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In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an

effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure

takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins.

An essential element is the mapping of the higher-dimensional equations of motion to the light-front

Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the

holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes

the kinematics, and the additional deformations of AdS space encode the dynamics, including confine-

ment. It thus becomes possible to identify the features of holographic QCD, which are independent of the

specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the

striking similarities and differences observed in the systematics of the meson and baryon spectra.
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I. INTRODUCTION

Quantum chromodynamics provides a description of
hadrons in terms of fundamental quark and gluon fields
appearing in the QCD Lagrangian. Because of its strong
coupling nature, calculations of hadronic properties, such
as hadron masses and color confinement, still remain
among the most challenging dynamical problems in hadron
physics. Euclidean lattice methods [1] provide an impor-
tant first-principles numerical simulation of nonperturba-
tive QCD. However, the excitation spectrum of hadrons
represents an important challenge to lattice QCD due to the
enormous computational complexity beyond ground-state
configurations and the unavoidable presence of multiha-
dron thresholds. Furthermore, dynamical observables in
Minkowski space-time are not obtained directly from
Euclidean space lattice computations. Dyson-Schwinger
and Bethe-Salpeter methods have also led to many impor-
tant insights, such as the infrared fixed-point behavior of
the strong coupling constant and the behavior of the quark
running mass [2]. However, in practice, these analyses
have been limited to ladder approximation in Landau
gauge [3].

The AdS/CFT correspondence between gravity on a
higher-dimensional anti–de Sitter (AdS) space and confor-
mal field theories (CFT) in physical space-time [4] has led
to a semiclassical approximation for strongly coupled
quantum field theories that provides physical insights
into its nonperturbative dynamics. The correspondence is
holographic in the sense that it determines a duality
between theories in different number of space-time

dimensions. In practice, the duality provides an effective
gravity description in a (dþ 1)-dimensional AdS space-
time in terms of a flat d-dimensional conformally invariant
quantum field theory defined at the AdS asymptotic bound-
ary [5,6]. As we discuss below, the equations of motion in
AdS space have a remarkable holographic mapping to the
equations of motion obtained in light-front Hamiltonian
theory [7] (Dirac’s front form) in physical space-time.
Thus, in principle, one can compute physical observables
in a strongly coupled gauge theory in terms of an effective
classical gravity theory.
Anti–de Sitter AdSdþ1 space is a maximally symmetric

space-time with negative curvature and a d-dimensional
space-time boundary. The most general group of trans-
formations that leave invariant the AdSdþ1 differential
line element,

ds2 ¼ R2

z2
ðdx�dx� � dz2Þ; (1)

the isometry group, has ðdþ 1Þðdþ 2Þ=2 dimensions (R is
the AdS radius). Five-dimensional anti–de Sitter space
AdS5 has 15 isometries, in correspondence with the num-
ber of generators of the conformal group in four dimen-
sions. Since the AdS metric (1) is invariant under a
dilatation of all coordinates x� ! �x� and z ! �z, it
follows that the additional dimension, with holographic
variable z, acts like a scaling variable in Minkowski space:
different values of z correspond to different energy scales
at which the hadron is examined. As a result, a short
spacelike or timelike invariant interval near the light
cone, x�x

� ! 0, maps to the conformal AdS boundary

near z ! 0. On the other hand, a large invariant four-
dimensional interval of confinement dimensions x�x

� �
1=�2

QCD maps to the large infrared (IR) region of AdS

space z� 1=�QCD.
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QCD is fundamentally different from conformal theories
since its scale invariance is broken by quantum effects.
A precise gravity dual to QCD is not known, but the
mechanisms of confinement can be incorporated in the
gauge/gravity correspondence by breaking the maximal
symmetry of AdS space, thus inducing a breaking of the
conformal symmetry of QCD in four-dimensional space-
time. This breaking is effective in the large infrared domain
of AdS, z� 1=�QCD and sets the scale of the strong

interactions [8]. In this simplified approach, the propaga-
tion of hadronic modes can be analyzed in a fixed effective
gravitational background asymptotic to AdS space, which
encodes essential properties of the QCD dual theory, such
as the ultraviolet (UV) conformal limit from the AdS
boundary, as well as effective modifications of the AdS
background geometry in the large-z IR region. Since the
conformal behavior is retained at z ! 0, the modified
theory generates the pointlike hard behavior
expected from QCD [9,10], instead of the soft behavior
characteristic of extended objects [8].

Since AdS space has maximal symmetry, it is a space
with constant curvature and does not lead to confinement.
One possible way to introduce an effective confinement
potential is a sharp cutoff in the infrared region of AdS
space, as in the ‘‘hard-wall’’ model [8], where one consid-
ers a slice of AdS space, 0 � z � z0, and imposes bound-
ary conditions on the fields at the IR border z ¼ z0. One
can also use a ‘‘dilaton’’ background in the holographic
coordinate to produce a smooth cutoff at large distances as
in the ‘‘soft-wall’’ model [11], which explicitly breaks the
maximal AdS symmetry; this introduces an effective
z-dependent curvature in the infrared which leads to con-
formal symmetry breaking in QCD. Furthermore, one can
impose from the onset a correct phenomenological confin-
ing structure to determine the effective IR warping of AdS
space, for example, by adjusting the dilaton background to
reproduce the observed linear Regge behavior of the had-
ronic mass spectrum M2 as a function of the excitation
quantum numbers [11,12]. A convenient feature of the
approach described below is that the dilaton background
can be absorbed into a universal (spin-independent) warp
of the AdS metric. One can also consider models where the
dilaton field is dynamically coupled to gravity [13,14].

Hadronic states in AdS space are represented by
modes �Pðx; zÞ ¼ eiP�x�ðzÞ�ðPÞ, with plane waves along
Minkowski coordinates x� and a normalizable profile
function �ðzÞ along the holographic coordinate z. The
hadronic invariant mass states P�P

� ¼ M2 are found by

solving the eigenvalue problem for the AdS wave equation.
The spin degrees of freedom are encoded in the tensor or
generalized Rarita-Schwinger spinor �ðPÞ. A physical had-
ron has polarization indices along the d physical coordi-
nates; all other components vanish identically.

Light-front (LF) holographic methods were originally
introduced [15] by matching the electromagnetic current

matrix elements in AdS space [16] with the corresponding
expression derived from light-front quantization in physi-
cal space time. It was also shown that one obtains identical
holographic mapping using the matrix elements of the
energy-momentum tensor [17] by perturbing the AdS met-
ric (1) around its static solution [18], thus establishing a
precise relation between wave functions in AdS space and
the light-front wave functions describing the internal struc-
ture of hadrons.
Unlike ordinary instant-time quantization, light-front

Hamiltonian equations of motion are frame independent;
remarkably, they have a structure that matches exactly the
eigenmode equations in AdS space. This makes possible a
direct connection of QCD with AdS methods. In fact, one
can derive the light-front holographic duality of AdS by
starting from the light-front Hamiltonian equations of
motion for a relativistic bound-state system in physical
space-time [19]. To a first semiclassical approximation,
where quantum loops and quark masses are not included,
this leads to a LF Hamiltonian equation which describes
the bound state dynamics of light hadrons in terms of an
invariant impact variable � , which measures the separation
of the partons within the hadron at fixed light-front time,
� ¼ tþ z=c [7]. This allows one to identify the variable z
in AdS space with the impact variable � [15,17,19], thus
giving the holographic variable a precise definition and
very intuitive meaning in light-front QCD.
Remarkably, the pure AdS equations correspond to the

light-front kinetic energy of the partons inside a hadron,
whereas the light-front interactions which build confine-
ment correspond to the truncation of AdS space in an
effective dual gravity approximation [19]. From this point
of view, the nontrivial geometry of pure AdS space enc-
odes the kinematical aspects and additional deformations
of AdS space encode dynamics, including confinement.
For example, in the hard-wall model, dynamical aspects
are implemented by boundary conditions on the hadronic
eigenmodes. The geometry of AdS space then leads to
terms in the equation of motion which are identified with
the orbital angular momentum of the constituents in light-
front quantized QCD. This identification is a key element
in the description of the internal structure of hadrons using
LF holographic principles.
The treatment of higher-spin states in the ‘‘bottom-up’’

approach to holographic QCD described above is an
important touchstone for this procedure. Up to now there
are essentially two systematic bottom-up approaches to
describe higher-spin hadronic modes in holographic
QCD: one by Karch-Katz-Son-Stephanov [11], which is
based in the usual AdS/QCD framework where back-
ground fields are introduced to match the chiral symme-
tries of QCD [20,21], but without explicit connection with
the internal constituent structure of hadrons [22], and the
other by two of the authors of this paper [15,17,19], using
as a starting point the precise mapping of AdS equations to
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gauge theories quantized on the light-front, as discussed
above. Various other approaches follow more or less these
lines [23–26].

The description of higher-spin modes in AdS space is a
notoriously difficult problem [27–30], and thus there is
much interest in finding a simplified approach which can
describe higher-spin hadrons using the gauge/gravity dual-
ity. For example, the approach of Ref. [19] relies on
rescaling the solution of a scalar field �ðzÞ by shifting
dimensions introducing a spin dependent factor [19,31].
This procedure is based on the conformal structure of
AdS/CFT and the close relation between AdS/CFT and
the light-front approach [19].

The Karch-Katz-Son-Stephanov approach [11] starts
from a gauge-invariant action in AdS space, and uses the
gauge invariance of the model to construct explicitly an
effective action in terms of higher-spin modes with only
the physical degrees of freedom. However, this approach is
not applicable to pseudoscalar particles and their trajecto-
ries, and their angular excitations do not lead to a relation
with light-front quantized QCD, which is an essential point
of the approach described in Ref. [19].

In this paper we start from a manifestly covariant effec-
tive action constructed with AdS tensors or generalized
Rarita-Schwinger spinor fields in AdS space for all integer
and half-integer spins, respectively. The occurrence of
covariant derivatives with affine connections complicates
the Euler-Lagrange equations for the various actions that
are considered, but it will be shown that the transition to the
Lorentz frame (the local frame with tangent indices)
simplifies matters considerably. Further simplification is
brought by the fact that physical hadrons have tensor
indices along the 3þ 1 physical coordinates and by the
precise mapping of the AdS equations to the light-front
equations of motion at equal light-front time, thus provid-
ing a clear distinction between the kinematical and
dynamical aspects of the problem.

The derivation of the Euler-Lagrange equations of
motion for higher integer and half-integer spin is in general
severely complicated by the constraints imposed by the
subsidiary conditions necessary to eliminate the lower-spin
states from the symmetric tensors and Rarita-Schwinger
spinors [32]. In our approach these subsidiary conditions
follow from the general covariance of the higher dimen-
sional effective action. We then can systematically treat the
resulting different approaches to conformal symmetry
breaking and the consequences for the hadron spectrum.
In particular, we will give a systematic derivation of
the phenomenologically successful approach given in
Ref. [19] which leads to a massless pion in the chiral limit,
and linear Regge trajectories with the same slope in orbital
angular momentum L and node number n [31].

This paper is organized as follows: we discuss the equa-
tions of motion for general integer spin in a higher-
dimensional background in Sec. II and the corresponding

holographic mapping to the light-front Hamiltonian equa-
tions in Sec. III. The wave equations for higher half-integer
spin is described in Sec. IVand their mapping to light-front
physics in Sec. V. We summarize and discuss the final
results in Sec. VI. Technical details of the calculations
are collected in Appendix A for integer spin and in
Appendix B for half-integer spin.

II. INTEGER SPIN

We will begin with the formulation of bound-state equa-
tions for mesons of arbitrary spin J in a higher-dimensional
AdS space. As we shall show below, there is a remarkable
correspondence between the equations of motion in AdS
space and the Hamiltonian equation for the relativistic
bound-state system for the corresponding angular momen-
tum in light-front theory.

A. Invariant action and equations of motion

The coordinates of AdSdþ1 space are the d-dimensional
Minkowski coordinates x� and the holographic variable z.
The combined coordinates are labeled xM ¼ ðx�; zÞ, with
M, N ¼ 0; . . . ; d the indices of the higher dimensional
dþ 1 curved space, and �, � ¼ 0; 1; . . . ; d� 1 the
Minkowski flat space-time indices. In Poincaré coordi-
nates, z � 0, the conformal AdS metric is

ds2 ¼ gMNdx
MdxN ¼ R2

z2
ð���dx

�dx� � dz2Þ; (2)

and thus the metric tensor gMN ,

gMN ¼ R2

z2
�MN; gMN ¼ z2

R2
�MN; (3)

where �MN is the flat dþ 1 Minkowski metric
ð1;�1; . . . ;�1Þ.
Fields with integer spin in AdSdþ1 are represented by a

rank-J tensor field�ðxMÞN1N2...NJ
, which is totally symmet-

ric in all its indices. Such a tensor contains lower spins,
which can be eliminated by imposing the subsidiary con-
ditions defined below. The action for a spin-J field in
AdSdþ1 space-time in the presence of a dilaton background
field ’ðzÞ is given by

S ¼
Z

ddxdz
ffiffiffiffiffiffi
jgj

q
e’ðzÞgN1N

0
1 . . . gNJN

0
J

� ðgMM0
DM�

�
N1...NJ

DM0�N0
1
...N0

J

��2��
N1...NJ

�N0
1
...N0

J
þ � � �Þ; (4)

where
ffiffiffiffiffiffijgjp ¼ ðR=zÞdþ1 and DM is the covariant derivative

which includes the affine connection (Appendix A 1).
At this point, the higher dimensional mass � in (4) is not
a physical observable and is a priori an arbitrary parameter.
The omitted terms in the action, indicated by . . ., refer to
terms with different contractions. The dilaton background
’ðzÞ in (4) introduces an energy scale in the AdS action,
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thus breaking conformal invariance. It is a function of the
holographic coordinate z, and it is assumed to vanish in the
conformal ultraviolet limit z ! 0.

Inserting the covariant derivatives in the action leads to a
rather complicated expression. Furthermore, for higher-
spin actions, the additional terms from different contrac-
tions in (4) bring an enormous complexity. A physical
hadron has polarization indices along the 3þ 1 physical
coordinates, ��1�2...�J

. All other components must vanish

identically

�zN2...NJ
¼ 0: (5)

This brings a considerable simplification in (4) since we
only have to consider the subspace of tensors which are
orthogonal to the holographic dimension. As we shall see,
the constraints imposed by the mapping of the AdS equa-
tions of motion to the light-front Hamiltonian in physical
space-time for the hadronic bound-state system at fixed LF
time will give us further insight since it allows an explicit
distinction between kinematical and dynamical aspects.

As a practical procedure, we will construct an effective
action with a z-dependent effective AdS mass�effðzÞ in the
action, which can absorb the contribution from different
contractions in (4). Our effective action Seff is

Seff ¼
Z

ddxdz
ffiffiffiffiffiffi
jgj

q
e’ðzÞgN1N

0
1 . . . gNJN

0
J

� ðgMM0
DM�

�
N1...NJ

DM0�N0
1...N

0
J

��2
effðzÞ��

N1...NJ
�N0

1...N
0
J
Þ; (6)

where the function �effðzÞ, which encodes kinematical
aspects of the problem, is a priori unknown. But, as we
shall show below, the additional symmetry breaking due to
the z dependence of the effective mass allows a clear
separation of kinematical and dynamical effects. In fact,
the z dependence can be determined either by the precise
mapping of AdS to light-front physics or by eliminating
interference terms between kinematical and dynamical
effects. The agreement between the two methods shows
how the light-front mapping and the explicit separation of
kinematical and dynamical effects are intertwined.

The equations of motion are obtained from the Euler-
Lagrange equations in the subspace defined by (5)

�Seff
���

�1�2...�J

¼ 0 (7)

and

�Seff
���

zN2...NJ

¼ 0: (8)

The wave equations for hadronic modes follow from the
Euler-Lagrange equation (7) for tensors orthogonal to the
holographic coordinate z. But remarkably, as we will show
below, terms in the action which are linear in tensor fields,

with one or more indices along the holographic direction,
�zN2...NJ

, give us from (8) the kinematical constraints

required to eliminate the lower-spin states.
The covariant derivatives DM are given in Appendix A.

As shown there, it is useful to introduce fields with tangent
indices using a local Lorentz frame, the inertial frame

�̂A1A2...AJ
¼ eN1

A1
eN2

A2
. . . e

NJ

AJ
�N1N2...NJ

; (9)

where the vielbein eAM is obtained from a transformation to
a local tangent frame, gMN ¼ eAMe

B
N�AB, and the indices A,

B ¼ 0; . . . ; d are the indices in the space tangent to
AdSdþ1. The local tangent metric �AB has diagonal com-
ponents ð1;�1; . . . ;�1Þ. In AdS space

eAM ¼ R

z
�A
M; eMA ¼ z

R
�M
A ; (10)

and thus

�̂N1...NJ
¼

�
z

R

�
J
�N1...NJ

: (11)

Notably, one can express the covariant derivatives in a
general frame in terms of partial derivatives in a local
tangent frame. We find

Dz�N1...NJ
¼

�
R

z

�
J
@z�̂N1...NJ

(12)

and

g��0
g�1�

0
1 . . . g�J�

0
JD���1...�J

D�0��0
1
...�0

J

¼ g��0
��1�

0
1 . . .��J�

0
J ð@��̂�1...�J

@�0�̂�0
1
...�0

J

þ gzzJ�2ðzÞ�̂�1...�J
�̂�0

1...�
0
J
Þ; (13)

where �ðzÞ ¼ 1=z is the AdS warp factor in the affine
connection as shown in Appendix A 1.

We split the action (6) into three terms, a term S½0�eff which

contains only fields ��1...�J
orthogonal to the holographic

direction, and a term S½1�eff , which is linear in the fields

��
zN2...NJ

;��
N1z...NJ

; . . . ;��
N1N2...z

. The remainder is qua-

dratic in fields with z components, i.e., it contains terms
such as��

zN2...NJ
�zN0

2
...N0

J
. This last term does not contribute

to the Euler-Lagrange equations (8), since upon variation
of the action, a vanishing term (5) is left.
Using (6), (12), and (13) we find

S½0�eff ¼
Z

ddxdz

�
R

z

�
d�1

e’ðzÞ��1�
0
1 . . .��J�

0
J

�
�
�@z�̂

�
�1...�J@z�̂�0

1
...�0

J
þ���0

@��̂
�
�1...�J

@�0�̂�0
1
...�0

J

�
��

�effðzÞR
z

�
2þ J�2ðzÞ

�
�̂�

�1...�J
�̂�0

1
...�0

J

�
(14)

and
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S½1�eff ¼
Z

ddxdz

�
R

z

�
d�1

e’ðzÞð�J�ðzÞ���0
�N2�

0
2 . . .�NJ�

0
J

� @��̂
�
zN2...NJ

�̂�0�02...�
0
J
þ J�ðzÞ����N2�

0
2 . . .�NJ�

0
J

� �̂�
zN2...NJ

@��̂��0
2
...�0

J
� JðJ� 1Þ�2ðzÞ����N3�

0
3 . . .

��NJ�
0
J�̂�

zzN3...NJ
�̂���0

3
...�0J Þ: (15)

As can be seen from the presence of the affine warp factor
�ðzÞ in (15), this last term is only due to the affine
connection and thus should only contribute to kinematical
constraints.

From (14) we obtain, upon variation with respect to

�̂�
�1...�J

(7), the equation of motion in the local tangent

space,�
@�@

� � zd�1

e’ðzÞ
@z

�
e’ðzÞ

zd�1
@z

�
þ ð�effðzÞRÞ2 þ J

z2

�
�̂�1...�J

¼ 0;

(16)

where @�@
� 	 ���@�@�.

From (16) and (11) we can now write the wave equation
in a general frame in terms of the original covariant tensor
field �N1...NJ

,�
@�@

� � zd�1�2J

e’ðzÞ
@z

�
e’ðzÞ

zd�1�2J
@z

�
þ ðmRÞ2

z2

�
��1...�J

¼ 0;

(17)

with

ðmRÞ2 ¼ ð�effðzÞRÞ2 � Jz’0ðzÞ þ Jðd� J þ 1Þ; (18)

which is the result found in Refs. [19,31] by rescaling the
wave equation for a scalar field.

From (15) we obtain by variation with respect to

�̂�
N1...z...NJ

(8) the kinematical constraints which eliminate

lower-spin states from the symmetric field tensor,

���@����2...�J ¼ 0; �������3...�J
¼ 0: (19)

It is remarkable that we have started in AdS space with
unconstrained symmetric spinors, but the nontrivial affine
connection of AdS geometry gives us precisely the
subsidiary conditions to eliminate the lower-spin states
J � 1; J � 2; . . . from the fully symmetric tensor field.
We note that the conditions (19) are independent of the
conformal symmetry breaking terms in the action, since
they are a consequence of the kinematical aspects encoded
in the AdS metric.

A free hadronic state in holographic QCD is described
by a plane wave in physical space-time, a z-independent
spinor ��1...�J

with polarization indices along physical

coordinates and a z-dependent profile function,

��1...�J
ðx; zÞ ¼ eiP�x�JðzÞ��1...�J

ðPÞ; (20)

with invariant hadron mass P�P
� 	 ���P�P� ¼ M2.

Inserting (20) into the wave equation (17) we obtain the
bound-state eigenvale equation,

�
� zd�1�2J

e’ðzÞ
@z

�
e’ðzÞ

zd�1�2J
@z

�
þ ðmRÞ2

z2

�
�J ¼ M2�J; (21)

where the normalizable solution �J from the eigenvalue
equation (21) is normalized according to

Rd�1�2J
Z 1

0

dz

zd�1�2J
e’ðzÞ�2

JðzÞ

¼ Rd�1
Z 1

0

dz

zd�1
e’ðzÞ�̂2

JðzÞ ¼ 1: (22)

We also recover from (19) and (20) the kinematical
constraints,

���P����2...�J
¼ 0; �������3...�J

¼ 0: (23)

In the case of a scalar field, the covariant derivative is the
usual partial derivative, and there are no additional con-
tractions in the action; thus �eff ¼ � ¼ m is a constant.
For a spin-1 wave equation, there is one additional term
from the antisymmetric contraction, and the contribution
from the parallel transport cancels out. It is also simple in
this case to determine the effective mass �eff in (6) by the
comparison with the full expression for the action of a vector
field (which includes the antisymmetric contraction). This
is shown in the Appendix A 2. Thus for spin-1, we have
� ¼ m and ð�effðzÞRÞ2 ¼ ð�RÞ2 þ z’0ðzÞ � d.
In general, the AdS mass m in the wave equation (17) or

(21) is determined from the mapping to the light-front
Hamiltonian, as we will show in the next section. Since
m will map to the Casimir operator of the orbital angular
momentum in the light-front (a kinematical quantity) it
follows that m should be a constant. Consequently, the z
dependence of the effective mass (18),

ð�effðzÞRÞ2 ¼ ðmRÞ2 þ Jz’0ðzÞ � Jðd� J þ 1Þ; (24)

in the AdS action (6) is determined a posteriori by kine-
matical constraints in the light-front, namely that the mass
m in (17) or (21) must be a constant.
Our demand that the kinematical and dynamical effects

are clearly separated in the equations of motion gives us a
complementary way to arrive to the z dependence of the
effective mass �effðzÞ (24). In general, the presence of a
dilaton in the effective action (6) and the quadratic appear-
ance of covariant derivatives leads to a mixture of kine-
matical and dynamical effects. But, as is shown in the
Appendix A 3, an appropriate z dependence of the effective
mass term can cancel these interference terms. This
requirement determines the z dependence completely and
leads again to the relation (24).
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1. Confining interaction and warped metrics

In the Einstein frame the dilaton term is absent and the
maximal symmetry of AdS space is broken by the intro-
duction of an additional J-independent warp factor in the
AdS metric in order to include confinement forces,

ds2 ¼ ~gMNdx
MdxN ¼ R2

z2
e2 ~’ðzÞð���dx

�dx� � dz2Þ: (25)

The effective action is

~Seff ¼
Z

ddxdz
ffiffiffiffiffiffi
j~gj

q
~gN1N

0
1 . . . ~gNJN

0
J

� ð~gMM0
DM�

�
N1...NJ

DM0�N0
1
...N0

J

� ~�2
effðzÞ��

N1...NJ
�N0

1
...N0

J
Þ; (26)

where
ffiffiffiffiffiffij~gjp ¼ ðRe~’ðzÞ=zÞdþ1, and the effective mass ~�effðzÞ

is an a priori unknown function which encodes kinematical
aspects, but its z dependence is needed to avoid mixing
between kinematical and dynamical effects.

The use of warped metrics is useful to visualize the
overall confinement behavior by following an object in
warped AdS space as it falls to the infrared region by the
effects of gravity. The gravitational potential energy for an
object of mass M in general relativity is given in terms of
the time-time component of the metric tensor g00,

V ¼ Mc2
ffiffiffiffiffiffiffi
~g00

p ¼ Mc2R
e ~’ðzÞ

z
; (27)

thus, we may expect a potential that has a minimum
at the hadronic scale z0 � 1=�QCD and grows fast

for larger values of z to confine effectively a particle
in a hadron within distances z� z0. In fact, according
to Sonnenscheim [33], a background dual to a confin-
ing theory should satisfy the conditions for the metric
component g00,

@zðg00Þjz¼z0 ¼ 0; g00jz¼z0 � 0; (28)

to display the Wilson loop area law for confinement of
strings.

As in the case of the dilaton, considerable simplification
is brought by the introduction of fields with tangent indices
using a local Lorentz frame,

�̂ N1...NJ
¼

�
z

R

�
J
e�J ~’ðzÞ�N1...NJ

: (29)

As shown in Appendix A 4, the action with a warped
metric (26) and the effective action with a dilaton field
(6) lead to identical results for the equations of motion for
arbitrary spin, Eq. (17) or (21), provided that we identify
the metric warp factor �’ðzÞ in (25) with the dilaton profile
’ðzÞ according to ~’ðzÞ ¼ ’ðzÞ=ðd� 1Þ and

ð ~�effðzÞRÞ2

¼
�
ðmRÞ2 þ Jz

~’0ðzÞ
d� 1

� Jz2 ~�2ðzÞ � Jðd� JÞ
�
e�2 ~’ðzÞ;

(30)

where ~�ðzÞ is the warp factor of the affine connection for

the metric (25), ~�ðzÞ ¼ 1=z� @z ~’. A hadronic spin-J
mode propagating in the warped metric (25) is normalized
according to

Rd�1�2J
Z 1

0

dz

zd�1�2J
eðd�1�2JÞ~’ðzÞ�2

JðzÞ

¼ Rd�1
Z 1

0

dz

zd�1
eðd�1Þ~’ðzÞ�̂2

JðzÞ ¼ 1; (31)

in agreement with the normalization given in Ref. [34].

III. LIGHT-FRONT HOLOGRAPHIC
MAPPING FOR INTEGER SPIN

According to Dirac’s classification of the forms of rela-
tivistic dynamics [7], the fundamental generators of the
Poincaré group can be separated into kinematical and
dynamical generators. In the light-front the kinematical
generators act along the initial surface and leave the
light-front plane invariant: they are thus independent of
dynamics and therefore contain no interactions. The
dynamical generators change the light-front position and
consequently depend on the interactions.
A physical hadron in four-dimensional Minkowski

space has four-momentum P� and invariant hadronic

mass squared P�P
� ¼ M2, which is determined by the

Lorentz-invariant Hamiltonian equation for the relativistic
bound-state system,

HLFjc ðPÞi ¼ M2jc ðPÞi; (32)

with HLF ¼ P�P
� ¼ P�Pþ � P2

?, and generators P ¼
ðP�; Pþ;P?Þ constructed canonically from the QCD
Lagrangian [35]. The LF Hamiltonian P� generates LF
time translations iℏ @

@� j�i ¼ P�j�i to evolve the initial

conditions to all space-time, whereas the LF longitudinal
Pþ and transverse momentum P? are kinematical gener-
ators. In addition to Pþ and P?, the kinematical generators
in the light-front frame are the z component of the angular
momentum Jz and the boost operator K. In addition to the
Hamiltonian P�, Jz and Jy are also dynamical generators.
The light-front frame has the maximal number of kine-
matical generators [7].
A remarkable correspondence between the equations of

motion in AdS and the Hamiltonian equation for relativis-
tic bound states (32) was found in Ref. [19]. In fact, to a
first semiclassical approximation, light-front QCD is for-
mally equivalent to the equations of motion on a fixed
gravitational background [19] asymptotic to AdS5, where
confinement properties are encoded in the dilaton profile
’ðzÞ (6), which breaks the maximal symmetry of AdS
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space. For certain applications it is useful to reduce the
multiparticle eigenvalue problem (32) to a single equation
[36,37], instead of diagonalizing the Hamiltonian. The
central problem then becomes the derivation of the effec-
tive interaction of the semiclassical light-front Schrödinger
equation which acts only on the valence sector of the
theory and has, by definition, the same eigenvalue spec-
trum as the initial Hamiltonian problem. For carrying out
this program one must systematically express the higher
Fock components as functionals of the lower ones.
The method has the advantage that the Fock space is not
truncated and the symmetries of the Lagrangian are pre-
served [36].

In the limit of zero quark masses, the longitudinal modes
decouple from (32) and the LF eigenvalue equation
P�P

�j	i ¼ M2j	i is thus a light-front wave equation

for 	 [19],�
� d2

d�2
� 1� 4L2

4�2
þUð�; JÞ

�
	J;L;nð�2Þ ¼ M2	J;L;nð�Þ;

(33)

a relativistic single-variable LF Schrödinger equation [37].
The boost-invariant transverse-impact variable � [15]
measures the separation of quark and gluons at equal
light-front time, and it also allows one to separate the
bound-state dynamics of the constituents from the kine-
matics of their internal angular momentum [19]. For a two-
parton bound state,

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp jb?j; (34)

where x is the longitudinal momentum fraction and b? is
the transverse-impact distance between the two quarks. In
first approximation, the effective interaction U is instanta-
neous in LF time and acts on the lowest state of the LF
Hamiltonian. This equation describes the spectrum of me-
sons as a function of n, the number of nodes in � , the total
angular momentum J, which represent the maximum value
of jJzj, J ¼ max jJzj, and the internal orbital angular mo-
mentum of the constituents L ¼ max jLzj.

Factoring out the scale factor ð1=zÞJ�ðd�1Þ=2 and the
dilaton factor from the AdS field we write

�JðzÞ ¼
�
R

z

�
J�ðd�1Þ=2

e�’ðzÞ=2	JðzÞ: (35)

Upon the substitution of the holographic variable z by
the light-front invariant variable � and replacing (35) into
the AdS wave eigenvalue equation (21), we find for
d ¼ 4 the QCD light-front frame-independent wave equa-
tion (33) with effective potential [38],

Uð�; JÞ ¼ 1

2
’00ð�Þ þ 1

4
’0ð�Þ2 þ 2J � 3

2�
’0ð�Þ; (36)

provided that the fifth-dimensional AdS mass m in (21)
is related to the light-front internal orbital angular

momentum L and the total angular momentum J of the
hadron according to

ðmRÞ2 ¼ �ð2� JÞ2 þ L2: (37)

Light-front holographic mapping thus implies that the AdS
mass m in (21) is not a free parameter but scales according
to (37), thus giving a precise expression for the AdS
effective mass �effðzÞ in (6). The light-front mapping
provides the basis for a profound connection between
physical QCD formulated in the light-front and the physics
of hadronic modes in AdS space. However, important
differences are also apparent: Eq. (32) is a linear
quantum-mechanical equation of states in Hilbert space,
whereas Eq. (21) is a classical gravity equation; its solu-
tions describe spin-J modes propagating in a higher
dimensional warped space. Physical hadrons are composite
and thus inexorably endowed of orbital angular momen-
tum. Thus, the identification of orbital angular momentum
is of primary interest in establishing a connection between
the two approaches.
If L2 < 0, the LF Hamiltonian is unbounded from below

h	jP�P
�j	i< 0 and the spectrum contains an infinite

number of unphysical negative values of M2 which can
be arbitrarily large. As M2 increases in absolute value, the
particle becomes localized within a very small region near
� ¼ 0, since the effective potential is conformal at small � .
For M2 ! �1 the particle is localized at � ¼ 0, the
particle ‘‘falls towards the center’’ [39]. The critical value
L ¼ 0 corresponds to the lowest possible stable solution,
the ground state of the light-front Hamiltonian. For J ¼ 0
the five dimensional mass m is related to the orbital
momentum of the hadronic bound state by ðmRÞ2 ¼
�4þ L2 and thus ðmRÞ2 � �4. The quantum mechanical
stability condition L2 � 0 is thus equivalent to the
Breitenlohner-Freedman stability bound in AdS [40]. The
scaling dimensions are 2þ L, independent of J, in agree-
ment with the twist-scaling dimension of a two-parton
bound state in QCD [9]. It is important to notice that in
the light-front the SOð2Þ Casimir for orbital angular
momentum L2 is a kinematical quantity, thus giving a
kinematical interpretation of the AdS mass. In contrast,
the usual SOð3Þ Casimir LðLþ 1Þ from nonrelativistic
physics is rotational, but not boost invariant.

A. A hard- and soft-wall model for mesons

The simplest holographic example is a truncated model
where quarks propagate freely in the hadronic interior up to
the confinement scale, whereas the confinement dynamics
is included by the boundary conditions at 1=�QCD [8]. This

model provides an analog of the MIT bag model [41]
where quarks are permanently confined inside a finite
region of space. In contrast to bag models, boundary con-
ditions are imposed on the boost-invariant variable � , not
on the bag radius at fixed time. The resulting model is a
manifestly Lorentz invariant model with confinement at
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large distances, while incorporating conformal behavior at
small physical separation. The eigenvalues of the LF wave
equation (33) for the hard-wall model (U ¼ 0) are deter-
mined by the boundary conditions 	ðz ¼ 1=�QCDÞ ¼ 0,
and are given in terms of the roots 
L;k of the Bessel

functions: ML;k ¼ 
L;k�QCD. By construction, the hard

wall model has a simple separation of kinematical and
dynamical aspects, but it has shortcomings when trying
to describe the observed meson spectrum [31]. The model
fails to account for the pion as a chiralM ¼ 0 state and it is
degenerate with respect to the orbital quantum number L,
thus leading to identical trajectories for pseudoscalar and
vector mesons. It also fails to account for the important
splitting for the L ¼ 1 a-meson states for different values
of J. Furthermore, for higher quantum excitations the
spectrum behaves as M� 2nþ L, in contrast to the usual
Regge dependence M2 � nþ L found experimentally
[42]. As a consequence, the radial modes are not well
described in the truncated-space model.

The shortcomings of the hard-wall model are evaded
with the soft-wall model [11], where the sharp cutoff is
modified by a dilaton profile ’ðzÞ ¼ �z2. The soft-wall
model leads to linear Regge trajectories [11] and avoids the
ambiguities in the choice of boundary conditions at the
infrared wall. In fact, it can be shown that if one starts with
a dilaton of the general form ’ðz; sÞ ¼ �zs, for arbitrary
values of s, the constraints imposed by chiral symmetry in
the limit of massless quarks determine uniquely the value
s ¼ 2 [43]. This is a remarkable result, since this value
corresponds precisely to the dilaton profile required to
reproduce the linear Regge behavior.

From (36) we obtain the effective potential

Uð�Þ ¼ �2�2 þ 2�ðJ � 1Þ; (38)

which corresponds to a transverse oscillator in the light
front. For the effective potential (38) Equation (33) has
eigenfunctions,

	n;Lð�Þ ¼ �ð1þLÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!

ðnþ LÞ!

s
�1=2þLe�j�j�2=2LL

n ðj�j�2Þ;

(39)

and eigenvalues,

M2 ¼ ð4nþ 2Lþ 2Þj�j þ 2�ðJ � 1Þ: (40)

The LF wave functions 	ð�Þ ¼ h�j	i are normalized as
h	j	i ¼ R

d�	2ðzÞ ¼ 1 in accordance with (22).

Except for J ¼ 1 the spectrum predictions are signifi-
cantly different for � > 0 or � < 0. The predicted spec-
trum for � > 0,

M2
n;J;L ¼ 4�

�
nþ J þ L

2

�
; (41)

gives a very good description of the excitation spectrum of
the mesons [31]. In particular, the lowest possible solution

for n ¼ L ¼ J ¼ 0 has eigenvalueM2 ¼ 0. This is a chiral
symmetric bound state of two massless quarks and scaling
dimension 2, which we identify with the lowest state, the
pion. Furthermore, the model with � > 0 accounts for the
mass pattern observed in radial and orbital excitations, as
well as for the triplet splitting for the L ¼ 1, J ¼ 0, 1, 2,
vector meson a states [31]. The slope of the Regge trajec-
tories gives a value � ’ 0:5 GeV2. The result (41) was
found in Ref. [26].
On the other hand, the solution for � < 0 leads to a pion

mass heavier than the � meson and a meson spectrum
given by M2 ¼ �4�ðnþ 1þ ðL� JÞ=2Þ, in clear dis-
agreement with the observed spectrum. Thus the solution
� < 0 is incompatible with the light-front constituent in-
terpretation of hadronic states. Since the confining term
�2�2 in the effective potential (38) does not depend on the
sign of � it is always possible to compensate a change of
the sign of � without changing the spectrum by adding
ad hoc z-dependent mass terms to the Lagrangian [26]. We
note that in our approach, however, the z-dependent mass
terms are uniquely fixed. Other possible approaches are
discussed in Ref. [44], but those are shown to give a worse
description of the data.
The solution � > 0 is consistent with the Wilson loop

area law condition (28) with a minimum z0 � 1=
ffiffiffiffi
�

p
. In

fact, the corresponding modified metric for the soft-wall
model can be interpreted in the higher dimensional warped
AdS space as a gravitational potential in the fifth dimen-
sion (27),

VðzÞ ¼ Mc2R
e�z

2=3

z
: (42)

For � < 0 the potential decreases monotonically, and thus
an object located in the boundary of AdS space will fall to
infinitely large values of z. This is illustrated in detail by
Klebanov and Maldacena in Ref. [45]. For � > 0, the
potential is nonmonotonic and has an absolute minimum

at z0 � 1=
ffiffiffiffi
�

p
. Furthermore, for large values of z the gravi-

tational potential increases exponentially, thus confining

any object to distances hzi � 1=
ffiffiffiffi
�

p
[46,47].

In the model discussed in Ref. [11] higher-spin equa-
tions are constructed by imposing invariance of the AdS
action under gauge transformations. This implies setting
the fifth dimensional mass equal to zero. This construction
needs a negative value for � and is incompatible with the
light-front constituent interpretation of the gauge/gravity
duality, since the light front-mapping implies the kinemati-
cal constraint (37), thus fixingL for a given J. For example,
for the � meson J ¼ 1, and the only allowed value would
be L ¼ 1. This would exclude its main L ¼ 0 component.
Finally, we notice that for m ¼ M ¼ 0, the AdS wave

equation for bound states (21) reduces to

@z

�
e’ðzÞ

zd�1�2J
@z

�
�JðzÞ ¼ 0 (43)
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and has the solution �J ¼ C
R
z
a dze

�’ðz0Þzd�1�2J. For

d ¼ 4, J ¼ 1 and the dilaton profile ’ðzÞ ¼ �z2 this leads
to the regular solution,

�J¼1ðzÞ ¼ Ae��z2 þ B; (44)

with arbitrary constants A and B. The existence of such a
solution, which for B ¼ 0 decays exponentially, has been
used in Ref. [48] as an argument against a positive dilaton
profile � > 0, since it would correspond to a normalizable
wave function for a massless vector meson. However, if
one uses the correct measure (22), it becomes clear that the
normalization integral (22) with the solution (44) diverges
either at z ¼ 0 or z ! 1; thus (44) does not represent a
physical bound state in light-front holographic QCD.

IV. HALF-INTEGER SPIN

The study of the internal structure and excitation spec-
trum of baryons is one of the most challenging aspects of
hadronic physics. An important goal of computations in
lattice QCD is the reliable extraction of the excited nucleon
mass spectrum. Lattice calculations of the ground state
light hadron masses agree well with experimental values
[49]. However, the excitation spectrum of the nucleon
represents a formidable challenge to lattice QCD due to
the enormous computational complexity required for the
extraction of meaningful data beyond the leading ground
state configuration [50]. Moreover, a large basis of inter-
polating operators is required since excited nucleon states
are classified according to irreducible representations of
the lattice, not the total angular momentum. In contrast, the
semiclassical light-front holographic wave equation (33)
describes Lorentz frame-independent relativistic bound
states at equal light-front time with an analytic simplicity
comparable to the Schrödinger equation of atomic physics
at equal instant time. It is therefore tempting to extend
basic gauge/gravity ideas to describe excited baryons as
well, by considering the propagation of higher-spin Dirac
modes in AdS space and the mapping of the corresponding
wave equations to the light front in physical-space time.

In the usual AdS/CFT correspondence, the baryon is an
SUðNCÞ singlet bound state of NC quarks in the large NC

limit. Since there are no quarks in this theory, quarks are
introduced as external sources at the AdS asymptotic
boundary [51,52]. The baryon is constructed as an NC

baryon vertex located in the interior of AdS. In this top-
down string approach baryons are usually described as
solitons or Skyrmion-like objects [53,54]. In contrast, the
light-front holographic approach is based on the precise
mapping of AdS expressions to light-front QCD.
Consequently, we will construct baryons corresponding
to NC ¼ 3 not NC ! 1. We would expect that in the limit
of zero quark masses, we find a relativistic bound state
light-front wave equation with a geometrical equivalent to
the equation of motion for a higher half-integral hadronic
state in a warped AdS space-time. As it turns out, the

analytical exploration of the baryon spectrum using
gauge/gravity duality ideas is not as simple, or as well
understood, as the meson case, and further work beyond
the scope of the present article is required. However, as we
shall discuss below, even a relatively simple approach
provides a framework for a useful analytical exploration
of the strongly coupled dynamics of baryons which gives
important insights into the systematics of the light baryon
spectrum using simple analytical methods.

A. Invariant action and equations of motion

Fields with half-integer spin J ¼ T þ 1
2 are conveniently

described by Rarita-Schwinger spinors [55], ½�N1...NT
��,

objects which transform as symmetric tensors of rank T
with indices N1 . . .NT , and as Dirac spinors with index �.
The Lagrangian of fields with arbitrary half-integer spin in
a higher-dimensional space is vastly complex. General
covariance allows for a superposition of terms of the form,

��N1...NT
�½N1...NTMN0

1
...N0

T �DM�N0
1
...N0

T
;

and mass terms,

� ��N1...NT
�½N1...NTN

0
1
...N0

T ��N1...N
0
T
;

where the tensors �½...� are antisymmetric products of Dirac
matrices and a sum over spinor indices is understood. The
maximum number of independent Dirac matrices depends
on the dimensionality of space. In Appendix B 1 we
present explicitly the case of spin 3

2 .

In flat space, the equations describing a free particle with
spin T þ 1

2 are [55]

ði
�@� �MÞ��1...�T
¼ 0; 
����2...�T

¼ 0: (45)

The subsidiary conditions of the integral spin theory for the
T tensor indices (19),

���@����2...�T
¼ 0; �������3...�T

¼ 0; (46)

are a consequence of these equations [55].
We have seen in Sec. II A that the kinematical subsidiary

conditions for fields with integer spin in d-dimensional
space follow from the simple effective action (6). The
actual form of the Dirac equation for Rarita-Schwinger
spinors (45) in flat space-time motivates us to start with a
simple effective action for arbitrary half-integer spin in
AdS space, which, in the absence of dynamical terms,
preserves maximal symmetry of AdS in order to describe
the correct kinematics. We also expect that the effective
action for higher half-integer spins in AdS space will also
lead to the Rarita-Schwinger condition 
����2...�T

¼ 0 in

physical space-time.
We will start with an effective action in AdSdþ1 moti-

vated by (45) including a dilaton term’ðzÞ and an effective
interaction �ðzÞ (see also Ref. [26]),
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SF eff ¼ 1

2

Z
ddxdz

ffiffiffiffiffiffi
jgj

q
e’ðzÞgN1N

0
1 . . .gNTN

0
T

�½ ��N1...NT
ði�AeMA DM ����ðzÞÞ�N0

1
...N0

T
þH:c:�;

(47)

where
ffiffiffi
g

p ¼ ðRzÞdþ1 and eMA is the inverse vielbein, eMA ¼
ðzRÞ�M

A . The covariant derivative DM of a Rarita-Schwinger

spinor includes the affine connection and the spin connec-
tion (Appendix B), and the tangent-space Dirac matrices
obey the usual anticommutation relation f�A;�Bg ¼ �AB.
For’ðzÞ ¼ �ðzÞ ¼ 0 the effective action (47) preserves the
maximal symmetry of AdS space. The reason why we need
to introduce an additional symmetry breaking term �ðzÞ in
(47) will become clear soon. As we shall show below, this
action indeed contains the Rarita-Schwinger condition
given in (45) and the subsidiary conditions (46).

We will confine ourselves to the physical polarizations
orthogonal to the holographic dimension,

�zN2...NT
¼ 0; (48)

and obtain the equations of motion from the Euler-
Lagrange equations in the subspace defined by (48),

�SF eff

� ���1�2...�J

¼ 0 (49)

and

�SF eff

� ��zN2...NJ

¼ 0: (50)

Our derivation of the half-integer spin theory follows the
lines along Sec. II A. We introduce fields with tangent
indices using a local Lorentz frame as in (11),

�̂N1...NT
¼

�
z

R

�
T
�N1...NT

; (51)

and use the results of Appendix B to separate the action

into a part S½0�F eff , containing only spinors orthogonal to the

holographic direction, and a term S½1�F eff , containing terms

linear in ��zN2...NT
; the remainder does not contribute to the

Euler-Lagrange equations (50). Since the fermion action is
linear in the derivatives, the calculations are considerably
simpler compared with the integer spin case, and one
obtains

S½0�F eff ¼
Z

ddxdz

�
R

z

�
dþ1

e’ðzÞ��1�
0
1 . . .��T�

0
T

�
�
i

2
eMA

�̂
��1...�T

�A@M�̂�0
1...�

0
T

� i

2
eMA ð@M �̂

��1...�T
Þ�A�̂�0

1
...�0

T

� ð�þ �ðzÞÞ �̂��1...�T
�̂�0

1
...�0

T

�
(52)

and

S½1�F eff ¼ �
Z

ddxdz

�
R

z

�
d
e’ðzÞ�N2N

0
2 . . .�NTN

0
TT�ðzÞ

� ð �̂�zN2...NT
���̂�N0

2
...N0

T
þ �̂

��N2...NT
���̂zN0

2
...N0

T
Þ;

(53)

where the factor of the affine connection—see Eqs. (A3)
and (B4)—is �ðzÞ ¼ 1=z.
Performing a partial integration, the action (52) becomes

S½0�F eff ¼
Z

ddxdz

�
R

z

�
d
e’ðzÞ��1�

0
1 . . .��T�

0
T
�̂
��1...�T

�
�
i�NM�M@N þ i

2z
�zðd� z’0ðzÞÞ

��R� �ðzÞ
�
�̂�0

1
...�0

T
; (54)

plus surface terms.
The variation of (53) yields indeed the Rarita-Schwinger

condition in physical space-time (45),


��̂��2...�T
¼ 0; (55)

and the variation of (54) provides the AdS Dirac-like wave
equation,�
i

�
z�MN�M@N þ d� z’0

2
�z

�
��R�R�ðzÞ

�
�̂�1...�T

¼ 0:

(56)

Although the dilaton term’0ðzÞ shows up in the equation
of motion (56), it actually does not lead to dynamical
effects, since it can be absorbed by rescaling the Rarita-

Schwinger spinor according to ~��1...�T
¼ e’ðzÞ=2�̂�1...�T

.

This leads to the equation�
i

�
z�MN�M@N þ d

2
�z

�
��R� R�ðzÞ

�
~��1...�T ¼ 0:

(57)

Thus, for fermion fields in AdS one cannot introduce
confinement by the introduction of a dilaton in the action
since it can be rotated away [56]. This is a consequence of
the linear covariant derivatives in the fermion action, which
also prevents a mixing between dynamical and kinematical
effects, and thus, in contrast with the effective action for
integer spin fields (6), the AdS mass � in Eq. (47) is
constant. As a result, one must introduce an effective con-
fining interaction �ðzÞ in the fermion action to break con-
formal symmetry and generate a baryon spectrum [57,58].
This interaction can be constrained by the condition that the
‘‘square’’ of the Dirac equation leads to a potential which
matches the dilaton-induced potential for integer spin.
Going back from the tangential space coordinates to

covariant tensors and scaling away the dilaton factor in
(47) by a field redefinition,
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� ! e’ðzÞ=2�; (58)

we obtain�
i

�
z�MN�M@N þ d� 2T

2
�z

�
��R�R�ðzÞ

�
��1...�T

¼ 0;

(59)

which is the half-integral spin equivalent of Eq. (17) and
the Rarita-Schwinger condition,


����2...�T
¼ 0: (60)

In fact, the Rarita-Schwinger condition in the physical
subspace of AdS spinors (60) in flat four-dimensional
space also entails, with the extended Dirac equation (56),
the subsidiary conditions for the tensor indices required to
eliminate the lower spins. Thus multiplying Eq. (56) by 
�

and using (60), we obtain

iz�MN
��M@N���2...�T
¼ 0 (61)

and

iz�MN�M

�@N���2...�T

¼ 0: (62)

Adding the last two equations and making use of the
symmetry of the tensor indices of the Rarita-Schwinger
spinors, we get the condition,

2iz��N@N��...�T
¼ 0; (63)

which gives indeed the divergence condition in Eq. (46),
���@����2...�T

¼ 0. The derivation of the trace condition

is exactly the same as in flat space. From (60) it follows
that 
�
�����3...�T

¼ 0, from which the trace condition in

(46) is obtained from the symmetry of the indices of the
spinor field, �������2...�T

¼ 0. We compare our results

from the effective action (47) for spin- 32 with the results

from Refs. [59,60] in Appendix B 1.
Identical results for the equations of motion for arbitrary

half-integer spin are obtained if one starts with the dis-
torted metric (25). One finds that the effective fermion
action with a dilaton field (47) is equivalent to the fermion
action with warped metrics, provided that we identify the
dilaton profile according to ~’ðzÞ ¼ ’ðzÞ=d and the effec-
tive mass ~�ðzÞ in the warped action with the mass� in (47)

according to ~�ðzÞ ¼ e� ~’ðzÞ�. Thus, one cannot introduce
confinement in the effective AdS action for fermions either
by a dilaton profile or by additional warping of the AdS
metrics in the infrared. In each case one requires an addi-
tional effective interaction as introduced in the effective
action (47) with �ðzÞ � 0.

V. LIGHT-FRONT HOLOGRAPHIC MAPPING
FOR HALF-INTEGER SPIN

One can also take as a starting point the construction
of light-front wave equations in physical space-time for

baryons by studying the LF transformation properties of
spin- 12 states [57]. The light-front wave equation describing

baryons is a matrix eigenvalue equation DLFjc i ¼ Mjc i
with HLF ¼ D2

LF. In a 2� 2 chiral spinor component
representation, the light-front equations are given by the
coupled linear differential equations,

� d

d�
c� � �þ 1

2

�
c� � Vð�Þc� ¼ Mcþ;

d

d�
cþ � �þ 1

2

�
cþ � Vð�Þcþ ¼ Mc�;

(64)

where the invariant variable � for an n-parton bound state
is the x-weighted transverse impact variable of the n� 1
spectator system [15],

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
x

1� x

r ��������Xn�1

j¼1

xjb?j

��������; (65)

and x ¼ xn is the longitudinal light-front momentum frac-
tion of the active quark [for n ¼ 2 we recover (34)].
As discussed below, we can identify � with the light-front
orbital angular momentum L, � ¼ Lþ 1, the relative
angular momentum between the active and the spectator
cluster.
A physical baryon has plane-wave solutions with four-

momentum P�, invariant mass P�P
� ¼ M2, and polariza-

tion indices along the physical coordinates. It thus satisfies
the Rarita-Schwinger equation for spinors in physical
space-time (45),

ði
�@� �MÞu�1...�T
ðPÞ ¼ 0; 
�u��2...�T

ðPÞ ¼ 0: (66)

Factoring out from the AdS spinor field � the four-
dimensional plane-wave and spinor dependence, as well

as the scale factor ð1=zÞT�d=2, we write

�

�1...�T

ðzÞ ¼ eiP�x
�
R

z

�
T�d=2

c

T ðzÞu
�1...�T

ðPÞ; (67)

where T ¼ J � 1
2 and the chiral spinor u
�1...�T

¼
1
2 ð1
 
5Þu�1...�T

satisfies the four-dimensional chirality

equations,


 � Pu
�1...�T
ðPÞ ¼ Mu��1...�T

ðPÞ;

5u



�1...�T

ðPÞ ¼ 
u
�1...�T
ðPÞ:

(68)

Upon replacing the holographic variable z by the light-
front invariant variable � and substituting (67) into the AdS
wave equation (59), we recover its LF expression (64),
provided that j�Rj ¼ �þ 1

2 and c

T ¼ c
, independent

of the value of T ¼ J � 1
2 . We also find that the effective

LF potential in the light-front Dirac equation (64) is
determined by the effective interaction �ðzÞ in the effective
action (47),

Vð�Þ ¼ R

�
�ð�Þ; (69)
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which is a J-independent potential. This is a remarkable
result, since it implies that independently of the specific
form of the potential, the value of the baryon masses along
a given Regge trajectory depends only on the LF orbital
angular momentum L, and thus, in contrast with the vector
mesons, there is no spin-orbit coupling, in agreement with
the observed near degeneracy in the baryon spectrum [42].
Equation (64) is equivalent to the system of second-order
equations,�

� d2

d�2
� 1� 4�2

4�2
þUþð�Þ

�
cþ ¼ M2cþ (70)

and�
� d2

d�2
� 1� 4ð�þ 1Þ2

4�2
þU�ð�Þ

�
c� ¼ M2c�; (71)

where

U
ð�Þ ¼ V2ð�Þ 
 V0ðzÞ þ 1þ 2�

�
Vð�Þ; (72)

with � ¼ Lþ 1.
For baryons, the corresponding interpolating

operator for an NC ¼ 3 physical baryon O3þL ¼
cDf‘1 . . .D‘qcD‘qþ1

. . .D‘mgc , L ¼ P
m
i¼1 ‘i, is a twist-3,

dimension 9=2þ L with scaling behavior given by its
twist-dimension 3þ L. We thus require � ¼ Lþ 1 in
order to match the short-distance scaling behavior. Note
that L is the maximal value of jLzj in a given LF Fock state.
An important feature of bound-state relativistic theories is
that hadron eigenstates have in general Fock components
with different L components. By convention one labels the
eigenstate with its minimum value of L. For example, the
symbol L in the light-front AdS/QCD spectral prediction
for mesons (41) refers to the minimum L (which also
corresponds to the leading twist) and J is the total angular
momentum of the hadron.

A. A hard- and soft-wall model for Baryons

As for the case of mesons, the simplest holographic
model of baryons is the hard-wall model, where confine-
ment dynamics is included by the boundary conditions at
z ’ 1=�QCD. To determine the boundary conditions we

integrate by parts (47) for ’ðzÞ ¼ �ðzÞ ¼ 0 and use the
equations of motion. We then find

SF ¼ �lim
�!0

Rd
Z ddx

2zd
ð ��þ�� � ����þÞjz0� ; (73)

where�
 ¼ 1
2 ð1
 
5Þ�. Thus in a truncated-space holo-

graphic model, the light-front modes �þ or �� should
vanish at the boundary z ¼ 0 and z0 ¼ 1=�QCD. This

condition fixes the boundary conditions and determines
the baryon spectrum in the truncated hard-wall model
[61], Mþ ¼ 
�;k�QCD and M� ¼ 
�þ1;k�QCD, with a

scale-independent mass ratio determined by the zeros of

Bessel functions 
�;k. Equivalent results follow from the

Hermiticity of the LF Dirac operatorDLF in the eigenvalue
equation DLFjc i ¼ Mjc i. The orbital excitations of
baryons in this model are approximately aligned along
two trajectories corresponding to even and odd parity states
[31,61]. The spectrum shows a clustering of states with the
same orbital L, consistent with a strongly suppressed spin-
orbit force. As for the case for mesons, the hard-wall model
predicts M� 2nþ L, in contrast to the usual Regge
behavior M2 � nþ L found in experiment [42]. The
radial modes are also not well described in the truncated-
space model.
Let us now examine a model similar to the soft-wall

dilaton model for mesons by introducing an effective
potential, which also leads to linear Regge trajectories in
both the orbital and radial quantum numbers for baryon
excited states. As we have discussed, a dilaton factor in the
fermion action can be scaled away by a field redefinition.
We thus choose instead an effective linear confining
potential V ¼ �F� , which reproduces the linear Regge
behavior for baryons [57,58]. From (72) we find for the
effective potentials U
 in Eqs. (70) and (71),

Uþð�Þ ¼ �2
F�

2 þ 2ð�þ 1Þ�F; (74)

U�ð�Þ ¼ �2
F�

2 þ 2��F; (75)

and the two-component solution,

cþð�Þ � �
1
2þ�e�j�Fj�2=2L�

nðj�Fj�2Þ; (76)

c�ð�Þ � �
3
2þ�e�j�Fj�2=2L�þ1

n ðj�Fj�2Þ: (77)

We can compute separately the eigenvalues for the wave
equations (70) and (71) for arbitrary �F and compare the
results for consistency, since the eigenvalues determined
from both equations should be identical. For the potential
(74) the eigenvalues of (70) are

M2þ ¼ ð4nþ 2�þ 2Þj�Fj þ 2ð�þ 1Þ�F; (78)

whereas for the potential (75) the eigenvalues of (71) are

M2� ¼ ð4nþ 2ð�þ 1Þ þ 2Þj�Fj þ 2��F: (79)

For �F > 0 we find M2þ ¼ M2� ¼ M2, where

M2 ¼ 4�Fðnþ �þ 1Þ; (80)

identical for plus and minus eigenfunctions. For �F < 0 it
follows that M2þ � M2� and no solution is possible. Thus
the solution �F < 0 is discarded. Notice that in contrast
with the meson spectrum (41), which depends on the
quantum number J þ L, the baryon spectrum (80) for
� ¼ Lþ 1 and arbitrary J, M2 ¼ 4�Fðnþ Lþ 2Þ, only
depends on L, an important result also found in Ref. [26].
It is important to notice that the solutions (76) and (77)

of the second-order differential equations (70) and (71) are
not independent since the solutions must also obey the
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linear Dirac equation (64) [62]. This fixes the relative
normalization. Using the relation L�þ1

n�1ðxÞ þ L�
nðxÞ ¼

L�þ1
n ðxÞ between the associated Laguerre functions, we

find for �F > 0,

cþð�Þ ¼ �ð1þ�Þ=2
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþ �� 1Þ!

s
�

1
2þ�e��F�

2=2L�
nð�F�

2Þ;

(81)

c�ð�Þ ¼ �ð2þ�Þ=2
F

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ �þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!

ðnþ �� 1Þ!

s

� �
3
2þ�e��F�

2=2L�þ1
n ð�F�

2Þ; (82)

with equal probability

Z
d�c 2þð�Þ ¼

Z
d�c 2�ð�Þ ¼ 1: (83)

If the plus solution represents the S component of a proton
and the minus solution its P component, it then follows that
the ‘‘soft-wall’’ holographic model for baryons discussed
above is consistent with a proton with S and P components
with equal probability. Consequently, its spin is carried out
by the orbital angular momentum hJzi ¼ hLzi ¼ 1=2,
hSzi ¼ 0, where Jz ¼ Lz þ Sz. Identical results follow
for the hard-wall model of baryons.

Note that, as expected, the potential �2
F�

2 in the second
order Dirac equations matches the soft-wall potential for
mesons discussed in Sec. III, and thus we set �F ¼ �
reproducing the universality of the Regge slope for mesons
and baryons. However, the lowest possible eigenvalue for
n ¼ L ¼ 0, the ground state in Eq. (80), corresponds to the
twist-2 trajectory � ¼ L, and not the twist-3 trajectory � ¼
Lþ 1 determined by the short-distance scaling behavior.
The twist-2 trajectory corresponds to an effective two-
particle bound state, in this case the active quark versus
the spectators (a diquark) of the cluster decomposition
from the holographic mapping. Therefore (80) does not
give a good description of the Regge baryon intercepts.
This problem has been discussed in detail in Ref. [31], and
the following relations have been inferred analytically. For
the positive-parity nucleon sector,

M2ðþÞ
n;L;S ¼ 4�

�
nþ Lþ S

2
þ 3

4

�
; (84)

where the internal spin S ¼ 1
2 or 3

2 . The corresponding

formula for the negative-parity baryons is

M2ð�Þ
n;L;S ¼ 4�

�
nþ Lþ S

2
þ 5

4

�
; (85)

with a mass gap 2� for Regge trajectories with the same

internal spin but opposite parity. Notice that M2ðþÞ
n;L;S¼3

2

¼
M2ð�Þ

n;L;S¼1
2

, and consequently the positive- and negative-parity

� states lie in the same trajectory, consistent with the
experimental results.
As discussed in Ref. [31] the full baryon orbital and

radial excitation spectrum is very well described by (84)
and (85). An important feature of light-front holography is
that it predicts a similar multiplicity of states for mesons
and baryons, consistent with what is observed experimen-
tally [42]. This remarkable property could have a simple
explanation in the cluster decomposition of the holo-
graphic variable (65), which labels a system of partons as
an active quark plus a system of n� 1 spectators. From
this perspective, a baryon with n ¼ 3 looks in light-front
holography as a quark—scalar-diquark system. It is also
interesting to notice that in the hard-wall model, the proton
mass is entirely due to the kinetic energy of the light
quarks, whereas in the soft-wall model described here,
half of the invariant mass squared M2 of the proton is
due to the kinetic energy of the partons, and half is due
to the confinement potential.

VI. SUMMARYAND DISCUSSION

Holographic QCD provides a remarkable first approxi-
mation to hadron physics based on the duality between
AdS space and light-front quantization in physical space-
time. In this article we have derived hadronic bound-state
equations for particles with arbitrary spin starting from an
effective invariant action in a higher dimensional classical
gravitational theory. The fact that we can map the equa-
tions of motion from the gravitational theory to a
Hamiltonian equation of motion in light-front quantized
QCD has been our principal guide. The undisturbed AdS
geometry reproduces the kinematical aspects of the light-
front Hamiltonian, notably the emergence of a LF angular
momentum which is holographically identified with the
mass in the gravitational theory. The breaking of the
maximal symmetry of AdS then allows the introduction
of the confinement dynamics of the theory in physical
space-time.
Thus in order to fully preserve all the kinematical

aspects, a consistent mapping to LF quantized QCD
requires a clear separation between the kinematical and
dynamical effects. The introduction of symmetry breaking
effects in the action has to be carried out in such a way as to
avoid interference between the two. Although the kine-
matical aspects can be treated in parallel both for integer
and half-integer spin states, the introduction of dynamics
can be different for mesons and baryons.
In the approach discussed in this article for integer spin,

confinement can be achieved by imposing boundary con-
ditions in the infrared region of AdS space, or by effec-
tively modifying the infrared region of AdS by inserting a
dilaton term in the effective action, or by explicitly distort-
ing the metric of AdS space. In addition, z-dependent AdS
mass terms are introduced in the effective action which are
uniquely determined by the requirement of no mixing
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between kinematics and dynamics. Following this proce-
dure, one is led to a light-front potential which depends
separately on the total angular momentum J and the LF
angular momentum L, and it agrees with the light-front
model of Ref. [19], which describes the meson spectrum
very well [31].

The requirement to clearly separate kinematical and
dynamical aspects becomes especially evident for spins
higher than 1. For spin-0, the covariant derivative coincides
with the partial one, and for spin-1, the action can be
constructed in such a way as to eliminate the affine con-
nection (Appendix B 1). Thus no interference occurs in this
case. For higher spins, however, one has to deal with
higher-rank symmetric tensors, and therefore the contribu-
tion of the affine connection cannot be discarded.
Furthermore, for higher-spin states many different ways
of contracting the tensor indices of the spinor fields and the
derivatives in the action are possible. These different con-
tractions are necessary in order to obtain the subsidiary
conditions required to eliminate the lower-spin states. For
higher spin the choice of the contractions becomes very
complex and as a practical procedure, we choose an effec-
tive action with a very simple contraction scheme, where
the intricacies of the different contractions and mixing
effects from dynamics are assumed to be absorbed in the
z dependence of an effective AdS mass term. Remarkably,
this simple choice yields for integer spin all the subsidiary
conditions necessary to eliminate the lower-spin states in
physical space-time.

In the case of half-integer spin, our effective action leads
to a Dirac-like equation which can be mapped to the LF
Hamiltonian bound-state equation. This effective action
also leads to the Rarita-Schwinger condition for the spin
index. Since the action is linear in the covariant derivatives,
the contribution of the dilaton or an additional warping
factor of the metric can be absorbed into a redefinition of
the spinor fields, and no dynamical terms appear in the
resulting equations of motion. Therefore, the dilaton does
not lead to confinement [56]. Nonetheless, one can obtain a
discrete spectrum for baryons by introducing confinement
either by imposing boundary conditions [61], or by an
additional effective interaction in the Lagrangian [57,58].
Since no mixing occurs in this case, no z-dependent mass
terms in the AdS action are necessary.

We now turn to specific models. For the hard-wall model
the treatment of higher spin is very simple. The kinematics
are fully reproduced by the invariant effective action (6)
without explicit z-dependent symmetry-breaking terms.
Since the dynamics is encoded exclusively in the boundary
conditions, no mixing between dynamical and kinematical
effects occurs, and consequently no z-dependent mass
term is necessary. This has as a consequence that the
resulting spectrum in the hard-wall model, does not
depend on J explicitly, but only on the light-front angular
momentum L.

In contrast, the results of the soft-wall model for integer
spin, either with a dilaton factor or with an additional
warping factor of the metric, agree exactly with those of
Refs. [19,31] and yield good agreement with the data.
The sign of the dilaton profile ’ðzÞ ¼ �z2 is uniquely fixed
in our approach, namely � > 0. The solution � < 0 is
incompatible with the light-front constituent interpretation
of hadronic bound states. In particular, the solution � > 0
gives a massless pion, consistent with the zero quark mass
chiral limit of QCD [43]. In contrast the negative sign
dilaton leads to a pion mass larger than that of the �meson.
On the other hand, the approach of Ref. [11] requires a

negative dilaton profile, � < 0, in order to obtain a rising
vector meson trajectory. This approach is based on differ-
ent assumptions: it starts from a gauge-invariant theory in
AdS. In a specific gauge, no terms from the affine connec-
tion appear in the action, and the AdS mass has to be fixed
to be zero in that gauge. Since there is no freedom in the
choice of the AdS mass, it is not possible to introduce the
light-front orbital angular momentum of the constituents
independently of J. Therefore, this approach is incompat-
ible with the mapping of the AdS equations of motion to
the light-front Hamiltonian for bound states.
For baryons the many-body state is described by an

effective two-body light-front Hamiltonian, where the
holographic variable is mapped to the invariant separation
of one constituent (the active constituent) to the cluster of
the rest (the spectators). Therefore, the mapping of AdS
equations to the light-front bound state equations predicts
that there is only one relevant angular momentum, the
light-front orbital angular momentum L between the active
and the spectator cluster. Furthermore, since the action for
fermions is linear in the covariant derivatives, no mixing
between dynamical and kinematical aspects occurs. Thus,
for fermions there is no explicit J dependence in the light-
front equations of motion, and thus the bound-state spec-
trum of baryons can only depend on L.
These remarkable predictions, which are inferred from

the geometry of AdS space, are independent of the specific
mechanisms of symmetry breaking and account for many
the striking similarities and differences observed in the
systematics of the meson and baryon spectra. The equality
of the slopes of the Regge trajectories and the multiplicity
of states for mesons and baryons is explained. We also
explain the observed differences in the meson versus
baryon spectra that are due to spin-orbit coupling. For
example, the predicted triplet spin-orbit splitting for vector
mesons is in striking contrast with the empirical near-
degeneracy of baryon states of different total angular mo-
mentum J; the baryons are classified by the internal orbital
angular momentum quantum number L along a given
Regge trajectory, not J. There are, however, other remark-
able regularities in the baryon trajectories, which can be
inferred from the data [31] but are not deduced systemati-
cally from the AdS effective action. In particular, the
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Regge intercepts of the baryon trajectories are not consis-
tent with the data. This open problem indicates that there
are still essential elements missing in the description of
baryons in light-front holographic QCD.
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APPENDIX A: INTEGER SPIN IN AdS SPACE

We label xM ¼ ðx�; zÞ, with M, N ¼ 0; . . . ; d, the coor-
dinates of AdSdþ1 space and �, � ¼ 0; 1; . . . ; d� 1, the
Minkowski flat space-time indices. The AdS metric tensor
in Poincaré’s coordinates is

gMN ¼ R2

z2
�MN; (A1)

where �MN is the flat dþ 1 metric ð1;�1; . . . ;�1Þ.
The corresponding vielbein follows from gMN ¼
eAMe

B
N�AB and is given by

eAM ¼ R

z
�A
M; (A2)

where A, B ¼ 0; . . . ; d are tangent AdS space indices and
the flat metric �AB has diagonal components
ð1;�1; . . . ;�1Þ. To simplify the notation we shall use
in the appendixes the following convention for
the indices: fNg ¼ fN1N2 . . .NJg and fLN=jg ¼
fLN1 . . .Nj�1Njþ1 . . .NJg. Furthermore, we define

gfNN0g ¼ gN1N
0
1 . . . gNJN

0
J .

1. Covariant derivatives for integer spin

We compute the covariant derivatives using the affine
connection for the AdS metric given by the Christoffel
symbols,

�L
MN ¼ 1

2
gLKð@MgKN þ @NgKM � @KgMNÞ

¼ ��ðzÞð�z
M�

L
N þ �z

N�
L
M � �Lz�MNÞ; (A3)

with the warp factor �ðzÞ ¼ 1=z in AdS space. We find

DM�fNg ¼ @M�fNg �
X
j

�L
MNj

�fLN=jg

¼ @M�fNg þ�ðzÞX
j

ð�z
M�fNjN=jg þ �z

Nj
�fMN=jg

þ �MNj
�fzN=jgÞ (A4)

and thus

Dz�fNg ¼ @z�fNg þ�ðzÞX
j

ð�z
M�fNjN=jg þ �z

Nj
�fzN=jg

þ �zNj
�fzN=jgÞ

¼ @z�fNg þ J�ðzÞ�fNg; (A5)

D��fNg ¼ @��fNg þ�ðzÞX
j

ð�z
Nj
�f�N=jg þ ��Nj

�fzN=jgÞ:

(A6)

It is convenient to work with coordinates in the local
tangent frame,

�̂fAg ¼ efNg
fAg�fNg ¼

�
z

R

�
J
�fAg; (A7)

where we find

Dz�fNg ¼
�
R

z

�
J
@z�̂fNg (A8)

and

g��0
gf��0gD��f�gD�0�f�0g

¼ g��0
�f��0gð@��̂f�g@�0�̂f�0g þ gzzJ�2ðzÞ�̂f�g�̂f�0gÞ:

(A9)

2. Spin-1 vector field in AdS space

To illustrate the effect of the different contractions for
the tensor fields in the equations of motion discussed in
Sec. II, we derive in this section the equations of motion for
a vector field. We start with the generalized Proca-action
for a vector field in AdSdþ1 space,

S ¼
Z

ddxdz
ffiffiffiffiffiffi
jgj

q
e’ðzÞ

�
1

4
gMRgNSFMNFRS

� 1

2
�2gMN�M�N

�
; (A10)

where FMN ¼ @M�N � @N�M. The variation of the action
leads to the equation of motion,

1ffiffiffi
g

p
e’

@Mð ffiffiffi
g

p
e’gMRgNSFRSÞ þ�2gNR�R ¼ 0; (A11)

together with the supplementary condition,

@Mð ffiffiffi
g

p
e’gMNANÞ ¼ 0: (A12)

Using the AdS metric (A1) and the condition (A12), we
can express (A11) as a system of coupled differential
equations,�

���@�@� � zd�1

e’ðzÞ
@z

�
e’ðzÞ

zd�1
@z

�

� @2z’þ
�
�R

z

�
2 þ 1� d

�
�z ¼ 0; (A13)

�
���@�@� � zd�3

e’ðzÞ
@z

�
e’ðzÞ

zd�3
@z

�
þ

�
�R

z

�
2
�
�� ¼�2

z
@��z:

(A14)

In the physical subspace defined by �z ¼ 0, the
system of coupled differential equations (A13) and (A14)
reduces to
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�
���@�@�� zd�3

e’ðzÞ
@z

�
e’ðzÞ

zd�3
@z

�
þ
�
�R

z

�
2
�
�� ¼ 0: (A15)

Thus, the constant AdS mass � appearing in the full
action (A10) is also the mass in the covariant equation
of motion, and no further z-dependent AdS mass shift is
necessary to separate the kinematical and dynamical com-
ponents. In this case, the antisymmetric contraction has
eliminated the contribution from the affine connection
and no interference between kinematical and dynamical
effects occurs.

3. Separation of kinematical and dynamical aspects in
the equations of motion

In this appendix we show that the z dependence of the
effective mass �eff in the effective action Seff (6) is deter-
mined by the distinct separation of kinematical and
dynamical aspects. As emphasized in this article, kinemati-
cal effects are determined by the AdS geometry and the
dynamical effects are caused by the breaking of the maxi-
mal symmetry in the action, e.g., by introducing a dilaton.
In order to isolate the kinematical terms we separate in the
action (6) the contributions of the affine connections into a
distinct term P½��,

Seff ¼
Z

ddxdz
ffiffiffiffiffiffi
jgj

q
e’ðzÞgfNN0gðgMM0

@M�
�
fNg@M0�fN0g

��2
effðzÞ��

fNg�fN0gÞ þ P½��: (A16)

Purely kinematical effects from the affine connection are
absent in the equations of motion derived from Seff �
P½��. The influence of dynamics can be eliminated by
setting ’ðzÞ ¼ 0. Since Seff � P½�� contains only partial
derivatives, the Euler-Lagrange equations for this trun-
cated action, which contains no contribution from the
affine connection, are easily obtained,�
� zd�1�2J

e’ðzÞ
@z

�
e’ðzÞ

zd�1�2J

�
þ ð�effðzÞRÞ2

z2

�
�J ¼ M2�J:

(A17)

On the other hand, the equations of motion derived from
the full action (6) are given by (21) and (18),�
� zd�1�2J

e’ðzÞ
@z

�
e’ðzÞ

zd�1�2J

�

þ ð�effðzÞRÞ2 � Jz’0ðzÞ þ Jðd� Jþ 1Þ
z2

�
�J ¼ M2�J:

(A18)

The difference between (A17) and (A18) shows that the
affine connection only contributes to an AdS masslike
term. Part of the difference is independent of the dilaton
’ðzÞ, i.e., kinematical. This constant term is, however, not
essential, since the constant contribution to the AdSmass is

not an a priori determined parameter but determined by the
light-front angular momentum L. There is, however, a term
in the difference, which is proportional to ’0ðzÞ: i.e., it is
due to an interference between the dynamics and kinemat-
ics. To keep the separation between the kinematical and
dynamical effects, this term has to be compensated for by
an appropriate choice of the z dependence of the effective
mass �eff in (A18),

ð�effðzÞRÞ2 ¼ Jz’0ðzÞ þ C; (A19)

where C is a constant. Setting C ¼ m2 � Jðd� J þ 1Þ we
recover (24).
In the case where the maximal symmetry of the AdS

metric is not broken by a dilaton,’ðzÞ ¼ 0, no z-dependent
mass shift is necessary and one can start with a constant
mass in (6). This is the case in the hard-wall model, where
the dynamical effects are introduced by the boundary con-
ditions and indeed no mixing between kinematical and
dynamical aspects does occur.

4. Warped metric

In this Appendix we investigate the effects of conformal
symmetry breaking starting with the warped metric (25)
with metric tensor and vielbein,

~gMN ¼ R2

z2
e2 ~’ðzÞ�MN; ~eAM ¼ R

z
e~’ðzÞ�A

M; (A20)

and no dilaton background. The Christoffel symbols for the
warped metric (25) have the same form as (A3) with the

warp factor ~�ðzÞ ¼ 1=z� @z ~’ðzÞ.
The effective action is

~Seff ¼
Z

ddxdz
ffiffiffiffiffiffi
j~gj

q
~gfNN0gð~gMM0

DM�
�
fNgDM0�fN0g

� ~�2
effðzÞ��

fNg�fN0gÞ; (A21)

where ~�effðzÞ is the effective mass.
We can express the covariant derivatives in (A21) in

terms of partial derivatives in a local tangent frame,

�̂fAg ¼ efNg
fAg�fNg ¼

�
z

R

�
J
e�J ~’ðzÞ�fAg: (A22)

We obtain

Dz�fNg ¼
�
R

z

�
J
eJ ~’ðzÞ@z�̂fNg (A23)

and

~g��0
~gf��0gD��f�gD�0�f�0g

¼ ~g��0
�f��0gð@��̂f�g@�0�̂f�0g þ ~gzzJ ~�2ðzÞ�̂f�g�̂f�0gÞ:

(A24)

Following exactly the same steps as described in Sec. II
lead now to
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~S½0�eff ¼
Z

ddxdz

�
Re ~’ðzÞ

z

�
d�1

�f��0g
�
�@z�̂

�
f�g@z�̂f�0g

þ ���0
@��̂

�
f�g@�0�̂f�0g �

��
~�effðzÞRe~’ðzÞ

z

�
2

þ J ~�2ðzÞ
�
�̂�

f�g�̂f�0g
�
: (A25)

Comparing (A25) with the AdS action (14), we see that
both forms of the action are equivalent, provided that we
set

~’ðzÞ ¼ 1

d� 1
’ðzÞ and

ð ~�effðzÞRÞ2e2 ~’ ¼ ð�effðzÞRÞ2 � Jðz2 ~�2ðzÞ � 1Þ: (A26)

Thus, the warp-metric action ~S½0�eff agrees with the dilaton

action S½0�eff , Eq. (14), leading to the same results, notably

the bound-state Eq. (21), from which we obtain the
relation,

ð ~�effðzÞRÞ2

¼
�
ðmRÞ2 þ Jz

~’0ðzÞ
d� 1

� Jz2 ~�2ðzÞ � Jðd� JÞ
�
e�2 ~’ðzÞ:

(A27)

For the Euler-Lagrange equations derived from ~S½1�eff , the

term in the warped action equivalent to (15), the warp

factor ~� factors out and its special form is therefore not
relevant for the kinematical conditions derived from (8).
We therefore obtain the same kinematical constraints,
which eliminates the lower-spin states, as for the dilaton
case discussed in Sec. II.

APPENDIX B: HALF-INTEGER SPIN
IN AdS SPACE

Using the notation of Appendix A, we write the cova-
riant derivative of a Rarita-Schwinger spinor �fNg,

DM�fNg ¼ @M�fNg � i

2
!AB

M �AB�fNg �
X
j

�L
MNj

�fLN=jg;

(B1)

where �AB are the generators of the Lorentz group in the
spinor representation,

�AB ¼ i

4
½�A;�B�; (B2)

and the tangent space Dirac matrices obey the usual anti-
commutation relation,

�A�B þ �B�A ¼ 2�AB: (B3)

The spin connection in AdS is

wAB
M ¼ �ðzÞð�Az�B

M � �Bz�A
MÞ; (B4)

with�ðzÞ ¼ 1=z and the Christoffel symbols are defined in
Appendix A.
For even d we can choose the set of gamma matrices

�A ¼ ð��;�zÞwith �z ¼ �0�1 . . . �d�1. For d ¼ 4 one has

�� ¼ 
�; �z ¼ ��z ¼ �i
5; (B5)

where 
� and 
5 are the usual four-dimensional
Dirac matrices with 
5 	 i
0
1
2
3 and ð
5Þ2 ¼ þ1.
The spin connections are given by

!z�
� ¼ �!�z

� ¼ �ðzÞ��
�; (B6)

and all other components !AB
M are zero.

The covariant derivatives of a Rarita-Schwinger spinor
in AdS are

Dz�fNg ¼ @z�fNg þ T�ðzÞ�fNg ¼
�
R

z

�
T
@z�̂fNg;

D��fNg ¼ @��fNg þ 1

2
�ðzÞ���z�fNg

þ�ðzÞX
j

ð�z
Nj
�f�N=jg þ ��Nj

�fzN=jgÞ: (B7)

From these equations one obtains easily (52) and (53).

1. Spin- 32 Rarita-Schwinger field in AdS space

The generalization [59,60] of the Rarita-Schwinger
action [55] to AdSdþ1 is

S ¼
Z

ddxdz
ffiffiffiffiffiffi
jgj

q
��Nði~�½NMN0�DM ��~�½NN0�Þ�N; (B8)

where ~�½NMN0� and ~�½NN0� are the antisymmetrized products

of three and two Dirac matrices ~�M ¼ eMA �
A ¼ z

R �
M
A �

A,

with tangent space matrices �A given by (B3). From the
variation of this action one obtains the generalization of the
Rarita-Schwinger equation,

ði~�½NMN0�DM ��~�½NN0�Þ�N0 ¼ 0: (B9)

The Christoffel symbols in the covariant derivative can
be omitted due to the antisymmetry of the indices in
~�½NMN0�, and only the spin connection must be taken into
account. Equation (B9) leads to the Rarita-Schwinger
condition [59],

�M�M ¼ 0; (B10)

and the generalized Dirac equation [60],�
i

�
z�MN�M@N þ d

2
�z

�
��R

�
�̂A ¼ �A�̂z; (B11)

for the spinor with tangent indices �̂A ¼ z
R �

M
A �M. These

equations agree for T ¼ 1, ’ðzÞ ¼ �ðzÞ ¼ 0 and �̂z ¼ 0
with Eq. (57), derived from the effective action (47).
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