
section limits by about a factor of 10.

APPENDIX C: DIFFERENTIAL CROSS SECTION
FOR eþe� ! ���

1. Abbreviations

We use the following abbreviations for the final cross
section list in Table III: Polarization prefactors:

CS � 1þ PþP�; CV � 1� PþP�;

CL � ð1� P�Þð1þ PþÞ; CR � ð1þ P�Þð1� PþÞ:
(C1)

Terms with combined couplings:

GX�Y � g2X � g2Y; GXY � gXgY: (C2)

Relativistic velocities:


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

s

s
; 
̂ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

sð1� xÞ

s
: (C3)

Kinematical functions:

Fx� � 

�

ðx� 1Þ2 þ 1

xsin 2�
; (C4)

Vx� � x2 cos ð2�Þ þ ð3x� 8Þxþ 8

4ððx� 1Þ2 þ 1Þ : (C5)

We show terms that arise in the analytical evaluation of
the differential photon cross section in eþe� ! ��� but
not in the Weizsäcker-Williams approximation in
(C6)–(C10). They all vanish in the soft-photon limit x ! 0.

ASF ¼ ð1� Vx�Þ
4M2

�

ŝ

1� x
½ðgs þ gpÞ4CR þ ðgs � gpÞ4CL�;

(C6)

ASFr ¼ 

8�

ŝ

M2
�

x

1� x
½ðgs þ gpÞ4CR þ ðgs � gpÞ4CL�;

(C7)

AFtS ¼ ð1� Vx�Þ
4

�
CSðŝ� 4M2

�Þ þ 1

1� x
CSð2M2

� þ ŝÞ
�
;

(C8)

AVF ¼ 20G2
lrCSð1� Vx�Þ x

1� x
ðŝ2 þ 4M2

�ŝ� 8M4
�Þ þ ðg4l CL þ g4t CRÞ

M2
�

�
� 1

32

x4sin 2ð2�Þŝð3ŝ2 þ 26M2
�ŝ� 32M4

�Þ
ðx� 1Þ2ððx� 1Þ2 þ 1Þ

þ 6
x

ððx� 1Þ2 þ 1Þ ŝðŝ
2 þ 7M2

�ŝ� 24M4
�Þ � 1

4
ð1� Vx�Þð21ŝ3 þ 282M2

�ŝ
2 � 1144M4

�ŝþ 160M6
�Þ

þ 3

2

ð1� Vx�Þ
ð1� xÞ ŝðŝ2 � 28M2

�ŝþ 16M4
�Þ þ 1

4

ð1� Vx�Þ
ð1� xÞ2 ŝð7ŝ2 � 126M2

�ŝþ 32M4
�Þ

þ ð1� Vx�Þ
ð1� xÞ3 ŝðŝ2 þ 2M2

�ŝþ 6M4
�Þ
�
; (C9)

AVFr ¼ ðg4l CL þg4rCRÞ
M2

�

�
� 1

32

x4sin 2ð2�Þ
ðx� 1Þ2ððx� 1Þ2 þ 1Þ ŝðŝ

2 þ 32M2
�ŝ� 24M4

�Þþ 2
x

ððx� 1Þ2 þ 1Þ ŝðŝ
2 þ 12M2

�ŝþ 56M4
�Þ

� 1

4
ð1�Vx�Þð7ŝ3 þ 144M2

�ŝ
2 � 168M4

�ŝþ 1280M6
�Þþ 1

2

ð1�Vx�Þ
ð1� xÞ ŝðŝ2 � 48M2

�ŝþ 56M4
�Þ

þ 1

4

ð1�Vx�Þ
ð1� xÞ2 ŝð9ŝ2 � 272M2

�ŝþ 104M4
�Þþ 2

ð1�Vx�Þ
ð1� xÞ3 ŝðŝ2 þ 2M2

�ŝþ 6M4
�Þ
�
: (C10)
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