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We enumerate the simplest models that have baryon number violation at the classical level but do not

give rise to proton decay. These models have scalar fields in two representations of SUð3Þ � SUð2Þ �
Uð1Þ and violate baryon number by two units. Some of the models give rise to n �n (neutron-antineutron)

oscillations, while some also violate lepton number by two units. We discuss the range of scalar masses

for which n �n oscillations are measurable in the next generation of experiments. We give a brief overview

of the phenomenology of these models and then focus on one of them for a more quantitative discussion

of n �n oscillations, the generation of the cosmological baryon number, the electric dipole moment of the

neutron, and K0- �K0 mixing.
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I. INTRODUCTION

The standard model has nonperturbative violation of
baryon number (B). This source of baryon number non-
conservation also violates lepton number (L); however, it
conserves baryon number minus lepton number (B� L).
The violation of baryon number by nonperturbative weak
interactions is important at high temperatures in the early
universe but it has negligible impact on laboratory experi-
ments that search for baryon number violation and we
neglect it in this paper. If we add massive right-handed
neutrinos that have a Majorana mass term and Yukawa
couple to the standard model left-handed neutrinos, then
lepton number is violated by two units, j�Lj ¼ 2, at tree
level in the standard model.

Motivated by grand unified theories (GUT) there has
been an ongoing search for proton decay (and bound
neutron decay). The limits on possible decay modes are
very strong. For example, the lower limit on the partial
mean lifetime for the mode p ! eþ�0 is 8:2� 1033 yr [1].
All proton decays violate baryon number by one unit and
lepton number by an odd number of units. See Ref. [2] for a
review of proton decay in extensions of the standard
model.

There are models where baryon number is violated but
proton (and bound neutron) decay does not occur. This
paper is devoted to finding the simplest models of this
type and discussing some of their phenomenology. We
include all renormalizable interactions allowed by the
SUð3Þ � SUð2Þ �Uð1Þ gauge symmetry. In addition to
standard model fields these models have scalar fields X1;2

that couple to quark bilinear terms or lepton bilinear
terms. Baryon number violation either occurs through
trilinear scalar interactions of the type (i) X2X1X1 or
quartic scalar terms of the type (ii) X2X1X1X1. The cubic
scalar interaction in (i) is similar in structure to renorma-
lizable terms in the superpotential that give rise to baryon
number violation in supersymmetric extensions of the
standard model. However, in our case the operator is

dimension three and is in the scalar potential. Assuming
no right-handed neutrinos there are four models of type
(i) where each of the X’s couples to quark bilinears and
has baryon number �2=3. Hence in this case the X’s are
either color 3 or �6. There are also five models of type (ii)
where X1 is a color 3 or �6 with baryon number �2=3 that
couples to quark bilinears and X2 is a color singlet with
lepton number �2 that couples to lepton bilinears.
We analyze one of the models in more detail. In that

model the SUð3Þ � SUð2Þ �Uð1Þ quantum numbers of
the new colored scalars are X1 ¼ ð�6; 1;�1=3Þ and
X2 ¼ ð�6; 1; 2=3Þ. The n �n oscillation frequency is calcu-
lated using the vacuum insertion approximation for the
required hadronic matrix element and lattice QCD results.
For dimensionless coupling constants equal to unity and all
mass parameters equal, the present absence of observed
�nn oscillations provides a lower limit on the scalar masses
of around 500 TeV. If we consider the limitM1 � M2 then
for M1 ¼ 5 TeV the next generation of n �n oscillation
experiments will be sensitive to M2 masses at the GUT
scale.
There are three models that have n �n mixing at tree

level without proton decay. In these models, constraints
on flavor changing neutral currents and the electric dipole
moment (edm) of the neutron require some very small
dimensionless coupling constants if we are to have both
observable n �n oscillations and one of the scalar masses
approaching the GUT scale.
In the next section we enumerate the models and dis-

cuss their basic features. The phenomenology of one of
the models is discussed in more detail in Sec. III. Some
concluding remarks are given in Sec. IV.

II. THE MODELS

We are looking for the simplest models which violate
baryon number but don’t induce proton decay. We don’t
impose any global symmetries. Hence, all local renormaliz-
able interactions permitted by Lorentz and gauge invariance
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are assumed to be present. We begin by considering re-
normalizable scalar couplings with all possible standard
model fermion bilinears. A similar philosophy can be used
to construct models involving proton decay [3] or baryon
number violating interactions in general [4,5]. We first
eliminate any scalars which produce proton decay via
tree-level scalar exchange as in Fig. 1. In particular, this
eliminates the scalars with SUð3Þ � SUð2Þ �Uð1Þ quan-
tum numbers (3, 1,�1=3), (3, 3,�1=3), and (3, 1,�4=3).
Note that in the case of (3, 1,�4=3) we need an additional
W-boson exchange to get proton decay (Fig. 2) since the
Yukawa coupling to right-handed charge 2=3 quarks is
antisymmetric (for a detailed discussion see Ref. [6]). The
remaining possible scalar representations and Yukawa cou-
plings are listed in Table I. We have assumed there are no
right-handed neutrinos (�R) in the theory.

None of these scalars induce baryon number violation on
their own, so we consider minimal models with the require-
ment that only two unique sets of scalar quantum numbers
from Table I are included, though a given set of quantum
numbers may come with multiple scalars.

Baryon number violation will arise from terms in the
scalar potential, so we need to take into account just the
models whose scalar quantum numbers are compatible in
the sense that they allow scalar interactions that violate
baryon number. For scalars coupling to standard model
fermion bilinears there are three types of scalar interactions
which may violate baryon number: 3-scalar X1X1X2,
4-scalar X1X1X1X2, and 3-scalar with a Higgs X1X1X1H
or X1X1X2H, where the Higgs gets a vacuum expectation
value (Fig. 3).

Actually, the simplest possible model violating baryon
number through the interaction X1X1X1H includes just one
new scalar (�3, 2, �1=6), but it gives proton decay via p !
�þ�þe��� (Fig. 4). Note that a similar diagram with hHi

replaced by X2 allows us to ignore scalars with the same
electroweak quantum numbers as the Higgs and coupling
to �Qu and �Qd, X2 ¼ ð1; 2; 1=2Þ and (8, 2, 1=2), as these
will produce tree-level proton decay as well. The other two
baryon number violating models with an interaction term
X1X1X2H are X�

1 ¼ ð3; 1;�1=3Þ, X2 ¼ ð�3; 2;�7=6Þ and
X1 ¼ ð3; 1;�1=3Þ, X�

2 ¼ ð�3; 2;�1=6Þ. As argued earlier,
such quantum numbers for X1 also induce tree-level proton
decay, so we disregard them.
We now consider models with a 3-scalar interaction

X1X1X2. A straightforward analysis shows that there are
only four models which generate baryon number violation
via a 3-scalar interaction without proton decay. We enu-
merate them and give the corresponding Lagrangians be-
low. All of these models give rise to processes with
�B ¼ 2 and �L ¼ 0, but only the first three models con-
tribute to n �n oscillations at tree level due to the symmetry
properties of the Yukawas. Note that a choice of normal-
ization for the sextet given by

ðX��Þ ¼
~X11 ~X12=

ffiffiffi
2

p
~X13=

ffiffiffi
2

p
~X12=

ffiffiffi
2

p
~X22 ~X23=

ffiffiffi
2

p
~X13=

ffiffiffi
2

p
~X23=

ffiffiffi
2

p
~X33

0
BB@

1
CCA (1)

leads to canonically normalized kinetic terms for the
elements ~X�� and the usual form of the scalar propagator

FIG. 1. �B ¼ 1 and �L ¼ 1 scalar exchange.

FIG. 2. Feynman diagram that contributes to tree level p !
Kþeþe� �� from (3, 1, �4=3) scalar exchange.

TABLE I. Possible interaction terms between the scalars and
fermion bilinears along with the corresponding quantum num-
bers and B and L charges of the X field. Representations labeled
with the subscript ‘‘PD’’ allow for proton decay via either tree-
level scalar exchange (Fig. 1) or 3-scalar interactions involving
the Higgs vacuum expectation value (Fig. 4).

Operator SUð3Þ � SUð2Þ �Uð1Þ rep. of X B L

XQQ, Xud (�6, 1, �1=3), ð3; 1;�1=3ÞPD �2=3 0

XQQ (�6, 3, �1=3), ð3; 3;�1=3ÞPD �2=3 0

Xdd (3, 1, 2=3), (�6, 1, 2=3) �2=3 0

Xuu (�6, 1, �4=3), ð3; 1;�4=3ÞPD �2=3 0

X �Q �L ð3; 1;�1=3ÞPD, ð3; 3;�1=3ÞPD 1=3 1

X �u �e ð3; 1;�1=3ÞPD 1=3 1

X �d �e ð3; 1;�4=3ÞPD 1=3 1

X �Qe, XL �u (3, 2, 7=6) 1=3 �1
X �Ld ð�3; 2;�1=6ÞPD �1=3 1

XLL (1, 1, 1), (1, 3, 1) 0 �2
Xee (1, 1, 2) 0 �2

FIG. 3. Scalar interactions which may generate baryon number
violation.

JONATHAN M. ARNOLD, BARTOSZ FORNAL, AND MARK B. WISE PHYSICAL REVIEW D 87, 075004 (2013)

075004-2



with symmetrized color indices. Unless otherwise
stated, we will be using two-component spinor notation.
Parentheses indicate contraction of two-component spinor
indices to form a Lorentz singlet.

Model 1. X1 ¼ ð�6; 1;�1=3Þ, X2 ¼ ð�6; 1; 2=3Þ,
L ¼ �gab1 X��

1 ðQa
L��Q

b
L�Þ � gab2 X��

2 ðdaR�dbR�Þ
� g0ab1 X��

1 ðuaR�dbR�Þ þ �X��0
1 X��0

1 X��0
2 ������0�0�0 :

(2)

By virtue of the symmetric color structure of the �6 repre-
sentation and the antisymmetric weak structure of the QQ
bilinear in the first term, g1 must be antisymmetric in
flavor. However, this antisymmetry is not retained upon
rotation into the mass eigenstate basis. Similarly, g2 must
be symmetric because of the symmetric color structure in
the second term. In this case, the symmetry character of g2
will be retained upon rotation into the mass eigenstate basis
because it involves quarks of the same charge. Therefore,
the interaction involving the Yukawa coupling g2 gives rise
to (and is thus constrained by) K0- �K0 mixing through tree-
level X2 exchange. The coupling g

0
1 has no particular flavor

symmetry.
Model 2. X1 ¼ ð�6; 3;�1=3Þ, X2 ¼ ð�6; 1; 2=3Þ,

L ¼ �gab1 X��A
1 ðQa

L���
AQb

L�Þ � gab2 X��
2 ðdaR�dbR�Þ

þ �X��0A
1 X��0A

1 X��0
2 ������0�0�0 : (3)

Here the matrix ��A is symmetric. Because the first and
second terms have symmetric color structures, g1 and g2
must be symmetric in flavor. The weak triplet X1 has
components which introduce both K0- �K0 and D0- �D0 mix-
ing. As in model 1, the interaction involving g2 will
introduce K0- �K0 mixing via X2 exchange.

Model 3. X1 ¼ ð�6; 1; 2=3Þ, X2 ¼ ð�6; 1;�4=3Þ,
L ¼ �gab1 X��

1 ðdaR�dbR�Þ � gab2 X��
2 ðuaR�ubR�Þ

þ �X��0
1 X��0

1 X��0
2 ������0�0�0 : (4)

Both terms have symmetric color structures and no weak
structure, so g1 and g2 must be symmetric in flavor. In this
model, the interactions involving g1 and g2 each have the

potential to introduce neutral meson-antimeson mixing.
For example, the g1 interaction will induce K0- �K0 mixing
while g2 will induce D

0- �D0 mixing.
Model 4. X1 ¼ ð3; 1; 2=3Þ, X2 ¼ ð�6; 1;�4=3Þ,

L ¼ �gab1 X1�ðdaR�dbR�Þ���� � gab2 X��
2 ðuaR�ubR�Þ

þ �X1�X1�X
��
2 : (5)

Because of the antisymmetric color structure in the first
term, g1 must be antisymmetric in flavor which prevents it
from introducing meson-antimeson mixing. The antisym-
metric structure of g1 also prevents the existence of six-
quark operators involving all first-generation quarks, and
thus prevents n �n oscillations. As in previous models, g2 is
symmetric and so we will get D0- �D0 mixing as in model
3. Although this model does not have n �n oscillations,
there are still baryon number violating processes which
would constrain this model—for example, the process
pp ! KþKþ. This has been searched using the Super-
Kamiokande detector looking for the nucleus decay
16O ! 14CKþKþ [7]. Had we included �R, model 4
would have been excluded by tree-level scalar exchange.
Now, a similar line of reasoning applies to the case

where we have a quartic scalar interaction term
X1X1X1X2. The only models violating baryon number
which don’t generate proton decay (or bound neutron
decay) are discussed briefly below. These last five models
have dinucleon decay to leptons, but don’t contribute to
tree-level n �n oscillations by virtue of their coupling to
leptons.
Model 5. X1 ¼ ð�6; 1;�1=3Þ, X2 ¼ ð1; 1; 1Þ,

L ¼ �gab1 X��
1 ðQa

L��Q
b
L�Þ

� gab2 X2ðLa
L�L

b
LÞ � g0ab1 X��

1 ðuaR�dbR�Þ
þ �X��0

1 X��0
1 X��0

1 X2������0�0�0 : (6)

Similar arguments to those for the previous models tell us
that g1 and g2 must be antisymmetric in flavor.
Model 6. X1 ¼ ð�6; 3;�1=3Þ, X2 ¼ ð1; 1; 1Þ

L ¼ �gab1 X��A
1 ðQa

L���
AQb

L�Þ � gab2 X2ðLa
L�L

b
LÞ

þ �X��0A
1 X��0B

1 X��0C
1 X2�

ABC������0�0�0 : (7)

By comparison with model 2, we see that g1 is symmetric
in flavor while g2 is antisymmetric.
Model 7. X1 ¼ ð�6; 3;�1=3Þ, X2 ¼ ð1; 3; 1Þ,

L ¼ �gab1 X��A
1 ðQa

L���
AQb

L�Þ � gab2 XA
2 ðLa

L��
ALb

LÞ
þ �X��0A

1 X��0B
1 X��0C

1 XD
2 ������0�0�0

� ð	AB	CD þ 	AC	BD þ 	AD	BCÞ: (8)

Once again, as in model 2, we have a symmetric g1. The
coupling g2 must be symmetric in flavor as well.

FIG. 4. Interaction which leads to proton decay, p!
�þ�þe���, for X1 ¼ ð�3; 2;�1=6Þ.
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Model 8. X1 ¼ ð�6; 1; 2=3Þ, X2 ¼ ð1; 1;�2Þ,
L ¼ �gab1 X��

1 ðdaR�dbR�Þ � gab2 X2ðeaRebRÞ
þ �X��0

1 X��0
1 X��0

1 X2������0�0�0 : (9)

As in model 1, g1 must be symmetric. The coupling g2
must also be symmetric in flavor.

Model 9. X1 ¼ ð3; 1; 2=3Þ, X2 ¼ ð1; 1;�2Þ,
L ¼ �gab1 X1�ðdaR�dbR�Þ���� � gab2 X2ðeaRebRÞ

þ �X1�X1�X1�X2�
���: (10)

By comparison with model 4, we see that g1 must be
antisymmetric in flavor. The coupling g2 is symmetric.
Note that the antisymmetric color structure of the scalar
interaction requires the existence of at least three different
kinds of X1 scalars for this coupling to exist. Including �R

would eliminate model 9 for the same reason as model 4.

III. PHENOMENOLOGY OF MODEL 1

In this section we present a detailed analysis of model 1.
The corresponding calculations for the other models can be
performed in a similar manner. Our work is partly moti-
vated by the recently proposed n �n oscillation experiment
with increased sensitivity [8]. In addition to n �n oscilla-
tions, we analyze also the cosmological baryon asymmetry
generation in model 1 as well as flavor and electric dipole
moment constraints. A brief comment on LHC phenome-
nology is made.

A. Neutron-antineutron oscillations

The topic of n �n oscillations has been explored in the
literature in various contexts. For some of the early works
on the subject see Refs. [9–12]. Recently, a preliminary
study of the required hadronic matrix elements using lat-
tice QCD has been carried out [13]. Reference [14] claims
that a signal of n �n oscillations has been observed.

The scalar content of model 1 we are considering is
similar to the content of a unified model explored in
Ref. [15]. The transition matrix element,

�m ¼ h �njH effjni; (11)

leads to a transition probability for a neutron at rest to
change into an antineutron after time t equal to Pn! �nðtÞ ¼
sin 2ðj�mjtÞ.

Neglecting the coupling g1 in the Lagrangian (2)
(for simplicity) the effective j�Bj ¼ 2 Hamiltonian that
causes n �n oscillations is

H eff ¼ �ðg0111 Þ2g112 �

4M4
1M

2
2

d _�
Rid

_�
Ri0u

_�
Rjd

_	
Rj0u

_�
Rkd

_

Rk0� _� _�� _� _	� _� _


� ð�ijk�i0j0k0 þ �i0jk�ij0k0 þ �ij0k�i0jk0 þ �ijk0�i0j0kÞ
þ H:c:; (12)

where Latin indices are color and Greek indices are spinor.
It arises from the tree-level diagram in Fig. 5 (see, for
example Ref. [16]). We have rotated the couplings g01 and
g2 to the quark mass eigenstate basis and adopted a phase
convention where � is real and positive. We estimate �m
using the vacuum insertion approximation [17]. This re-
lates the required n �n six-quark matrix element to a matrix
element from the neutron to the vacuum of a three quark
operator. The later matrix element is relevant for proton
decay and has been determined using lattice QCD meth-
ods. The general form of the required hadronic matrix
elements is

h0jd _�
Rid

_�
Rju

_�
Rkjnðp; sÞi

¼ � 1

18
��ijkð� _� _�u

_�
Rðp; sÞ þ �

_� _�u _�
Rðp; sÞÞ: (13)

Here uR is the right-handed neutron two-component spinor
and the Dirac equation was used to remove the term
proportional to the left-handed neutron spinor. The con-
stant � was determined using lattice methods in Ref. [18]
to have the value � ’ 0:01 GeV3. In the vacuum insertion
approximation to Eq. (11) we find

j�mj ¼ 2��2 jðg0111 Þ2g112 j
3M4

1M
2
2

: (14)

We note that an analogous calculation using the MIT bag
model was performed in Ref. [19] and yields a similar
result. The current experimental limit on �m is [20]

j�mj< 2� 10�33 GeV: (15)

For scalars of equal mass, M1 ¼ M2 � M, and the values
of the couplings g0111 ¼ g112 ¼ 1, � ¼ M, one obtains

M * 500 TeV: (16)

If, instead, the masses form a hierarchy, the effect on n �n
oscillations is maximized if we choose M2 >M1.
Assuming M1 ¼ 5 TeV (above the current LHC reach)
and � ¼ M2 this yields

M2 * 5� 1013 GeV: (17)

Note that � ¼ M2 is a reasonable value for this coupling
since integrating outM2 then gives a quartic X1 interaction
term with a coupling on the order of one. Of course, this

FIG. 5. Interaction which leads to neutron-antineutron
oscillations.
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model does have a hierarchy problem so having the Higgs
scalar and the X1 light compared with X2 requires fine-
tuning.

Experiments in the future [8] may be able to probe
n �n oscillations with increased sensitivity of j�mj ’
7� 10�35 GeV. If no oscillations are observed, the new
limit in the case of equal masses will be

M * 1000 TeV: (18)

On the other hand, having M1 ¼ 5 TeV would push the
mass of the heavier scalar up to the GUT scale, leading to
the following constraint on the second scalar mass:

M2 * 1:5� 1015 GeV: (19)

We note, however, that in Sec. III B we show thatM1 on the
order of a few TeV is disfavored by the electric dipole
moment constraints.

B. LHC, flavor and electric dipole moment constraints

If the mass of the scalar X1 is small enough, it can be
produced at the LHC through both single and pair produc-
tion. Detailed analyses have been performed setting limits
on the mass of X1 from such processes [21–23]. A recent
simulation [21] shows that 100 fb�1 of data from the LHC
running at 14 TeV center of mass energy can be used to rule
out or claim a discovery of X1 scalars with masses only up
to approximately 1 TeV, even when the couplings to quarks
are of order 1. Our earlier choice of M1 ¼ 5 TeV used to
estimate the constraint onM2 from n �n oscillations lies well
within the allowed mass region.

Some of the most stringent flavor constraints on new
scalars come from neutral meson mixing and electric
dipole moments. The fact that in model 1 X1 couples
directly to both left- and right-handed quarks means that
at one loop the top quark mass can induce the chirality
flip necessary to give a light quark edm, putting strong
constraints on this model even when X1 is at the 100 TeV
scale. The diagram contributing to the edm of the down
quark is given in Fig. 6. We find

jddj ’ mt

6�2M2
1

log

�
M2

1

m2
t

�
jIm½g311 ðg0311 Þ��je cm: (20)

Here we have neglected pieces not logarithmically
enhanced. This will give the largest contribution to the

neutron edm because of the top quark mass factor. All
Yukawa couplings in this section are in the mass eigenstate
basis.
Using SUð6Þ wave functions, this can be related to

the neutron edm via dn ¼ 4
3dd � 1

3du ’ 4
3dd. The present

experimental limit is [24]

d
exp
n < 2:9� 10�26e cm: (21)

Assuming M1 ¼ 500 TeV, neutron edm measurements
imply the bound jIm½g311 ðg0311 Þ��j&6�10�3. Furthermore,
for observable n �n oscillation effects withM2 being close to
the GUT scale we need M1 � 5 TeV. In such a scenario
the edm constraint requires jIm½g311 ðg0311 Þ��j & 10�6.

Another important constraint on the parameters of
model 1 is provided by K0- �K0 mixing. Integrating out X2

generates an effective Hamiltonian,

H eff ¼ g222 ðg112 Þ�
M2

2

ðsR�sR�Þðd��R d��R Þ

! g222 ðg112 Þ�
2M2

2

ð �d�R��sR�Þð �d�R��sR�Þ; (22)

where in the second line we have gone from two- to
four-component spinor notation. This gives the following
constraints on the couplings [25]:

jRe½g222 ðg112 Þ��j< 1:8� 10�6

�
M2

1 TeV

�
2
; (23)

jIm½g222 ðg112 Þ��j< 6:8� 10�9

�
M2

1 TeV

�
2
: (24)

If we set M2 to 500 TeV, this corresponds to an upper
bound on the real and imaginary parts of g222 ðg112 Þ� of 0.45
and 1:7� 10�3, respectively.

C. Baryon asymmetry

We now investigate baryon number generation in
model 1. B and L violating processes in cosmology have

FIG. 6. Diagrams contributing to the electric dipole moment of
the down quark.

FIG. 7. Diagrams corresponding to the decay of X2. The
diagrams on top contribute to the �B ¼ 2 decays, while the
diagrams on bottom contribute to �B ¼ 0.
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been studied in the literature in great detail (for early
works, see Refs. [26,27]). We treat X2 as much heavier
than X1 and use two different X2’s to get a CP violating
phase in the one-loop diagrams that generate the baryon
asymmetry. For this calculation X1 is treated as stable with
baryon number �2=3 as each will eventually decay via
baryon number conserving processes to two antiquarks. To
simplify our discussion, let’s consider the case in which the

couplings satisfy the hierarchy �, ~� � g2, ~g2. The top line
of Fig. 7 shows the dominant tree-level and one-loop
diagrams contributing to the baryon number violating de-
cays of X2. Rotating the X fields to make the couplings �

and ~� real we find

�ðX2 ! �X1
�X1Þ

¼ 3�

8�M2

�
�� ~�

M2
2

4�ðM2
2 � ~M2

2Þ
ImðTrðgy2 ~g2ÞÞ

�
;

�ð �X2 ! X1X1Þ

¼ 3�

8�M2

�
�þ ~�

M2
2

4�ðM2
2 � ~M2

2Þ
ImðTrðgy2 ~g2ÞÞ

�
: (25)

The net baryon number produced per X2
�X2 pair is

(see, Table II)

�nB ¼ 2ðr� �rÞ
¼ 6

�Trðgy2g2Þ
1

~M2
2 �M2

2

Im½�~�� Trðgy2 ~g2Þ�; (26)

where we have used the fact that CPT invariance guaran-
tees the total width of X2 and �X2 are the same. Given our
choice of hierarchy for the couplings, we have approxi-
mated the total width as coming from the tree-level decay
of X2 to antiquarks. A similar result in the context of
SOð10Þ models was obtained in Ref. [15].

Even with just one generation of quarks, the CP violat-

ing phase cannot be removed from the couplings �, ~�, g2,
~g2 and a baryon asymmetry can be generated at one loop.
At first glance this is surprising since there are four fields,
X2, ~X2, X1 and dR whose phases can be redefined and four
relevant couplings. However, this can be understood by
looking at the relevant Lagrangian terms, g2X2dd, ~g2 ~X2dd,

�X1X1X2 and ~�X1X1
~X2. The problem reduces to finding

solutions to the following matrix equation:

2 1 0 0

2 0 1 0

0 1 0 2

0 0 1 2

0
BBBBB@

1
CCCCCA

�X1

�X2

� ~X2

�d

0
BBBBB@

1
CCCCCA ¼

��

�~�

�g2

�~g2

0
BBBBB@

1
CCCCCA; (27)

where the phases on the right-hand side are arbitrary. Let us
take the difference of the first two equations to remove

phases for the couplings � and ~�, and the difference of the
last two equations to remove phases for the coupling
g2, ~g2. We therefore obtain �~�2

���2
¼ � ~X2

��X2
and

�~g2 ��g2 ¼ � ~X2
��X2

. Those two equations cannot be

simultaneously fulfilled for arbitrary ��, �~�, �g2 , �~g2 .

The baryon number generated in the early universe can
be calculated from Eq. (26) by following the usual steps
(see, for example, Ref. [28]). Out of equilibrium decay
of X2 and �X2 is most plausible if they are very heavy
(e.g., �1012 GeV). However, to get measurable n �n oscil-
lation in this case, X1 would have to be light—a case that is
disfavored by neutron edm constraints, since it requires
some very small dimensionless couplings.

IV. CONCLUSIONS

We have investigated a set of minimal models which
violate baryon number at tree-level without inducing
proton decay. We have looked in detail at the phenomeno-
logical aspects of one of these models (model 1) which can
have n �n oscillations within the reach of future experiments.
When all the mass parameters in model 1 have the same
value, M, and the magnitudes of the Yukawa couplings
g0111 and g112 are unity, the present limit on n �n oscillations
implies thatM is greater than 500 TeV. ForM ¼ 500 TeV,
the neutron edm and flavor constraints give Im½g311 ðg0311 Þ��<
6�10�6, Re½g222 ðg112 Þ�� < 0:45, and Im½g222 ðg112 Þ��<
1:7 � 10�3 which indicates that some of the Yukawa cou-
plings and/or their phasesmust be small if n �n oscillations are
to be observed in the next generation of experiments. Of
course even in the standard model some of the Yukawa
couplings are small.
There are two other models (model 2 and model 3) that

have n �n oscillations at tree level. Similar conclusions can
be drawn for them, although the details are different. In
models 2 and 3, exchange of a single X1 does not give rise
to a one-loop edm of the neutron. However, K0- �K0 mixing
can occur from tree-level X1 exchange.
Observable n �n oscillations can occur forM2 	 M1 with

M2 at/near the GUT scale. This requires M1 ’ 5 TeV, and
flavor and electric dipole constraints require some very
small Yukawa couplings in that case.
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TABLE II. Branching ratios and final state baryon numbers for
the decays of X2 and �X2 which contribute to the baryon asym-
metry in the coupling hierarchy �, ~� � g2, ~g2.

Decay Br Bf

X2 ! �X1
�X1 r 4=3

X2 ! �dR �dR 1� r �2=3
�X2 ! X1X1 �r �4=3
�X2 ! dRdR 1� �r 2=3
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