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We investigate the thermal QCD transition with two flavors of maximally twisted mass fermions for a

set of pion masses, 300 MeV<m� < 500 MeV, and lattice spacings, a < 0:09 fm. We determine the

pseudocritical temperatures and discuss their extrapolation to the chiral limit using scaling forms for

different universality classes, as well as the scaling form for the magnetic equation of state. For all pion

masses considered, we find reasonable consistency with Oð4Þ scaling plus leading corrections. However, a
true distinction between the Oð4Þ scenario and a first-order scenario in the chiral limit requires lighter

pions than are currently in use in simulations of Wilson fermions.
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I. INTRODUCTION

The transition from a confined phase with broken chiral
symmetry to a deconfined chirally symmetric phase is an
important subject for studies of finite temperature QCD.
This transition is relevant for the evolution of the early
Universe and reproduced in current heavy ion collision
experiments. It can be investigated nonperturbatively using
lattice QCD as long as the chemical potential for fermion
number is small,�=T < 1. A lot of effort has been invested
in lattice studies at zero chemical potential; for recent
reviews, see Refs. [1–4]. Impressive progress has been
reported very recently by several collaborations working
with different fermion discretization schemes [5–10].
In particular, lattice QCD with staggered fermions and
physical quark masses does not predict a true phase
transition but an analytic crossover in the limit of zero
chemical potential [11]. Similarly, results on the transition
temperature and the equation of state have predominantly
been obtained from simulations with staggered fermions
[12–16]. However, this fermion discretization is subject to
an ongoing debate, and there is no formal proof that its
continuum limit will reproduce the universality class of
QCD [17]. It is therefore desirable to obtain independent
results with other discretizations, in order to have some
mutual control over systematic errors.

Unfortunately, Wilson-type fermions (and even more so
chiral fermion formulations) require higher computational
costs. It is thus expedient to study the nature of the phase
transition for various larger-than-physical quark masses
and to extrapolate to the physical situation. Moreover,
knowing global properties of the phase transition as a

function of the light quark masses constrains the enlarged
phase diagram including the strange quark and nonvanish-
ing chemical potential [18]. An as yet unsettled crucial
question in this context is the nature of the phase transition
in the two-flavor chiral limit. Most studies favor a second-
order transition in the Oð4Þ universality class [19–24], but
there are also claims for a first-order transition [25–29].
Since in the continuum and chiral limits the transition is
associated with the breaking of a global chiral symmetry,
it is necessarily a true and nonanalytic phase transition, and
one of these scenarios has to be realized [30], while an
analytic crossover is ruled out. On the other hand, for
moderate and intermediate quark masses, the transition is
an analytic crossover before it turns into a first-order
deconfinement transition for very heavy quarks.
In this article we study the thermal transition with two

degenerate flavors of maximally twisted mass fermions,
which provide an OðaÞ-improved Wilson fermion
discretization; for a review, see Ref. [31]. As a first step,
we focus on the determination of the phase boundary,
i.e., the pseudocritical temperatures Tcðm�Þ using the
Polyakov loop, the chiral condensate, and the plaquette
as observables. We do this for a set of pion masses,
m� � 300–500 MeV, and attempt various extrapolations
to the Nf ¼ 2 chiral limit. Similar efforts were recently

under way employing clover improved fermions [32–34].
The following section serves to specify our simulation

setup. In Sec. III we introduce the observables and collect
the pseudocritical couplings from our simulations. These
results allow also for an estimate of the size of the discre-
tization errors present in our simulations. In Sec. IV we use
these pseudocritical points for an extrapolation to the chiral
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limit. We discuss possibilities and limitations in discerning
the order of the chiral phase transition. Finally, Sec. V
gives some conclusions and an outlook.

II. SIMULATION SETUP

We consider QCD with a mass-degenerate doublet of
twisted mass fermions, cf. the review by Shindler [31]. The
gauge action is tree-level Symanzik improved, while the
fermion action is

SF½U; c ; �c � ¼ X
x

��ðxÞð1� �DW½U� þ 2i�a�0�5�
3Þ�ðxÞ:

(1)

The fermion fields are written in the twisted basis f ��; �g,
which is commonly used for numerical simulations. It is
connected to the basis of physical fields f �c ; c g for the
relevant case of maximal twist via

c ¼ 1ffiffiffi
2

p ð1þ i�5�
3Þ� and �c ¼ ��

1ffiffiffi
2

p ð1þ i�5�
3Þ: (2)

The quark mass is determined by the hopping parameter
�, which parameterizes the untwisted bare quark mass
component,

� ¼ ð2am0 þ 8rÞ�1; (3)

and the twisted mass parameter �0. The Wilson covariant
derivative is given by

DW½U�c ðxÞ ¼ X
�

ððr� ��ÞU�ðxÞc ðxþ �̂Þ

þ ðrþ ��ÞUy
�ðx� �̂Þc ðx� �̂ÞÞ: (4)

In the weak coupling limit, � ¼ 6=g20 ! 1, zero quark

mass corresponds to � ¼ 1=8, setting r ¼ 1. For finite
coupling, this value of � gets corrections through mass
renormalization. The overall renormalized quark mass M
is composed of the twisted and untwisted masses as

M2 ¼ Z2
mðm0 �mcrÞ2 þ Z2

��
2
0: (5)

At maximal twist, the above fermion formulation is
automatically OðaÞ-improved, i.e., cutoff effects linear in
the lattice spacing a are absent for nonzero physical ob-
servables. Maximal twist is achieved by tuning the hopping
parameter to its critical value �c, corresponding to mcr,
where the untwisted theory would feature massless pions.
The required knowledge of �cð�), as well as other input
needed from zero-temperature simulations in order to set
the scale, can be interpolated from data by the European
Twisted Mass Collaboration (ETMC) [35]. In Figs. 1 and 2,
we show our interpolations for �cð�Þ and the lattice spac-
ing að�Þ. Our numerical evaluation proceeds by an hybrid
Monte Carlo algorithm [36] within the publicly available
code for QCD with twisted mass fermions [37].

Wilson fermions are well known to feature unphysical
phases for light quarks and coarse lattice spacings. Like the
physical parameter space, these get extended to a third
direction because of the additional twisted mass parameter
in the current formulation. In order to stay away from
unphysical regions, knowledge of the bare parameter phase
diagram is required, which we have mapped out earlier in a
preparatory study [38]. Status reports of our ongoing
project have been given at the annual lattice conferences
[39,40].
The temperature scale is set by the temporal lattice

extent and the lattice spacing, T ¼ 1=ðaN�Þ. In order to
locate the phase boundary between the hadronic region and
the quark gluon plasma, we perform scans in the lattice
gauge coupling �, which thus corresponds to a change in
temperature of the lattice system. Table I gives the list of
runs for different pion masses and the naming scheme
that we have adopted for the sake of simplicity. To adjust
the masses, ETMC provides parameters for next-to-next-
to-leading-order �pt formulas at their values of � 2
f3:8; 3:9; 4:05; 4:2g, which can be used to identify the
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FIG. 1 (color online). Interpolation of the critical hopping
parameter from ETMC data.
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FIG. 2 (color online). Interpolation of the lattice spacing from
ETMC data.
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relationm�ð�0Þ at those couplings. For ourN� ¼ 12 scans,
we have relied on the one-loop scaling relation

a�0ð�Þ ¼ C exp

�
� �

12�0

�
; (6)

with �0 ¼ ð11� 2Nf=3Þ=ð4�Þ2 and fixing the free

parameter C at one of the available couplings. We have
found this relation to work sufficiently well to create
lines of constant pion mass within the errors quoted in
Table I. The run at N� ¼ 10 has a constant a�0 ¼ 0:006 in
the �-interval from 3.865 to 3.930 for which we likewise
have the same pion mass within errors in our simulation
range. For the other � values, we have adapted the
twisted mass according to a two-loop scaling relation
similar to the one-loop formula shown above. The free
parameter C has been adapted to produce a�0 ¼ 0:006
at � ¼ 3:88.

A final comment concerns the explicit flavor symmetry
breaking due to the twisted mass term at finite values of the
lattice spacing. This breaking has been investigated by the
ETM Collaboration for T ¼ 0 theoretically [41] and in
simulations [35]. The outcome is that effects from flavor
breaking—formally of Oða2Þ—appear to be negligible in
all quantities investigated so far but the neutral pion mass.
For this reason we use the charged pion mass throughout
the paper. As will be explained in Sec. IV, for our scaling
analysis, we need to be close enough to the continuum in
order to reproduce chiral symmetry, where flavor breaking
should not play any role any longer. Comparison of
two lattice spacings appears to justify this assumption.
However, a third value of the lattice spacing is required
in order to make these statements about the size of lattice
artifacts more definite.

III. THERMALTRANSITION TEMPERATURE

In order to locate the transition, we have used both pure
gauge and fermionic observables. The gauge observables
are the plaquette

P ¼ 1

6NcN�N
3
�

ReTr
X
x

X
�>	

U�	ðxÞ; (7)

with

U�	ðxÞ ¼ U�ðxÞU	ðxþ �̂ÞUy
�ðxþ 	̂ÞUy

	 ðxÞ; (8)

and the real part of the Polyakov loop

ReðLÞ ¼ 1

Nc

1

N3
�

ReTr
X
x

YN��1

x4¼0

U4ðx; x4Þ: (9)

The latter is of particular interest since it is the order pa-
rameter of the pure gauge deconfinement transition. Along
with these observables, we look at their susceptibilities,

�O ¼ N3
�ðhO2i � hOi2Þ: (10)

The renormalized (real part of the) Polyakov loop can be
determined as [42]

hReðLÞiR ¼ hReðLÞi exp ðVðr0Þ=2TÞ; (11)

where Vðr0Þ denotes the static quark-antiquark potential at
the distance of the Sommer scale r ¼ r0 [43] to be deter-
mined at zero temperature.
The chiral condensate h �c c i represents the real order

parameter of chiral symmetry breaking in the massless
limit. An appropriate quantity to locate the chiral phase
transition is the chiral susceptibility

�� ¼ @h �c c i
@mq

: (12)

Here, we consider only a part of that expression, the
variance per configuration,

�2
�c c

¼ V=Tðhð �c c Þ2i � h �c c i2Þ: (13)

This quantity shows a peak associated with the chiral
transition. Moreover, it is expected to dominate the signal
of ��; see, e.g., Ref. [44].
The pion norm

j�j2 ¼ X
x

�
�c ðxÞ 1

2
�5�

þc ðxÞ �c ð0Þ 1
2
�5�

�c ð0Þ
�

(14)

is interesting for twisted mass simulations because its
definition is independent of the fermion basis. It is
connected with the chiral condensate via

2mqj�j2 ¼ �h �c c i; (15)

which has been proven for lattice twisted mass fermions in
Ref. [45]. We have used this relation as a check for h �c c i.
At maximal twist the chiral condensate can be renor-

malized as follows (see the Appendix in Ref. [46] and
references cited therein):

h �c c iR ¼ ZP

�
h �c c i þ cðgoÞ�0

a2

�
: (16)

This immediately suggests the form of a subtracted
condensate, which is completely standard. However, the
subtracted condensate is no longer an order parameter for
the chiral transition. It is very easy to fix this problem by
adding the zero-temperature chiral condensate in the chiral
limit. Thus, we introduce a (re)normalized condensate in
terms of the ratio

TABLE I. List of scans in �. See also Table II.

Run N3
� � N� RANGE m� (MeV) r0m�

A12 323 � 12 3:84 � � � 3:99 316(16) 0.673(42)

B12 323 � 12 3:86 � � � 4:35 398(20) 0.847(53)

C12 323 � 12 3:90 � � � 4:07 469(24) 0.998(62)

B10 323 � 10 3:76 � � � 4:35 398(20) 0.847(53)
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Rh �c c i ¼
h �c c iðT;�0Þ � h �c c ið0;�0Þ þ h �c c ið0;0Þ

h �c c ið0;0Þ ; (17)

where h �c c iðT;�0Þ means h �c c i to be evaluated at
nonzero temperature and finite �0. h �c c ið0; �0Þ can be
obtained from spline interpolations of T ¼ 0 h �c c i data in
both the mass �0 and �. Additionally, to determine
h �c c ið0; 0Þ one has to perform a chiral extrapolation of
the T ¼ 0 h �c c i data at every � value in which one is
interested. We have used a linear extrapolation through
three points at every �. The data turned out to be compat-
ible with a linear �0 dependence over the whole tempera-
ture range we consider here. For the T ¼ 0 data, we were
relying on results provided by the ETM Collaboration.

The fermionic observables have been determined using
the technique of noisy estimators, as in Ref. [47]. For j�j2
we have calculated ten propagators per gauge configura-
tion on Zð2Þ noise vectors. h �c c i was evaluated using 24
Gaussian volume source vectors for B10, B12, and C12,
and 24 Zð2Þ volume source vectors for A12, respectively.
All propagators have been calculated on commodity
graphics hardware using NVIDIA’s CUDA programming
language. The statistics accumulated for the various runs as
well as the averages for the Polyakov loop and the chiral
condensate are given in Table II.

Quite generally, we find the signals for the transition to
be quite smooth and noisy, which presumably is related to
the fact that we are merely probing a very soft crossover in
our range of pion masses. For a crossover there is no unique
definition of a critical temperature as the physics changes
smoothly and analytically between the different regions.

TABLE II. Statistics for gauge observables from our simula-
tions as well as expectation values of Re(L) and h �c c i. Note that
the trajectory length differs between the runs. On the apeNEXT
(B10, C12 except for � ¼ 4:06) � ¼ 0:5, on the HLRN (A12,
B12, � ¼ 4:06 of C12) � ¼ 1.

� T [MeV] STAT ReðLÞ h �c c i
A12

3.8400 187(10) 3471 6:1ð4Þ � 10�4 0.0284(1)

3.8600 193(8) 7114 6:7ð3Þ � 10�4 0.0264(1)

3.8800 199(6) 3891 8:8ð4Þ � 10�4 0.0243(1)

3.9000 205(4) 6666 9:8ð4Þ � 10�4 0.0225(2)

3.9300 215(4) 3947 1:40ð4Þ � 10�3 0.0199(1)

3.9450 220(4) 4839 1:60ð5Þ � 10�3 0.0185(2)

3.9525 222(4) 5962 1:67ð4Þ � 10�3 0.0183(2)

3.9600 225(4) 6112 1:86ð5Þ � 10�3 0.0176(2)

3.9675 228(4) 7112 1:98ð5Þ � 10�3 0.0172(2)

3.9750 230(4) 4505 2:06ð6Þ � 10�3 0.0168(2)

3.9900 235(4) 4796 2:45ð5Þ � 10�3 0.0158(2)

B12

3.8600 193(8) 7198 5:95ð22Þ � 10�4 0.03916(12)

3.8800 199(6) 7883 7:29ð22Þ � 10�4 0.03677(10)

3.9000 205(4) 9568 8:67ð19Þ � 10�4 0.03444(09)

3.9300 215(4) 9204 1:24ð03Þ � 10�3 0.03122(13)

� T [MeV] STAT ReðLÞ h �c c i
3.9500 222(4) 4788 1:49ð05Þ � 10�3 0.02932(14)

3.9700 228(4) 8387 1:96ð07Þ � 10�3 0.02724(10)

3.9900 235(4) 8968 2:09ð05Þ � 10�3 0.02557(13)

3.9950 237(4) 6486 2:31ð04Þ � 10�3 0.02515(13)

4.0000 239(4) 6298 2:51ð04Þ � 10�3 0.02464(11)

4.0050 241(4) 7353 2:54ð05Þ � 10�3 0.02438(10)

4.0100 243(4) 6403 2:70ð05Þ � 10�3 0.02391(10)

4.0125 244(4) 10139 2:81ð04Þ � 10�3 0.02365(11)

4.0150 245(4) 8950 2:84ð04Þ � 10�3 0.02353(10)

4.0175 245(4) 11673 2:82ð03Þ � 10�3 0.02346(09)

4.0200 246(4) 10003 2:88ð04Þ � 10�3 0.02328(07)

4.0250 248(4) 9878 3:02ð04Þ � 10�3 0.02288(10)

4.0300 250(4) 5245 3:14ð05Þ � 10�3 0.02251(09)

4.0400 254(4) 5350 3:43ð05Þ � 10�3 0.02186(07)

4.0700 266(6) 1024 4:00ð08Þ � 10�3 0.02025(10)

4.1000 278(8) 7837 4:83ð09Þ � 10�3 0.01894(04)

4.1500 298(10) 4080 6:17ð07Þ � 10�3 0.01736(03)

4.2000 320(6) 4160 7:57ð08Þ � 10�3 0.01583(02)

4.2500 341(6) 4160 9:17ð07Þ � 10�3 0.01451(03)

4.3500 383(8) 4334 1:21ð01Þ � 10�2 0.01185(01)

C12

3.9000 205(4) 3050 8:4ð5Þ � 10�4 0.0465(2)

3.9300 215(4) 3101 1:16ð4Þ � 10�3 0.0431(2)

3.9500 222(4) 5822 1:35ð3Þ � 10�3 0.0407(2)

3.9700 228(4) 9179 1:63ð3Þ � 10�3 0.0379(2)

3.9900 235(4) 5151 2:11ð5Þ � 10�3 0.0360(2)

4.0100 242(4) 4640þ 5432 2:48ð5Þ � 10�3 0.0341(2)

4.0200 246(4) 5120þ 3324 2:49ð6Þ � 10�3 0.0336(3)

4.0300 250(4) 6240þ 3308 2:92ð7Þ � 10�3 0.0325(3)

4.0400 254(4) 4080þ 3308 3:20ð7Þ � 10�3 0.0315(3)

4.0500 258(5) 4640 3:57ð8Þ � 10�3 0.0306(2)

4.0600 262(5) 5523 3:79ð5Þ � 10�3 0.0296(1)

4.0700 266(6) 2790 4:20ð5Þ � 10�3 0.0288(1)

B10

3.7600 200(29) 7760 1:57ð07Þ � 10�3 0.05146(10)

3.7800 206(24) 3328 1:80ð10Þ � 10�3 0.04769(15)

3.8000 212(20) 3097 2:25ð06Þ � 10�3 0.04398(19)

3.8200 218(16) 3516 2:60ð10Þ � 10�3 0.04091(17)

3.8400 225(13) 3279 3:19ð08Þ � 10�3 0.03783(18)

3.8650 228(11) 3450 4:80ð08Þ � 10�3 0.03364(19)

3.8700 234(9) 5900 4:38ð10Þ � 10�3 0.03357(14)

3.8750 235(8) 3600 4:49ð10Þ � 10�3 0.03351(18)

3.8800 237(7) 8759 5:07ð18Þ � 10�3 0.03233(44)

3.8850 239(7) 6400 4:91ð11Þ � 10�3 0.03222(40)

3.8900 241(6) 7789 5:17ð13Þ � 10�3 0.03258(36)

3.8950 243(6) 4450 5:52ð12Þ � 10�3 0.03143(24)

3.9000 244(5) 5973 5:81ð11Þ � 10�3 0.03101(20)

3.9100 246(5) 7250 5:70ð12Þ � 10�3 0.03085(39)

3.9300 250(5) 8050 7:23ð10Þ � 10�3 0.02967(14)

3.9700 258(5) 7276 8:42ð13Þ � 10�3 0.02465(07)

4.0500 274(5) 8716 1:24ð2Þ � 10�2 0.02060(03)

4.1000 309(5) 1517 1:44ð3Þ � 10�2 0.01873(04)

4.2000 333(9) 4131 2:00ð2Þ � 10�2 0.01564(01)

TABLE II. (Continued)
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A pseudocritical temperature associated with the transition
behavior of individual observables is, in general,
observable-dependent.

In Figs. 3–6 we show our data for �2
�c c

in accordance

with Eq. (13) and the susceptibility of the real part of the
Polyakov loop [Eq. (9)]. We quite clearly see maxima for
�2

�c c
in all cases, whereas for the Polyakov loop suscepti-

bility, we find only an onset of certain shoulders for the
ensembles A12, B12, and B10. At the higher pion mass
case C12, for which we restricted ourselves to smaller
statistics, there seems to appear a maximum also for the
Polyakov susceptibility.

In order to estimate the pseudocritical �c for chiral
transition, we have modeled the data for �2

�c c
with a

Gaussian

cþ a exp

�
�ð�� �cÞ2

�2

�
: (18)

The results for the corresponding pseudocritical chiral
transition temperature T� are collected in Table III.

In Fig. 7 we show the renormalized chiral condensate
ratio Rh �c c i and the renormalized Polyakov loop hReðLÞi
for the ensembles B12 and B10. The large error bars for the

T values in the case of the B10 ensemble reflect the
uncertainty in the scale setting.
By determining the inflection point of the renormalized

Polyakov loop hReðLÞi, we were able to estimate the
deconfinement temperatures Tdeconf for the ensembles
B12 and C12, see Table IV.
We cleary see that Tdeconf > T� for both higher pion

masses. This corresponds to the observation reported in
Ref. [42].
From weak coupling analyses (valid at high tempera-

ture), it is known that the leading-order a2 scaling toward
the continuum limit might not set in before N� * 16 [48].
Therefore, discretization effects as a major source of sys-
tematical errors need to be thoroughly checked. Since the
runs B10 and B12 share a common pion mass and differ
only by N�, they can be used in order to assess the magni-
tude of cutoff effects. As can be seen from Fig. 6, the
quality of �2

�c c
for the B10 ensemble is not yet precise

enough to allow for a Gaussian fit. The available data
however suggests a maximum at around �� 3:82 that
corresponds to a temperature T � 218 MeV and agrees
with T� at N� ¼ 12. Moreover, the renormalized

Polyakov loop and the renormalized chiral condensate
(Fig. 7) agree within errors for B10 and B12 indicating
small cutoff effects.

FIG. 3 (color online). �2
�c c

(left) and susceptibility of Re(L) (right), both for run A12.

FIG. 4 (color online). �2
�c c

(left) and susceptibility of Re(L) (right), both for run B12.
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IV. TOWARD THE CHIRAL LIMIT

As indicated in the introduction, the main interest in the
Nf ¼ 2 thermal transition lies in its chiral limit, for which

one would like to unequivocally determine the order of the
phase transition. The chiral condensate h �c c i then is an
order parameter corresponding to the magnetization in an
appropriate spin model of the same universality class.
Finite quark (and therefore pion) masses break the chiral
symmetry explicitly, thus corresponding to an external
field. Provided the Nf ¼ 2 chiral limit features a second-

order transition and belongs to the Oð4Þ universality class,
one may extrapolate finite mass simulations using univer-
sal scaling relations, which hold within some scaling re-
gion around the critical phase transition [19,21]. A priori it
is not known how far into the massive region scaling
extends, i.e., one can merely test consistency of the data
with scaling. A further difficulty is that chiral symmetry is

broken explicitly for Wilson fermions at finite lattice
spacing, even in the massless case. Any universal behavior
for these types of fermions thus corresponds to continuum
scaling, which can only be observed once discretization
errors are sufficiently small. Finally, the scaling relations
we employ here are valid in the thermodynamic limit.
Dedicated finite-size scaling analyses are required to es-
tablish the appropriate lattice sizes, but this is beyond the
scope of the present study. Again, we assume our lattices to
be sufficiently large and test for consistency with scaling.
We begin by attempting a fit of T�ðm�Þ to the scaling

form [21,49]

T�ðm�Þ ¼ T�ð0Þ þ A �m2=ð ~�
Þ
� ; (19)

where we have dressed the critical exponent ~� with a tilde
in order to distinguish it from the lattice coupling. The
‘‘external field’’ in this case is the quark mass specified by
the mass parameter a�0, which in turn is connected to the
pion mass in leading-order (LO) �pt viam2

� ��0. Thus, it
is important to keep the pion mass small for two reasons:
the validity of both the scaling window and the LO of �pt.
While there is good reason to expect that our pion masses
are sufficiently small for the latter [35], the size of the
scaling region remains unknown at present. Unfortunately,
we do not have sufficiently many data points or sufficiently
small errors in order to determine the exponents but fix the

FIG. 5 (color online). �2
�c c

(left) and susceptibility of Re(L) (right), both for run C12.

FIG. 6 (color online). �2
�c c

(left) and susceptibility of Re(L) (right), both for run B10.

TABLE III. List of pseudocritical points for the chiral
transition T�.

Run N� �c T� (MeV) r0T�

A12 12 3.89(3) 202(7) 0.437(18)

B12 12 3.93(2) 217(5) 0.473(10)

C12 12 3.97(3) 229(5) 0.500(14)
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exponents and fit A and Tcð0Þ only. For Oð4Þ we have

2=ð ~�
Þ ¼ 1:08, and the resulting extrapolation is shown
in Fig. 8, giving a chiral critical temperature T�ðm�¼0Þ¼
152ð26ÞMeV. It is now interesting to ask whether Oð4Þ
scaling can be discriminated from other behavior. As dis-
cussed earlier, the alternative scenario is a first-order phase
transition in the chiral limit. Often in the literature, the
same scaling relation is tested by merely changing to

‘‘first-order exponents’’ (2=ð ~�
Þ ¼ 2) [14,50]. Doing so
leads to an extrapolation with somewhat larger T�ðm�¼0Þ¼
182ð14ÞMeV. However, it is unclear to us whether the
scaling relation is applicable in this case. First, for a first-
order phase transition, there is no diverging correlation
length. Approaching T� in the infinite-volume limit from

above and below proceeds in different phases, with finite
correlation length in each. Hence, there is no scaling and
no universality in the sense of second-order transitions

(in particular, ~� ¼ 0 and 
 ¼ 1 separately). The ‘‘critical
exponents’’ usually associated with first-order transitions
specify the approach of the thermodynamic limit in finite-
size scaling analyses but do not apply to the relation (19) in
the thermodynamic limit (for a detailed discussion of scaling
for first-order phase transitions, see Ref. [51]). Second, if
the chiral limit indeed features a first-order phase transition,
it will weaken with finite quark masses until it vanishes in a
Zð2Þ critical endpoint. Figure 9 shows the two possible
scenarios. However, this means that coming from the cross-
over region at larger quark masses, an extrapolation to the
chiral limit is never exact, as it would pass through a
singularity at the critical point. Rather, the approach of this
singularitywill again be characterized by scaling, this time in

the Zð2Þ universality class. In this case we may use again the
relation (19), but with a finite critical pion mass marking
the critical point, m2

� ! ðm2
� �m2

�;cÞ. We have attempted

such extrapolations also. Our data are not sufficient to
constrain m�;c. Therefore, Fig. 8 shows two extrapolations,

one with m�;c � 0 and another with m�;c � 200 MeV. As
the figure illustrates, our extrapolations alone cannot yet
discriminate between the first-order and second-order
scenarios. This would require drastically smaller pion
masses, lower than the physical value even. Nevertheless,
using knowledge about Tc from other simulations, we still
obtain a tendency. The fit assuming a first-order scenario
leads to a critical temperature that is somewhat larger than
expected from other investigations [1]. Of course, those
extrapolations are likewise valid only in the Oð4Þ scenario;
so again this is merely a consistency test.
For a fixed N�, assumed to be large enough so as to be

sufficiently close to the continuum, it is also possible to
obtain the chiral critical � by means of the scaling relation
[21,49]

�cðhÞ ¼ �chiral þ B � h1=ð ~�
Þ; h ¼ 2a�0; (20)
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FIG. 7 (color online). Ratio Rh �c c i according to Eq. (17) (left) and renormalized Polyakov loop hReðLÞiR (right), both for runs B12
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FIG. 8 (color online). Chiral extrapolation for T�ðm�Þ for
various scenarios as explained in the text.

TABLE IV. List of pseudocritical points for the deconfinement
transition Tdeconf .

Run N� �c Tdeconf (MeV) r0Tdeconf

B12 12 4.027(14) 249(5) 0.546(13)

C12 12 4.050(15) 258(5) 0.565(14)
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with 1=ð ~�
Þ ¼ 0:537 corresponding to Oð4Þ exponents.
For N� ¼ 12 our estimates for �c are shown in Fig. 10
and can be extrapolated in this manner.

Consistent fits have been found taking all three points
from A12 to C12 into account. The result for the critical
chiral � value is

�chiralðN� ¼ 12Þ ¼ 3:73ð9Þ: (21)

We have carried out the same fit but with the two lower
pion mass values (A12 and B12) only. It ended up with the
same value. This result corresponds to T�ðm� ¼ 0Þ �
159ð30Þ MeV where the error results from the scale setting.
This number is in accord with our fits for T�ðm�Þ for a

second-order transition in the chiral limit. Note, however,
that the lattice spacing necessary to set the scale stems from
an extrapolation to smaller values of � than available from
ETMC. This is reflected in the large uncertainty assigned to
the temperatures.

Next, the scaling of the magnetic equation of state can be
investigated, Fig. 11, in which we follow previous studies
[21,24],

h �c c i ¼ h1=
cfðd�=h1=ð ~�
ÞÞ; (22)

with

� ¼ �� �chiral: (23)

The functional form of the scaling function f for the Oð4Þ
case is known [52,53]. Since we do not know the correct
normalization for � and h with respect to QCD, we are

left with two free parameters, c and d, that have to be
fitted. We perform the fits in the � intervals from � ¼
3:83ð3:85; 3:89Þ to � ¼ 3:97ð4:03; 4:04Þ for A12 (B12,
C12), respectively. The fit results are collected in Table V.
A fit for the line A12 works quite well, �2=dof ¼ 0:43,

but gives �chiral ¼ 3:57ð4Þ, which is smaller than the value
estimated above by applying Eq. (20). In general, we
observe an increase of �2 and a decrease of �chiral with
increasing mass. Indeed, B12 yields �chiral ¼ 3:40ð5Þ,
which would correspond to a much too low critical tem-
perature below 100 MeV, while C12 gives even smaller
values with larger �2. Thus, the fit seems to account for
scaling violations due to large mass by decreasing �chiral.
However, scaling violations due to the quark mass can be

taken into account by an ansatz including corrections [24],

h �c c i ¼ h1=
cfðd�=h1=ð ~�
ÞÞ þ at�hþ b1hþ b3h
3 þ � � �

(24)

We have fitted our data in numerous ways by taking into
account one, two, or even three violation terms. Joint fits to
the A12þ B12 ensembles are feasible in all three combi-
nations, giving a �chiral the more consistent with the pre-
vious determination the more violation terms are included
(see Table V). In Fig. 11 we show a combined fit to A12 and
B12 fixing �chiral ¼ 3:73 from our independent determi-
nation with �2=dof ¼ 0:63. Note that these fits with the
two lower-order violation terms are not able to include
the C12 data with the requirement of a reasonable value
of �2=dof. However, if we include the next higher violation
term b3h

3 in the combined fit to A12, B12, and C12, we
obtain an acceptable �2=dof ¼ 1:8; see the the last line of
Table V. We observe that in this case, the fit even prefers a
value for �chiral compatible with the one from the analysis
based on Eq. (20).

Since we are in a range of the scaling variable �=h1=ð ~�
Þ
where the scaling function is rather flat, judgement on
whether there are additional violations of theOð4Þ behavior

FIG. 9. Illustration of possible scenarios for the Nf ¼ 2 chiral
limit.
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FIG. 10 (color online). Critical couplings �c as a function of
the external field h.

FIG. 11 (color online). Scaling for the bare h �c c i data at N� ¼
12 as a function of the scaling variable with modelling of scaling
violations. The fit shown is for the combined A12 and B12 data
(fit number 10 in Table V).
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or not is difficult. Repeating this exercise for the
first-order scenario with an endpoint does not give further
insight, as the combinations of exponents are very close,

1=ð ~�
Þ ¼ 0:537, 0.638 and 1=
 ¼ 0:21, 0.20 for Oð4Þ and
Zð2Þ, respectively. Therefore, our data are consistent
with the Oð4Þ scenario but do not rule out the possibility
of the first-order case. This would require drastically
smaller pion masses combined with finite-size studies,
as the window for chiral scaling appears to set in for
m� � 300 MeV.

V. CONCLUSIONS

We have presented a (revised) first investigation of the
two-flavor thermal QCD transition with maximally twisted
mass fermions. Our results are compatible with existing
work, although, of course, staggered investigations are
much more advanced [12,13,15,54]. The quality of our
signals is comparable to recent results with clover
improved Wilson fermions [33,50].

For three pion masses in the range 300 MeV<m� <
500 MeV, we have determined pseudocritical tempera-
tures for the crossover from the hadronic regime to the
quark gluon plasma. The pseudocritical temperatures—
extracted for the two higher mass values—from observ-
ables related to chiral and deconfinement transitions,
respectively, turned out to be different. Discretization ef-
fects in Tc appeared to be small for our lattice spacings,
a < 0:09 fm.

We have restricted ourselves to pion masses<500 MeV
in order to assure the validity of LO �pt as well as the

scaling forms in order to extrapolate to the chiral limit.
Assuming the scaling forms appropriate for different
universality classes, such extrapolations gave critical
temperatures in the range Tc � 140–200 MeV consistent
with other studies. However, detailed fitting analyses
demonstrated that the second-order Oð4Þ scaling regime
is not yet reached. Scaling violations could be accomo-
dated by leading-order corrections due to finite-mass ef-
fects up to m� � 400 MeV, while heavier masses violate
even those corrections. By including higher-order violation
effects, reasonable fits could be achieved with �c values
consistent with the other determinations.

We find that truly distinguishing between the different

universality classes and thus ruling out a first-order sce-

nario will require much smaller pion masses, m� & m
phys
� ,

as well as finite-size scaling analyses. We hope to address

these issues in future investigations.
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713, 342 (2012).
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[13] S. Borsányi, G. Endrődi, Z. Fodor, A. Jakovác, S. D. Katz,
S. Krieg, C. Ratti, and K.K. Szabó, J. High Energy Phys.
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Lett. 78, 179 (1997).

[22] S. Aoki et al. (JLQCD), Phys. Rev. D 57, 3910 (1998).
[23] A. Ali Khan et al. (CP-PACS), Phys. Rev. D 63, 034502

(2000).
[24] S. Ejiri, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P.

Petreczky, C. Schmidt, W. Soeldner, and W. Unger, Phys.
Rev. D 80, 094505 (2009).

[25] M. D’Elia, A. Di Giacomo, and C. Pica, Phys. Rev. D 72,
114510 (2005).

[26] G. Cossu, M. D’Elia, A. Di Giacomo, and C. Pica (2007).
[27] C. Bonati et al., Proc. Sci., Lat2008 (2008) 204.
[28] S. Aoki, H. Fukaya, and Y. Taniguchi, Phys. Rev. D 86,

114512 (2012).
[29] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen, and F.

Sanfilippo, Proc. Sci., LATTICE2011 (2011) 189.
[30] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338

(1984).
[31] A. Shindler, Phys. Rep. 461, 37 (2008).

[32] T. Umeda, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y.
Maezawa, and H. Ohno, Phys. Rev. D 79, 051501 (2009).

[33] V. Bornyakov, R. Horsley, Y. Nakamura, M. Polikarpov, P.
Rakow, and G. Schierholz, Proc. Sci., Lat2010 (2011) 170.

[34] B. Brandt, A. Francis, H. Meyer, O. Philipsen, and H.
Wittig, Proc. Sci., LATTICE2012 (2012) 073.

[35] R. Baron et al. (ETM), J. High Energy Phys. 08 (2010)
097.

[36] C. Urbach, K. Jansen, A. Shindler, and U. Wenger,
Comput. Phys. Commun. 174, 87 (2006).

[37] K. Jansen and C. Urbach, Comput. Phys. Commun. 180,
2717 (2009).

[38] E.-M. Ilgenfritz, K. Jansen, M. P. Lombardo, M. Müller-
Preussker, M. Petschlies, O. Philipsen, and L. Zeidlewicz
(tmfT Collaboration), Phys. Rev. D 80, 094502 (2009).

[39] F. Burger, E.-M. Ilgenfritz, M. Kirchner, M. P. Lombardo,
M. Müller-Preussker, O. Philipsen, C. Urbach, and L.
Zeidlewicz (tmfT Collaboration), Proc. Sci., Lat2010
(2010) 220.

[40] M. Müller-Preussker, E.-M. Ilgenfritz, K. Jansen, M. P.
Lombardo, O. Philipsen, L. Zeidlewicz, M. Kirchner, M.
Petschlies, D. Schulze, and C. Urbach (tmfT
Collaboration), Proc. Sci., Lat2009 (2009) 266.

[41] P. Dimopoulos, R. Frezzotti, C. Michael, G. C. Rossi, and
C. Urbach, Phys. Rev. D 81, 034509 (2010).

[42] Y. Aoki, Z. Fodor, S. Katz, and K. Szabó, Phys. Lett. B
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