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In the continuum the definitions of the covariant Dirac operator and of the gauge covariant derivative

operator are tightly intertwined. We point out that the naive discretization of the gauge covariant derivative

operator is related to the existence of local unitary covariant ladder operators which allow the definition of

a natural lattice gauge covariant derivative. The associated lattice Dirac operator has all the properties of

the classical continuum Dirac operator, in particular anti-Hermiticity and chiral invariance in the massless

limit, but is of course nonlocal in accordance to the Nielsen-Ninomiya theorem. We show that this lattice

Dirac operator coincides in the limit of an infinite lattice volume with the naive gauge covariant

generalization of the SLAC derivative, but contains nontrivial boundary terms for finite-size lattices.

Its numerical complexity compares pretty well on finite lattices with smeared lattice Dirac operators.

DOI: 10.1103/PhysRevD.87.074505 PACS numbers: 11.15.Ha, 11.30.Rd, 12.38.Aw

I. INTRODUCTION

The standard mathematical description of the dynamics
of the strong interactions, a description called quantum
chromodynamics (QCD), is obtained by writing the parti-
tion function of an Euclidean SUð3Þ quantum gauge field
theory interacting with Nf � 2 fermions in the fundamen-

tal representation of the gauge group. The partition func-
tion of QCD is postulated by analogy with the path integral
formalism of quantum electrodynamics (QED) which has
been shown to be successful with a very high accuracy.
Using the rules of Grassmannian integration, the QCD
partition function can be formally written as a functional
integral over the non-Abelian gauge degrees of freedom
only,

Z ¼
Z

DA�

�Y
f

det D̂f

�
e�SG : (1)

The measure of integration in Eq. (1) can be interpreted
as a formal probability measure over the space of gauge

configurations because the Euclidean Dirac operator D̂f

of each fermion flavor is anti-Hermitian (with the right
boundary conditions) and chirally invariant in the massless
limit,

D̂f ¼ ��D� þmf; D� ¼ @� þ igA�;

f�5; ��D�g ¼ 0; f��;��g ¼ 2���; �y
� ¼ ��:

(2)

Hence the eigenvalues of each operator D̂f come in

complex conjugate pairs, up to a possible discrete set
of zero modes of the operator ��D�, which guarantees

reality and positiveness of their determinant for massive

fermions, det D̂f > 0.

The Euclidean gauge action (summation over repeated
indices is implied throughout),

SG ¼ 1

4
F��F��;

F�� ¼ @�A� � @�A� þ ig½A�; A��;
(3)

is invariant under the local gauge transformations
GðxÞ 2 SUð3Þ,

A�ðxÞ ! GðxÞA�ðxÞG�1ðxÞ þ i

g
ð@�GðxÞÞG�1ðxÞ; (4)

whereas the operator D̂f transforms covariantly.

Physical observables can then be related to expectation
values with respect to the probability measure (1) of certain
gauge-invariant matrix elements OðAÞ of operators built
out of the Dirac operators and their inverses, provided that
the formal measure DA� in (1) be given a precise gauge-

invariant meaning through a constructive procedure.
Section II recalls briefly the main properties of Wilson’s

lattice regularization which is the only constructive
proposal known to date [1]. The discretization of space-
time in a finite box allows for the nonperturbative calcu-
lation of physical observables by means of numerical
simulations. The approach has been very successful in
describing many features of hadronic physics, except for
one thing. It proves difficult to reproduce the continuum
physics with the physical light quark masses.
The reason is well understood [2] and resides in

the formulation of lattice fermions. The Lorentz invariant
regularization of quantum fluctuations in continuum
QCD generate a chiral anomaly which cannot be
duplicated on the lattice with a discretization of the Dirac
operator which is local, chirally symmetric and contains
the correct number of fermionic degrees of freedom in the
continuum limit. This result is usually referred to as the no-
go theorem. The standard avoidance is to hold to local
fermions and break chiral symmetry explicitly.
In Sec. III we reconsider the naive discretization of the

covariant derivative and identify a set of local unitary*claude.roiesnel@cpht.polytechnique.fr
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covariant ladder operators which enables the definition of
another lattice gauge covariant derivative with the same
algebraic properties as in the continuum. This lattice de-
rivative is nonlocal in accordance to the no-go theorem and
coincides in the free limit with the SLAC derivative [3].
The lattice fermion formulation based on the SLAC de-
rivative has been extensively discussed three decades ago.
A general consensus has emerged according to which
formulations of nonlocal lattice fermions coupled to gauge
fields lead to various inconsistencies in weak coupling
perturbation theory [4–8], and cannot reproduce the
continuum limit properly, in particular the axial anomaly
[9]. In fact we are not aware of a single numerical study of
the functional integral of a SLAC-type fermion coupled to
a compact lattice gauge field.

Nonetheless we think it is fair to state that none of the
objections to nonlocal fermions has the status of a no-go
theorem. In all studies to date, the coupling of a SLAC
fermion to a gauge field on the lattice has been written by
mimicking the textbook derivation of a local gauge
symmetry in the continuum. The result is correct only for
infinite lattices. The boundary conditions on finite-size
lattices are not taken into account by the standard
technique. The unitary covariant ladder operators exhibited
in Sec. III are the right tools to include boundary
conditions. As an example, in Sec. IV we diagonalize these
unitary operators on periodic lattices and express in Sec. V
the matrix elements of the associated lattice Dirac operator
in configuration space. We find nontrivial boundary
contributions which vanish only in the limit of infinite
physical volume.

We discuss in Sec. VI the localization properties of this
nonlocal lattice Dirac operator, particularly with respect to
the standard locality condition put forward to guarantee the
universality of the continuum limit [10]. We prove that the
approach to the continuum limit of the proposed operator is
in fact far better than for conventional local operators when
the action is upon smooth enough classical field configu-
rations. The exact matrix elements obtained in Sec. V are
crucial to derive this result. More generally, the constraints
of the underlying locality of the exponentiated nonlocal
lattice gauge covariant derivative probably cannot be ne-
glected in analyzing the weak coupling perturbation theory
and its renormalization, even in the infinite lattice volume
limit. The intent of the present work is not to address this
complicated issue, which deserves a separate work, but to
stress its existence.

In the concluding remarks we point out that the num-
erical complexity of the associated finite-size lattice Dirac
operator is similar to a five-dimensional local Dirac opera-
tor. In fact the algorithmic implementation is much
simpler. Moreover this nonlocal Dirac operator can be
naturally interpreted as smeared over the Wilson lines.
This smearing has the virtue to be completely analytic.
Numerical tests of the meaningfulness of the finite-size

formulation of nonlocal fermions coupled to gauge fields
can easily be performed on a single desktop computer in
the quenched approximation up to four dimensions.

II. LATTICE REGULARIZATION

As is well known, Wilson’s formulation consists of
regularizing the Euclidean continuum gauge theory on a
finite four-dimensional lattice L with hypercubic cells of
spacing a, and of replacing the continuum gauge degrees of
freedom, the gauge potential A�ðxÞ which belongs to the

SUð3Þ Lie algebra, by variables Ux;� associated to each

link ðx; xþ a�̂Þ of the lattice and which belong to the
SUð3Þ group manifold. Then Eq. (1) becomes

ZL ¼
Z � Y

ðx;xþa�̂Þ2L

dUx;�

��Y
f

det D̂fðUÞ
�
e�SGðUÞ; (5)

where the integration measure is now a perfectly well-
defined finite product of gauge-invariant Haar measures

over the SUð3Þ group manifold, and SGðUÞ and D̂fðUÞ are
discretized versions of the continuum gauge action and
Dirac operators. This measure can be evaluated numeri-
cally by stochastic importance sampling.
There is a large arbitrariness in the choice of lattice

gauge action and lattice Dirac operators. The main con-
straint is that the lattice regularized model possess a
second-order critical point which reproduces the asymp-
totic freedom of QCD in the continuum limit, with critical
exponents predicted by perturbation theory. This requires
in particular that the lattice operators reproduce the naive
continuum definitions when the lattice spacing vanishes,
a ! 0. Scaling theory then suggests that there exists a
whole universality class of lattice actions which corre-
spond to different regularizations of the same continuum
theory and whose critical properties are related by renor-
malization group transformations.
The most direct ab initio approach is to consider lattice

QCD actions with the same number of parameters as
continuum QCD. The simplest such lattice gauge action,
the Wilson action [1], has discretization errors of Oða2Þ,

SwðUÞ ¼ �
X

x;�<�

�
1� 1

6
TrðP��ðxÞ þ Py

��ðxÞÞ
�
; with

P��ðxÞ ¼ Ux;�Uxþa�̂;�U
y
xþa�̂;�U

y
x;�; � ¼ 6

g2
: (6)

Local gauge invariance is preserved on the lattice provided
that the variables Ux;� transform as

Ux;� ! GðxÞUx;�G
�1ðxþ a�̂Þ: (7)

The simplest candidate for a lattice Dirac operator is ex-
pressed in terms of the naive discretization of the covariant
derivative operator, namely,
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D̂lðUÞ ¼ ��Dl;�ðUÞ þm;

ðDl;�ðUÞc Þx ¼ 1

a
ðUx;�c xþa�̂ � c xÞ;

(8)

which has the correct covariant transformation law under
(7) but does not have a spectrum with definite transforma-
tion properties under the conjugation operation. Hence the

determinant det D̂lðUÞ is complex in general and does not
define a probability measure.

An obvious work around would be to introduce
anti-Hermitian covariant difference operators,

ðDs;�ðUÞc Þx ¼ 1

2a
ðUx;�c xþa�̂ �Uy

x�a�̂;�c x�a�̂Þ; (9)

which have the same conjugation properties as the contin-
uum operators and produces a valid probability measure.

But the operator D̂s ¼ ��Ds;� is plagued by the famous

fermion doubling problem, due to the use of a central
difference operator, and does not describe a single fermion
flavor even in the continuum limit.

Wilson proposed [11] to add to D̂s a piece proportional
to the finite difference approximation to the Laplacian
operator �, which lifts the mass degeneracy of the fermion
doublers by terms of order 1=a at the expense of breaking
chiral invariance explicitly. However the Wilson operator
still possess the same pseudo-Hermiticity property as the
continuum Dirac operator,

D̂wðUÞ ¼ ��Ds;�ðUÞ � r�L ð0< r � 1Þ;
D̂y

w ¼ �5D̂w�5;
(10)

which guarantees the invariance of its spectrum under
conjugacy and the interpretation of (5) as a probability
measure. It was later realized [2] that it is not possible to
devise a (ultra-)local lattice Dirac operator with the correct
classical continuum limit and without fermion doublers
while preserving exact chiral invariance on the lattice in
the massless case.

Various alternative lattice Dirac operators have been
put forward during the subsequent three decades, some of
which with a presently viable ecosystem. The reader can
find all references in a recent, and very nice, review
Ref. [12] of the state-of-the-art of numerical simulations
of lattice gauge theories.

III. A CHIRALLY INVARIANT LATTICE
DIRAC OPERATOR

If one examines the definition (8) of the naive lattice
covariant derivative operator, one realizes immediately
that the four operators,

S�¼1þaDl;�; ðS�Þix;jy¼ðUx;xþa�̂Þij�y;xþa�̂; (11)

are, for periodic gauge field configurations, unitary ladder
operators which translate by one lattice unit in direction �̂

each slice of the lattice field they act upon, while rotating
locally their color degrees of freedom,

S�Sy
� ¼ Sy

�S� ¼ 1; 8 �: (12)

The set of operators S� transforms covariantly under the

local gauge transformations (7),

S� ! GS�G�1; ðGÞix;jy ¼ GðxÞij�xy; 8 �; (13)

and encodes all the space-time and color degrees of free-
dom of a gauge field configuration on a four-dimensional
lattice. For instance, the Wilson action (6) can be written,
up to a constant term, as

SwðUÞ ¼ ��

6
TrðS�S�Sy

�S
y
�Þ: (14)

Expressing the unitary operators S�ðUÞ as exponentials of
anti-Hermitian operators Dr;�ðUÞ,

S�ðUÞ ¼ eaDr;�ðUÞ; Dr;� þDy
r;� ¼ 0; 8 �; (15)

singles out the operators Dr;�ðUÞ as the natural definition

of the lattice covariant derivative. Indeed the symmetric
covariant difference operators (9) are just the leading ap-
proximation in the series expansion of these exponentials
with respect to the lattice spacing a,

aDs;�ðUÞ ¼ 1

2
ðeaDr;� � e�aDr;�Þ: (16)

Then we can define the lattice Dirac operator

D̂rðUÞ ¼ ��Dr;�ðUÞ þm; (17)

which is anti-Hermitian, chirally symmetric in the mass-
less limit, and transforms covariantly under the local gauge

transformations (7). The eigenvalues of the operator D̂r

come in complex conjugate pairs, m� i�, up to a possible
set of zero modes for the imaginary part which ensures,
like in the continuum, reality and positiveness of the

determinant for massive fermions, det D̂r > 0.

The operator D̂rðUÞ is nonlocal since each lattice co-
variant derivative operatorDr;� is a series expansion in the

local covariant derivative operator Dl;�,

aDr;� ¼ log ð1þ aDl;�Þ ¼
Xþ1

n¼1

ð�1Þnþ1an

n
Dn

l;�: (18)

From the convergence properties of the series expansion
(18), the prospect of a practical numerical implementation

of the lattice Dirac operator D̂r might seem very slim.
On the other hand, in the free case, the eigenvectors of

the operators S� are just plane waves and their 3N3 degen-

erate spectrum is simply
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SpecS�ð1Þ¼
�
eiap� ;p�¼ 2�n

aN�

;�N�

2
�n<

N�

2
;n2Z

�
:

(19)

In this limit the lattice Dirac operator D̂r has a discrete
Fourier representation which has the same form as in the
continuum,

_̂Drð1Þ ¼ i��p� þm; (20)

which shows that the operator D̂rð1Þ is not afflicted
with the fermion doubling problem. In compliance to
the Nielsen-Ninomya theorem, the price to pay is the

nonlocality of the operator D̂rðUÞ. The operator Dr;�ð1Þ
coincides with the SLAC derivative introduced long ago
[3] which reads, in the limit of an infinite lattice volume,

D1;�ðx� yÞ ¼
Z �=a

��=a

d4p

ð2�Þ4 ip�e
ip�ðx�yÞ: (21)

The usual recipe to couple a SLAC-type fermion to a
SUð3Þ gauge field consists in restoring gauge invariance
by inserting, if x� y has a nonvanishing component only
in direction �̂, the Wilson SUð3Þ ordered straight line
integral W�ðU; x; yÞ between x and y, which yields the

covariant lattice Dirac operator

ðD̂SðUÞÞ�ix;�jy ¼ m����ij�xy þ
X
�

ð��Þ��D1;�ðx� yÞ

� ðW�ðU; x; yÞÞij; (22)

W�ðU; x; yÞ ¼ �x?
�;y

?
�

Yðy��x��1Þ=a

k¼0

Uxþka�̂;xþðkþ1Þa�̂;

if y� > x�;
(23)

where x ¼ ðx?
�; x�Þ, y ¼ ðy?�; y�Þ, and x?

�; y
?
� label

the sites in the three-dimensional slices orthogonal to
the �th direction. If y� < x�, we have of course

W�ðU; x; yÞ ¼ W�ðU; y; xÞy.
The matrix elements (22) are certainly correct in

the limit of an infinite lattice. However the boundary
conditions on finite-size lattices are not taken into account
by the conventional prescription. The operators S� have

such a simple structure that it makes possible their explicit
diagonalization for an arbitrary background periodic lattice
gauge field configuration and rather general twisted bound-
ary conditions for the matter fields. We shall find nontrivial

boundary terms in the matrix elements of the operator D̂r

on finite-size lattices.
To the best of our knowledge, the underlying local

unitary structure of the lattice gauge covariant general-
ization of the SLAC derivative does not seem to have
been appreciated since its introduction.

IV. EXPLICIT DIAGONALIZATION OF THE
UNITARY COVARIANT LADDER OPERATORS

For definiteness we shall assume the lattice to be
hypercubic, N1 ¼ N2 ¼ N3 ¼ N4 � N, and we shall
impose periodic boundary conditions on both the lattice
gauge field configuration and the lattice matter fields which
can be scalars, fermions, . . . . The operators S� do not

commute in general and have different eigenspectra
f��; c ��

g. Iterating the eigenvalue equation for S�,

S�c ��
¼ ��c ��

; (24)

yields

ðSn
�c ��

Þix ¼
�Yn�1

k¼0

Uxþka�̂;xþðkþ1Þa�̂
�
ij
ðc ��

Þj;xþna�̂;

¼ �n
�ðc ��

Þix: (25)

Imposing the periodic boundary condition,

c xþNa�̂ ¼ c x; 8 x; (26)

implies that the eigenvectors c ��
satisfy the equations

ðW�ðU;x;xþNa�̂ÞÞijðc ��
Þjx¼�N

�ðc ��
Þix; 8 x; (27)

where W�ðU; x; xþ Na�̂Þ, defined in (23), is the Wilson

line from x in direction �̂ which wraps the lattice. We shall
use the shorthand W�;xðUÞ for such Wilson lines and the

argument U will be implicit most of the time.
Hence each nonzero space-time component of the

eigenvector c ��
is a color triplet which is an eigenvector

of some Wilson line W�;xðUÞ. The Wilson lines are cova-

riant objects under the local gauge transformations (7) and
their eigenvalues are gauge invariant and do not depend on
the choice of base points x which differ only by the
x� component along their direction. Indeed a change of

base point along a Wilson line is nothing but a similarity
transformation.
Therefore the eigenspectra of the Wilson lines W�;xðUÞ

can be labeled by the points ~x of the lattice slice x� ¼ 0,

~x � ðx?
�; 0Þ,

fei�c
�; ~x ; 	c

�; ~xg; ��< �c
�; ~x � �; c ¼ 1; 2; 3; (28)

where 	c
�;~x are the color triplet eigenvectors of W�;~xðUÞ.

Their calculation requires only 4N4 SUð3Þ matrix multi-
plications and 4N3 SUð3Þ matrix diagonalizations.
Barring accidental degeneracies, the eigenvalues �� and

eigenvectors c ��
fall into families labeled by the 4� 3�

N3 eigenvalues of the Wilson lines and defined by the
equations

�N
� ¼ e

i�c
�;~x : (29)

The general solution for �� reads
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�c
�; ~x;p�

¼ e
iðap�þ�c

�; ~x
=NÞ

;

p� ¼ 2�n

Na
� �

a
; 0 � n < N: (30)

The N nonvanishing components of the corresponding
eigenvector c c

�; ~x;p�
are, with n ¼ 0; . . . ; N � 1,

ðc c
�; ~x;p�

Þjy ¼ ð�c
�;~x;p�

Þnð	c
�;yÞj�y; ~xþna�̂; with

	c
�; ~xþy��̂

¼ Wy
�ð ~x; ~xþ y��̂Þ	c

�; ~x:
(31)

These components can be computed sequentially and the
calculation of each of the 12N4 eigenvectors requires only
N SUð3Þ matrix-vector multiplications. So the total com-
putational complexity of the complete diagonalization of
every operator S� is of order OðN5Þ. A complete diago-

nalization has to be performed only once for each lattice
gauge field configuration and its storage requirement is in
practice proportional to the lattice volume since it is more
efficient to recompute the N components of each eigen-
vector when needed.

The eigenvectors of S� are also eigenvectors ofDr;� and

the action of Dr;� on an eigenvector c c
�; ~x;p�

has a remark-

ably simple continuumlike expression,

aDr;�c
c
�; ~x;p�

¼ iðap� þ ��c
�; ~xÞc c

�; ~x;p�
; ��c

�;~x ¼
�c
�;~x

N
:

(32)

There is an inherent ambiguity in the logarithmic definition
of Dr;�. We have defined rather arbitrarily the phases �c

�;~x

as the principal argument of the eigenvalues of Wilson
lines. Other prescriptions are possible for unitary gauge
groups.

V.MATRIX ELEMENTSOFTHEOPERATOR D̂rðUÞ
The kernel operation which enters most algorithms in-

volving fermions, such as the calculation of the fermion
propagator, is the action of the lattice Dirac operator on an

arbitrary lattice fermion field. The action of D̂r on a
fermion � can be written spin-component-wise as

ðD̂rðUÞ�Þ� ¼ ð��Þ��Dr;�ðUÞ�� þm��: (33)

To perform this calculation we just need to expand each
spin component of the fermion field over the complete
eigensystem of every operator Dr;�,

�� ¼ X
c; ~x;p�

Cc
�;�; ~x;p�

c c
�; ~x;p�

; 8 �: (34)

We get 4� 4� 3� N4 equations, with x ¼ ð ~x; x�Þ and

a ¼ 1 throughout this section,

ð��Þjx ¼
X
c;p�

Cc
�;�; ~x;p�

ð�c
�; ~x;p�

Þx�ð	c
�;xÞj: (35)

We can always choose all color triplet eigensystems f	c
�; ~xg

to be orthonormal. Then we observe that all eigensystems
f	c

�;xg along the same Wilson line are simultaneously

orthonormal,

X
j

ð	?a
�;xÞjð	b

�;xÞj ¼ �ab; 8 x ¼ ð ~x; x�Þ; (36)

since they are related by unitary transformations which
preserve the scalar product. Thus we can transform each
Eq. (35) into a simple one-dimensional Fourier series,

ð�0c
� Þx ¼ e

�ix� ��c
�;~x

X
j

ð	?c
�;xÞjð��Þjx;

¼ X
p�

Cc
�;�; ~x;p�

eip�x� ; 8 x ¼ ð ~x; x�Þ: (37)

Therefore the coefficients C�;c;�; ~x;p�
are the one-

dimensional inverse discrete Fourier transforms,

Cc
�;�; ~x;p�

¼ 1

N

X
x�

ð�0c
� Þxe�ip�x� : (38)

It follows that the total computational complexity of the

action of the operator D̂rðUÞ on a fermion field is of order
OðN5Þ which is only a factor N more expensive than the

action of a local operator like the Wilson operator D̂wðUÞ.
Plugging (38) into (34) yields, with x ¼ ~xþ x��̂ and

~x � ðx?
�; 0Þ as before,

ðDr;���Þjy
¼ 1

N

X
c; ~x;x�;p�

iðp� þ ��c
�; ~xÞe�iðp�þ ��c

�; ~x
Þx�

�
�X

k

ð	?c
�;xÞkð��Þkx

�
ðc c

�; ~x;p�
Þjy: (39)

Inserting (31) gives, with y ¼ ~yþ y��̂,

ðDr;���Þjy
¼ i

N

X
c; ~x;x�;p�

�~y; ~xðp� þ ��c
�; ~xÞeiðp�þ ��c

�; ~x
Þðy��x�Þ

�
�X

k

ð	?c
�;xÞkð��Þkx

�
ð	c

�;yÞj: (40)

The summation over p� brings in the finite-size SLAC

derivative,

DN;�ðx�Þ ¼ 1

N

X
p�

ip�e
ip�x� ; (41)

and the summation over ~x produces
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ðDr;���Þjy
¼ �~x; ~y

X
x�

DN;�ðy� � x�Þ
X
k

�
�X

c

e
i ��c

�; ~y
ðy��x�Þð	?c

�;xÞkð	c
�;yÞj

�
ð��Þkx

þ i
X
k

�X
c

��c
�; ~yð	?c

�;yÞkð	c
�;yÞj

�
ð��Þky: (42)

The last step is to insert (31) and use the identity,

ðWy
�ð ~y; ~yþ y��̂ÞÞjl

�X
c

fðei�c
�; ~yÞð	c

�;~yÞlð	?c
�; ~yÞm

�

� ðW�ð ~y; ~yþ y��̂ÞÞmk ¼ ðfðW�;yÞÞjk: (43)

Collecting everything together, the matrix elements of the

operator D̂rðUÞ read finally,

ðD̂rðUÞÞ�jy;�ix
¼ �xy

�
m����ij þ 1

Na

X
�

ð��Þ��ðlog ðW�;yðUÞÞÞji
�

þX
�

ð��Þ��DN;�ðy� � x�ÞðW�ðU; y; xÞ

� ðW�;xðUÞÞðy��x�Þ=NaÞji; (44)

where we reintroduced the lattice spacing a to make
apparent the physical dimensions. The covariance of the

operator D̂rðUÞ under the local gauge transformations (7)
is clearly satisfied,

D̂rðUÞ ! GD̂rðUÞG�1: (45)

We find two additional boundary contributions with respect
to the infinite volume expression (22). The first one is a
diagonal term in configuration space which vanishes pro-
portionally to the inverse physical lattice size. The second
one is an insertion in the open Wilson line W�ðU; y; xÞ of
the closed Wilson line W�;xðUÞ raised to a power the

variation of which is also proportional to the distance
y� x in physical units. The insertion point can be cova-
riantly transported anywhere along the open Wilson line.

Anti-Hermiticity of the massless operator D̂rðUÞ then
follows from the change of sign of the diagonal logarithmic
term under conjugation and from the odd parity of the
SLAC derivative DN;�ðx�Þ under sign inversion of x�.

The lattice action for a single flavor of color triplet, four-
component Dirac fermions �x,

SrðUÞ ¼ X
x;y

��yðD̂rðUÞÞy;x�x; (46)

is invariant under the transformations of the hypercubic
group Hð4Þ which is the discrete subgroup of Oð4Þ which
survives after the lattice discretization of Euclidean space-
time with hypercubic cells.

The groupHð4Þ, which has the semidirect product struc-
ture Z4

2 2S4, has the same set of improper discrete trans-
formations, in particular parity P and time reversal T , as
the Euclidean orthogonal group Oð4Þ. There is no distinc-
tion between the temporal and spatial directions of an
Euclidean lattice, and time reversal is just like inversion
about any of the other directions. We have T ¼ P 1P 2P 3,
with the reflection transformations P� defined by

�x!
P�

���xP�
; ��x!

P� ��xP�
��;

U�;x!
P�

U�;xP�
; U�;x!

P�

Uy
�;xP���̂ ð� � �Þ;

(47)

where xP�
is the site with all components of x reversed

except along direction �.
Similarly, charge conjugation is defined by the usual

transformation on the lattice fields,

�x!C C�1 ��>
x ; ��x!C ��>

x C; U�;x!C U?
�;x; (48)

where the charge conjugation operator C obeys the
relations C��C

�1 ¼ ��>
� . An explicit realization in the

Euclidean representation (2) for gamma matrices, where
�5 is diagonal, is C ¼ i�2�0.
The proof of invariance of the lattice action (46) under

the transformations (47) and (48) follows in a standard way
from the periodicity of the lattice fields, anti-Hermiticity of

the massless operator D̂rðUÞ and anticommutation rela-
tions of the fermion field.

VI. CONVERGENCE TO THE CLASSICAL
CONTINUUM LIMIT

It has always been taken for granted that lattice Dirac

operators D̂LðUÞ had to be local, up to exponential tails, in
order to reproduce the correct continuum limit when the
number of lattice points is sent to infinity at fixed physical
lattice size. This intuitive locality condition, defined in
Ref. [10], has become the criterion of the standard wisdom
to discriminate admissible lattice Dirac operators in nu-
merical simulations of lattice gauge theories. This condi-
tion reads

kaD̂LðUÞy;xk �
dðx;yÞ	a

cL exp ð�kLdðx; yÞ=aÞ;

dðx; yÞ ¼ X
�

jx� � y�j; (49)

where k � k is a matrix norm in spin and color space, dðx; yÞ
is the ‘‘taxi driver distance’’ between two sites on the
lattice and cL, kL are dimensionless constants. In other

words, the matrix elements of D̂L should be exponentially
decaying at large distances with a rate proportional to the

cutoff 1=a. The condition (49) on the operator norm of D̂L

can be properly qualified as a strong locality condition.
However it must be remembered that the localization of a
lattice Dirac operator is measured in practice through its
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action upon lattice fields. For example, the numerical test
performed in Ref. [10] consists in computing the action of
the overlap operator upon a point source, i.e., a periodic
lattice field which vanishes everywhere except for a finite
discontinuity at some point.

In the case at hand, the matrix elements (44) of the

operator D̂rðUÞ vanish whenever the sites x and y do not
belong to a same Wilson line and

kaD̂rðUÞy;xk ¼
x�y

8<
:
0 if

P
�
�x?

�;y
?
�
¼0

jaDN;�ðy��x�Þj for some�otherwise:

(50)

We drop the notation of the index � until further notice.
The finite-size SLAC derivative DNðxÞ is defined in (41)
as the discrete Fourier expansion of the sawtooth function
in momentum space, which reads for xn ¼ na and
n ¼ 1; 2; . . . ; N � 1,

aDNðxnÞ ¼
8<
:

�
N

ð�1Þn
sin �n

N
for N odd

�i �N þ �
N

ð�1Þn
tan �n

N
for N even:

(51)

For N even there is a zero mode contribution which is
purely imaginary and causes certain technical difficulties
for numerical simulations via Monte Carlo techniques. A
way to remove this zero mode would be to use antiperiodic
boundary conditions for matter fields and N even. Anyhow

it is already manifest that the operators DNðxÞ and D̂rðUÞ
do not satisfy the strong locality condition (49) for finite
odd N since j csc ðxÞj> 1=jxj> exp ð�jxjÞ. It will be con-
venient to suppose N odd in the following and continue to
work with periodic boundary conditions.

On the other hand, numerical simulations of the two-
dimensional Wess-Zumino model at weak and intermedi-
ate couplings find that SLAC fermions display a better
approach to the continuum limit than Wilson fermions
[13]. These results hint at the existence of a more general
convergence criterion to the continuum limit than the
strong locality condition (49). Thus it is instructive to
understand more precisely the convergence of the contin-
uum extrapolation first in the free theory.

By construction, the operator DNðy� xÞ reproduces the
exact derivative at the lattice sites xn ¼ na when acting on
complex trigonometric polynomials TNðxÞ of order less or
equal to N=2,

TNðxÞ ¼
XðN�1Þ=2

k¼�N=2

ck exp

�
2i�kx

Na

�

) XN�1

m¼0

DNðxn � xmÞTNðxmÞ ¼ T0
NðxnÞ: (52)

By the Weierstrass theorem any continuous function,
defined on a finite interval, can be approximated uniformly
on that interval by an infinite sequence of trigonometric

polynomials of ever increasing orders. In particular, let
c ðxÞ be a differentiable periodic function on the interval

½0; L� with Fourier coefficients ĉ n, and let us denote by
c NðxÞ the partial sum of order N=2 of its Fourier expan-
sion and by 
NðxÞ the remainder. Choosing a lattice sub-
division of ½0; L�with equidistant points such that L ¼ Na,
and since c N is a trigonometric polynomial, one has at the
lattice sites xk ¼ ka, k ¼ 1; . . . ; N � 1,

jrc ðxkÞ�ðDNc ÞðxkÞj
� jrc ðxkÞ�rc NðxkÞjþjðDNc ÞðxkÞ�ðDNc NÞðxkÞj:

(53)

There are well-known mathematical theorems [14] on the
rapidity of convergence of Fourier series of functions
according to their class of differentiability. In particular
if c 2 Cpð½0; L�Þ and if, moreover, its pth derivative
satisfies the Lipshitz condition,

jc ðpÞðx2Þ � c ðpÞðx1Þj � �jx2 � x1j; (54)

for all values of x1 and x2, � being a constant, then

jc ðmÞðxÞ � c ðmÞ
N ðxÞj � �Km

logN

Np�mþ1
; 0 � m � p;

0 � x � L; (55)

where Km is a constant which depends only on m. In other
words, all the bounds depend upon the function c only
through �. It follows from (51) that

jrc ðxkÞ � ðDNc ÞðxkÞj
� �

logN

Np ðK1 þ K0max
xn

jDNðxnÞjÞ 
 ap log a; (56)

for all values of xk. Therefore, the action of the finite-size
SLAC derivative upon smooth enough matter fields ap-
proaches the continuum limit uniformly and faster than
local discretizations of the gradient operator. This ap-
proach is even exponentially fast for infinitely differentia-
ble fields. The property that the discretization errors of the
operator DNðxÞ are much smaller should not be a surprise.
Indeed the momentum-space representation of this opera-
tor coincides by design with the continuum expression for
the discretized momenta within the first Brillouin zone.
Therefore the Lorentz symmetry violation at finite lattice
spacing is minimal. For instance, when the lattice is hyper-

cubic, the momentum-space propagator
_̂D
�1

N ðpÞ is not
spoiled by the characteristic orbit pattern present in the

free Wilson propagator
_̂D
�1

w ðpÞ, which is due to the occur-
rence in the sine terms of invariants of the hypercubic group
Hð4Þ which are different from the Lorentz invariant p2.
We are now in position to consider the action of the

operator D̂rðUÞ on a periodic massless fermion field � in
the presence of an arbitrary periodic background gauge field.

The leading approximation of D̂rðUÞ at small lattice spacing

is the local operator D̂sðUÞ and it would appear that the
discretization errors are of order a2 in the naive classical
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continuum limit. However truncating the series expansion
(18) destroys the unitarity structure and removes all the
constraints it comprises, such as anti-Hermiticity, which can
lead to serious pitfalls even if they are enforced by hand.

So let us start from the exact matrix elements (44) and

introduce a family of fermion fields ~�ð�;yÞ labeled by the
lattice points y and the direction�, which we make explicit

again. The components of these fermion fields ~�ð�;yÞ are
defined in terms of those of the original field � by the
formulas

~�
ð�;yÞ
�x ¼ W�ðU; y; xÞðW�;xðUÞÞðy��x�Þ=Na��x; (57)

where we drop the notation of the color indices. The

components of ~�ð�;yÞ are nonzero only at the lattice points
along the Wilson line which goes through y in direction �̂.

Then the action of D̂rðUÞ on � reads

ðD̂rðUÞ�Þ�y
¼ X

�

ð��Þ��
�
1

Na
log ðW�;yðUÞÞ��y

þX
x

DN;�ðy� � x�Þ ~�ð�;yÞ
�x

�
: (58)

If the fermion field � and lattice gauge field U are sam-
plings at the lattice sites and links of a continuum periodic
fermion field c ðxÞ and continuum gauge field A�ðxÞ which
are sufficiently smooth, then we can apply the convergence
theorems satisfied by the SLAC derivatives DN;�,

lim
N!1ðD̂rðUÞ�Þ�y

¼X
�

ð��Þ��
�
1

L
logðW�;yðAÞÞc �ðyÞþ lim

x!y
r�

~c ð�;yÞ
� ðxÞ

�
;

(59)

with

W�;yðAÞ ¼ P exp

�Z y�þL

y�

dsA�ðsÞ
�
;

W�ðA; y; xÞ ¼ �x?
� ;y

?
�
P exp

�Z y�

x�

dsA�ðsÞ
�
;

~c ð�;yÞ
� ðxÞ ¼ W�ðA; y; xÞðW�;xðAÞÞðy��x�Þ=Lc �ðxÞ:

(60)

We have

r�
~c ð�;yÞ
� ðxÞ¼W�ðA;y;xÞðW�;xðAÞÞðy��x�Þ=Lr�c �ðxÞþA�ðxÞW�ðA;y;xÞðW�;xðAÞÞðy��x�Þ=Lc �ðxÞ

þW�ðA;y;xÞ
�
� 1

L
logðW�;xðAÞÞþ

ðy��x�Þ
L

ðA�ðxÞ�W�;xðAÞA�ðxÞW�1
�;xðAÞÞ

�
ðW�;xðAÞÞðy��x�Þ=Lc �ðxÞ:

(61)

It follows that the two finite-size contributions in the
operator D̂r cancel out precisely in the right-hand side of
(59) when x ¼ y, and we get the correct continuum limit,

lim
N!1ðD̂rðUÞ�Þ�y ¼

X
�

ð��Þ��ðr� þ A�ðyÞÞc �ðyÞ

� ðD̂ðAÞc Þ�ðyÞ: (62)

This result is of course expected, but what is novel and
nontrivial is the dependence of the rate of convergence
upon the smoothness of the classical field configurations.
Indeed letL be a lattice subdivision of a continuum hyper-
cubic box of size L such that L ¼ Na, then we get from
Eqs. (58) and (59),

kðD̂ðAÞc Þ�ðyÞ � ðD̂rðUÞ�Þ�yk

� X
�

�����ð��Þ��ð1L ðlog ðW�;yðAÞÞc �ðyÞ

� log ðW�;yðUÞÞ��yÞ þ r�
~c ð�;yÞ
� ðyÞ

� ðDN;�
~�
ð�;yÞ
� ÞyÞ

�����; (63)

for any lattice point y. The logarithmic terms cancel out
exactly by definition of the gauge field and fermion field
discretizations,

Ux;xþa�̂�Pexp

�Z xþa�̂

x
dsA�ðsÞ

�
; ��x� c �ðxÞ: (64)

It follows that we can use Eq. (56) if all fermion fields
~�ð�;yÞ satisfy the Lipshitz condition (54), where the
Lipshitz constant now depends on y and �,

kðD̂ðAÞc Þ�ðyÞ � ðD̂rðUÞ�Þ�yk 

a!0

ap log a: (65)

Note however that we still have uniform convergence over
the lattice with � � max�ð�;yÞ.
Equation (65) shows that, for smooth enough classical

gauge field configurations, the convergence of the action of

the operator D̂r towards the continuum limit is much
better, hence the discretization errors much smaller, than
for conventional local lattice Dirac operators.
One could still object that the convergence theorems

(65) are not useful for the quantum continuum limit.
The lattice quantum observables are built out of matrix
elements of the lattice fermion propagator. The calculation
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of these matrix elements are usually performed by an
iterative algorithm which requires the evaluation of the
action of the lattice Dirac operator on a discrete unit point

source. It is clear that, for the operator D̂r, the disconti-
nuity of the point source will produce an oscillatory be-
havior in the raw lattice data, the well-known Gibbs
phenomenon, which would seem to prevent a good ana-
lytical control of the continuum limit.

From a numerical standpoint however, Eq. (65) allows
us to develop smearing filters of the raw lattice data.
The better a semiclassical approximation is, the better
the filters are expected to be. If a semi-classical approxi-
mation to the quantum continuum limit were exact, then it
should be possible to devise a filter which produces
the exact continuum result at finite lattice spacing. For
example in the free case, where the semiclassical
approximation to the quantum functional integral is
exact, it is possible to extract the continuum fermion
mass at finite lattice spacing by a mere cosh fit to the raw
two-point correlator CðtÞ of SLAC fermions in position
space [13].

From the mathematical standpoint, a discrete unit point
source becomes a Dirac distribution in the continuum limit.
It is well known that a periodic Dirac distribution on the
interval ½0; L� can be defined as the limit of a sequence of
Dirichlet kernels KnðxÞ,

aKnðxÞ ¼ 1

2nþ 1

sin ðð2nþ 1Þ �xL Þ
sin ð�xL Þ

; (66)

which are infinitely differentiable trigonometric polyno-
mials peaked at the point source, here located at the origin,
and which satisfy the convolution property

lim
n!1

Z L

0
dtKnðx� tÞfðtÞ ¼ fðxÞ; (67)

for all periodic smooth functions f on the interval ½0; L�.
The Dirichlet kernel KnðxÞ coincides with the unit discrete
point source when sampled at the sites of a lattice sub-
division ½0; L� with N ¼ 2nþ 1 points. Moreover, the
values at all the lattice sites of the derivative of KnðxÞ
coincide by definition with the matrix elements (51) of
the operator DNðxÞ. But the sequence of derivatives K0

nðxÞ
converges, in the sense of the theory of distributions,
towards the derivative of the Dirac distribution

lim
n!1

Z L

0
dtK0

nðx� tÞfðtÞ ¼ f0ðxÞ: (68)

Hence the action of the operator DNðxÞ upon a discrete
point source does converge in the continuum limit in the
sense of the theory of distributions.

We can thus apply Eq. (62) choosing c ðyÞ ¼ Kn0ðyÞ as a
continuum source with n0 held fixed in the limiting process
N ! 1. The source is infinitely differentiable, but the
measure of integration in the quantum functional integral
(1) is over arbitrary continuous gauge fields. Therefore the

corresponding fields ~c ð�;yÞ
� ðxÞ defined in (60) are only

continuously differentiable and, letting L ¼ ð2n0 þ 1Þa,
we have for large enough n0,

kðD̂ðAÞc n0Þ�ðyÞ � ðD̂rðUÞ�n0Þ�yk 
 a loga; (69)

provided that the derivatives r�
~c ð�;yÞ
� ðxÞ satisfy also the

Lipshitz condition. The limit n0 ! 1 is defined only in
the sense of the theory of distributions because of the
dependence of the source on n0. In fact, to get the bound
(69), it is sufficient to assume that the modulus of continu-

ity of the derivatives r�
~c ð�;yÞ
� ðxÞ satisfy the following

condition [14]:

!ðaÞ ¼ max
jx2��x1�j�a

kr�
~c ð�;yÞ
� ðx2Þ � r�

~c ð�;yÞ
� ðx1Þk 
 a

L
;

(70)

which implies the same condition on the continuum gauge
field along every Wilson line,

max
jx2��x1�j�a

kA�ðx2Þ � A�ðx1Þk 
 a

L
: (71)

This condition is usually satisfied by the continuum
gauge fields which interpolate lattice gauge configurations
produced via a local Monte Carlo process such as the
Metropolis algorithm or the heat bath algorithm.
To summarize, we have achieved more than would have

conveyed just a numerical check of exponential locality for

the action of the operator D̂rðUÞ upon a discrete point
source. Assuredly, there is no exponential convergence to
the continuum limit far from the point source, but we do
have proven convergence everywhere, even at the point
source in a precise sense, and for the lattice discretization
of rather general continuous gauge fields, for which we
have exposed the rate of convergence.

VII. OUTLOOK

As recalled in the introductory section, the lattice
fermion formulation based on the SLAC derivative has
been rather controversial. There have been one-loop cal-
culations with the SLAC operator (22) in weak coupling
perturbation theory of lattice QED in four dimensions,
which have shown the occurrence of singularities in the
fermion triangle graph [4] and in the vacuum polarization
[5], that lead to nonlocal, non-Lorentz covariant expres-
sions. These singularities are generated by the discontinu-
ities of the SLAC derivative at the edges of the Brillouin
zone, p� ¼ ��=a. It has been claimed [6] that these

divergences could not be renormalized while keeping in
the continuum limit a ! 0 (at L ¼ Na ! 1Þ, both chiral
invariance without extra states and Lorentz invariance.
However it has also been suggested [7] that QED could
be recovered in the continuum limit by a proper, non-
perturbative, treatment of the infrared singularities and
by imposing a finite number of nonlocal renormalization
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conditions. But the application of such empirical prescrip-
tions to the lattice Schwinger model, namely two-
dimensional quantum electrodynamics with massless
fermions, which is a completely solvable model in the
continuum [15], has still generated a spectrum doubling, a
vanishing anomaly, a vanishing vacuum expectation value
for h �c c i, and a noncovariant axial-vector current [8].

Despite all these early negative results, and the fact that
the SLAC derivative does not satisfy the strong locality
condition (49), there has been a recent claim that the
discretized Wess-Zumino model in two dimensions with
the SLAC derivative has a renormalizable continuum limit
[16], with a check of renormalizability to first-order in
perturbation theory. We have shown in the previous section

how essential the properties of the lattice operator D̂r are,
in order to get the correct classical continuum limit with an
improved convergence. Clearly such properties must be
critical as well for a rigorous treatment of the quantum
continuum limit, either nonperturbatively or via a pertur-
bative expansion. As already emphasized, the underlying
unitarity structure of the nonlocal lattice covariant deriva-
tive has not been taken into account in existing studies and
the issue of renormalizability in such a formulation, which

depends crucially upon the handling of singularities in the
infinite volume limit, has to be settled accordingly.
Meanwhile, we advocate a pragmatic approach, à la

Wilson. We have presented a covariant and chirally invari-
ant lattice Dirac operator on finite-size lattices which has
certainly no spectrum doubling at the classical level.
Moreover, the expressions (44) of the matrix elements of

the operator D̂r are quite convenient for an actual com-
puter implementation. If there is a vanishing axial anomaly,
one could always introduce an explicit chiral symmetry

breaking term. Our derivation reveals that the nonlocal

operator D̂r is a smeared operator with a controllable
analytic averaging over the links of Wilson lines (whereas

the original smearing proposal [17], as well as its many
variants, are empirical thickenings of the links). Smeared
operators are smoother and it is widely known [12] that
their inversion has better convergence properties than local

operators. So the accelerated convergence near the chiral
limit, whose qualitative nature can be studied in the
quenched approximation, may even turn out to compensate

for the additional computational complexity of D̂r with

respect to local Dirac operators such as D̂w.
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