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We report a new analysis of lattice simulation results for octet baryon masses in 2þ 1-flavor QCD, with

an emphasis on a precise determination of the pion-nucleon and strangeness nucleon sigma terms.

A controlled chiral extrapolation of a recent PACS-CS Collaboration data set yields baryon masses which

exhibit remarkable agreement both with experimental values at the physical point and with the results of

independent lattice QCD simulations at unphysical meson masses. Using the Feynman-Hellmann relation,

we evaluate sigma commutators for all octet baryons. The small statistical uncertainty and considerably

smaller model dependence allows a significantly more precise determination of the pion-nucleon sigma

commutator and the strangeness sigma term than hitherto possible, subject to an unresolved issue

concerning the lattice scale setting.
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The light-quark sigma terms provide critical information
concerning the nature of explicit chiral symmetry breaking
in QCD, as well as the decomposition of the mass of the
nucleon [1]. While these physical observables are difficult
to measure with conventional probes, an accurate knowl-
edge of the sigma terms is of essential importance in the
interpretation of experimental searches for dark matter
[2–6]. Dark matter candidates, such as the favored neutra-
lino, a weakly interacting fermion with mass of order
100 GeV or more, have interactions with hadronic matter
which are essentially determined by couplings to the light
and strange quark sigma commutators.

Experimentally, ��N is determined from �N scattering
through a dispersion relation analysis [7]. Traditionally, the
strange scalar form factor has then been evaluated indi-
rectly using ��N and a best estimate for the nonsinglet
contribution �0 ¼ mlhNj �uuþ �dd� 2�ssjNi. These tradi-
tional evaluations have yielded a value for �s as large as
300 MeV, compared to 50 MeV for the light quark com-
mutator, indicating that as much as one-third of the nucleon
mass might be attributed to nonvalence quarks. This sug-
gestion appears to be incompatible with widely used con-
stituent quark models, and has generated considerable
theoretical interest.

The traditional method of determination of �s is se-
verely limited because it involves the small difference
between��N (with its uncertainty) and�0 which is usually
deduced in terms of SU(3) symmetry breaking. Even given
a perfect determination of��N ,�s will have an uncertainty
of order 90 MeV [8]. For that reason �s has been consid-
ered notoriously difficult to pin down. In recent years, the
best value for �s has seen an enormous revision. Advances
in lattice QCD have revealed a strange sigma term of
20–50 MeV [9–21], an order of magnitude smaller than
was previously believed.

Here we use the finite-range regularization (FRR) tech-
nique to effectively resum the chiral perturbation theory

expansion of the quark mass dependence of octet baryons.
Fitting the resulting functions to recent lattice data, we
extract the scalar form factors by simple differentiation
using the Feynman-Hellmann theorem. Our technique
allows comparison with recent direct lattice QCD calcu-
lations of the flavor-singlet matrix elements at unphysical
meson masses [11–15].
Because of the indirect evaluation of the sigma terms by

differentiation, the analysis of the strangeness sigma term
in particular suffers from an uncertainty due to the choice
of scale setting scheme. With two prescriptions for setting
the lattice scale, namely using ‘‘mass dependent,’’ or
‘‘mass independent’’ schemes, described further in the
text, we find �s ¼ 59� 6 MeV and �s ¼ 21� 6 MeV,
respectively. Comparison with recent direct lattice
calculations suggests a slight preference for the latter value
[11–14]. Our results for the pion-nucleon sigma term are
consistent irrespective of scale setting prescription. We
report a value of��N ¼ 45� 6 MeV at the physical point.
The sigma terms of a baryon B are defined as scalar form

factors, evaluated in the limit of vanishing momentum
transfer. For each quark flavor q,

�Bq ¼ mqhBj �qqjBi; ��Bq ¼ �Bq=MB: (1)

For the nucleon, the so-called �N sigma commutator and
the strange sigma commutator are defined by

��N ¼ mlhNj �uuþ �ddjNi; (2)

�s ¼ mshNj�ssjNi; (3)

where ml ¼ ðmu þmdÞ=2.
Following the technique described in Refs. [9,22], we fit

octet baryon mass data recently published by the PACS-CS
Collaboration [23] using a chiral expansion:

MB ¼ Mð0Þ þ �Mð1Þ
B þ �Mð3=2Þ

B þ � � � (4)
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Here,Mð0Þ denotes the degenerate mass of the baryon octet

in the SU(3) chiral limit, and �Mð1Þ
B gives the correction

linear in the quark masses. This may be derived by con-
sidering the relevant terms of the usual lowest-order effec-
tive Lagrangian:

2�bTrð �BBMÞ þ 2�bTrð �BMBÞ þ 2�bTrð �BBÞTrðMÞ;
(5)

where B represents the usual tensor of octet baryon fields,
and M indicates the quark mass matrix (see, for example,
Ref. [24]). One finds

�Mð1Þ
B ¼ �Cð1Þ

Bl bml � Cð1Þ
Bsbms; (6)

with the coefficients given in Table I.
According to the Gell-Mann—Oakes-Renner (GMOR)

relation,

m2
� ¼ 2bml þOðm2

qÞ; (7)

m2
K ¼ bðml þmsÞ þOðm2

qÞ; (8)

and hence we substitute the quark masses in Eq. (6) by
bml ! m2

�=2 and bms ! ðm2
K �m2

�=2Þ. We note that the
corrections to the leading-order GMOR result will only
amount to a modification of the chiral series at Oðm2

qÞ,
which is beyond the order of the expansion considered
here.

The term at next order, following the linear mass inser-
tions, represents quantum corrections corresponding to
one-loop contributions from the pseudo-Goldstone bosons
� ¼ �, K, �. These loops take the form

�Mð3=2Þ
B ¼ � 1

16�f2
X

�

½�B�IRðm�; 0;�Þ

þ �T�IRðm�; �;�Þ�; (9)

where the coefficients �B�, �T�, corresponding to octet-

baryon–meson and decuplet-baryon–meson loops, are
given in Table II.
The meson loops involve the integrals,

IR ¼ 2

�

Z
dk

k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

q �
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

q �

� u2ðkÞ � b0 � b2m
2
�; (10)

where the subtraction constants, b0;2, are defined so that the

parameters Mð0Þ, Cð1Þ
Bl , and Cð1Þ

Bs are renormalized (explicit

expressions may be found in Ref. [25], or can be readily
evaluated numerically by Taylor expanding the integrand
in m2

�).

Following Ref. [9], we retain the octet-decuplet mass
difference � in numerical evaluations to properly account
for the branch structure near m� � �. The loop contribu-

tion parameters are set to appropriate experimental and
phenomenological values; Dþ F ¼ gA ¼ 1:27, F ¼ 2

3D,

C ¼ �2D, f ¼ 0:0871 GeV, and � ¼ 0:292 GeV. Within
the framework of FRR, we introduce a mass scale �,
through a regulator uðkÞ. � is related to the scale beyond
which a formal expansion in powers of the Goldstone
boson masses breaks down. This allows for the suppression
of short-distance physics from the loop integrals of the
effective theory. Here, � is chosen by fitting to the lattice
data itself. We note that the demonstrated benefit of FRR
is to incorporate the nonanalytic behavior associated with
chiral symmetry breaking in QCD, while maintaining a
robust fit to lattice data over a wide range of quark masses.
In particular, higher-order terms are implicit in the struc-
ture of FRR, and essentially sum to zero in the region of
large quark masses. For this reason, the chiral series is
stable under the truncation of such terms. We refer to
Refs. [25–29] for further discussions of the FRR regulari-
zation scheme.
The model-dependent uncertainty in the result is

estimated by the consideration of a variety of forms of

TABLE I. Coefficients for the terms in Eq. (6) linear
in the light and strange quark masses, bml ! m2

�=2 and
bms ! ðm2

K �m2
�=2Þ.

B Cð1Þ
Bl Cð1Þ

Bs

N 2�þ 2�þ 4� 2�
� �þ 2�þ 4� �þ 2�
� 5

3�þ 2
3�þ 4� 1

3�þ 4
3�þ 2�

� 1
3�þ 4

3�þ 4� 5
3�þ 2

3�þ 2�

TABLE II. Chiral SU(3) coefficients for the octet baryons to octet (B) and decuplet (T)
baryons through the pseudoscalar octet meson �.

�B� �T�

� K � � K �

N 3
2 ðDþ FÞ2 1

3 ð5D2 � 6DFþ 9F2Þ 1
6 ðD� 3FÞ2 4

3 C
2 1

3 C
2 0

� 2D2 2
3 ðD2 þ 9F2Þ 2

3D
2 C2 2

3 C
2 0

� 2
3 ðD2 þ 6F2Þ 2ðD2 þ F2Þ 2

3D
2 2

9 C
2 10

9 C
2 1

3 C
2

� 3
2 ðD� FÞ2 1

3 ð5D2 þ 6DFþ 9F2Þ 1
6 ðDþ 3FÞ2 1

3 C
2 C2 1

3 C
2
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the regulator uðkÞ, namely monopole, dipole, and
Gaussian, as well as a sharp cutoff. The uncertainty due
to the choice of regulator is small and below the resolution
of the figures. In addition, we allow f, the meson decay
constant in the chiral limit, the baryon-baryon-meson cou-
pling constants F and C, and � to vary by �10% from the
central values given above; see Ref. [30] for details. The
effects of these variations, as well as the effect of a 2%
uncertainty in the physical value of r0, are included in the
final quoted errors. Statistical uncertainties are accounted
for by a covariance matrix analysis which includes the
effect of correlations between all of the fit parameters
M0, �, �, �, as well as the regulator mass �.

The PACS-CS results have been corrected for small,
model-independent, finite volume effects before fitting.
These finite volume corrections were evaluated by consid-
ering the leading one-loop results of chiral effective field
theory [9,31–33]. We note that the largest shift was
�0:022� 0:002 GeV for the nucleon at the lightest pion
mass.

The fit to the PACS-CS baryon octet data is shown in
Fig. 1. We find an optimal dipole regularization scale of
� ¼ 1:0� 0:1 GeV, in close agreement with the value
deduced from an analysis of nucleon magnetic moment
data [34] and, from the phenomenological point of view,
remarkably close to the value preferred from comparison
of the nucleon’s axial and induced pseudoscalar form
factors [35]. The minimum �2

dof is 0.45 [6.8 divided by

(20� 5 � 15)] for the dipole, and varies between 0.44 and
0.426 for the other regulators. This value is somewhat
lower than unity, as correlations between the lattice data
cannot be accounted for without access to the original data.

Clearly, the fit is very satisfactory over the entire range
of quark masses explored in the simulations. Furthermore,
the masses of the octet baryons agree remarkably well with

experiment at the physical point (with a �2=point close
to one). A comparison of the extrapolated baryon masses
with the best experimental values is given in Table III. The
first error quoted is statistical and includes the correlated
uncertainty of all of the fit parameters including the regu-
lator mass �, while the second is an estimate of model
dependence. This includes the full variation over dipole,
monopole, sharp cutoff, and Gaussian regulator forms, as
well as accounting for the variation of the phenomenolog-
ically set parameters f, F, C, and � described earlier.
As we fit baryon mass functions to lattice data over a

range of pseudoscalar masses significantly larger than
the physical values, it is prudent to check the consistency
of our results as the analysis moves outside the power-
counting regime, where higher order terms may become
significant. By performing our fit to progressively fewer
data points, that is, by dropping the heaviest mass points,
we test the scheme dependence of our evaluation. The
results are consistent, and largely independent of the trun-
cation of the data. This can be seen clearly in Fig. 2, which
shows the variation of the dimensionless baryon sigma
terms as progressively fewer data points are used for the

0.0 0.1 0.2 0.3 0.4 0.5
0.8
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1.2

1.4

1.6

m 2 GeV2

M
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G
eV

FIG. 1 (color online). Fit to the PACS-CS baryon octet
data. Error bands shown are purely statistical, and incorporate
correlated uncertainties between all fit parameters. Note that the
data shown has been corrected for finite volume and the simu-
lation strange quark mass, which was somewhat larger than the
physical value. The green stars show experimental values.

TABLE III. Extracted masses and sigma terms for the physical
baryons, with the lattice scale set using the mass-dependent
prescription. The first uncertainty quoted is statistical, while
the second results from the variation of various chiral parameters
and the form of the UV regulator as described in the text. The
experimental masses are shown for comparison.

B Mass (GeV) Experimental ��Bl ��Bs

N 0.959(24)(9) 0.939 0.047(6)(5) 0.022(6)(0)

� 1.129(15)(6) 1.116 0.026(3)(2) 0.141(8)(1)

� 1.188(11)(6) 1.193 0.020(2)(2) 0.171(8)(1)

� 1.325(6)(2) 1.318 0.0089(7)(4) 0.239(8)(1)
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FIG. 2 (color online). Dimensionless baryon sigma terms,
evaluated using a dipole regulator, based on fits to the PACS-
CS results at the lightest 5 (all), 4, and 3 pseudoscalar mass
points.
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fit to the octet masses. The points shown correspond to an
evaluation with a dipole regulator, and error bars are purely
statistical.

To further test our claim that the fitted mass functions
accurately describe the variation of the baryon masses with
quark mass, we compare our extrapolation with indepen-
dent lattice data along a very different trajectory in the
ml �ms plane, as compared to the fit domain. Most lattice
simulations, including that of the PACS-CS Collaboration,
hold the simulation strange quark mass fixed near the
physical value, and progressively lower the light quark
mass to approach the physical point. These simulations
necessarily sample a range of singlet masses ð2m2

K þm2
�Þ.

As an alternative, the QCDSF-UKQCD Collaboration has
recently presented a different method of tuning the quark
masses, in which the singlet mass is held fixed along the
simulation trajectory [36]. This procedure constrains the
simulation kaon mass to always be smaller than the physi-
cal value. In comparison, the traditional trajectory in the
m� �mK plane necessarily keeps the kaon mass larger
than the physical value.

The close match between our fit to the PACS-CS points
and the QCDSF-UKQCD lattice data, shown in Fig. 3, is
extremely encouraging. We emphasize that the lines in
Fig. 3 are not a fit to the data shown, but rather a prediction,
resulting from the described fit to the PACS-CS octet data
being evaluated along the QCDSF-UKQCD simulation
trajectory.

All lattice points shown in Fig. 3 have been shifted, by
the procedure described for the PACS-CS data, to account
for finite-volume effects. We chose to use the lattice
spacing a ¼ 0:078 fm deduced by the QCDSF-UKQCD
Collaboration. For further details of the QCDSF-UKQCD
data set, and the normalizations XN , X�, we refer to
Ref. [36].

It should be noted that the leading-order term in a
chiral expansion for the strangeness sigma commutator is
determined by the parameter �, as seen in Table I. This
parameter is common to all baryons in the octet, and by
Eq. (5) is sensitive only to the singlet combination of the
quark masses. The contours in Fig. 4 show that, across the
PACS-CS ensemble, the variation of the singlet quark mass
is relatively large, with only a relatively small extrapola-
tion necessary to reach the physical point. With respect to
the variation of the quark masses orthogonal to the singlet
direction, Fig. 4 acts to emphasize the extrapolation dis-
tance required in the prediction of the QCDSF-UKQCD
results seen in Fig. 3. While a powerful check of the
robustness of the chiral expansions, it should be noted
that an analysis of the QCDSF-UKQCD results on their
own cannot give a meaningful determination of the pa-
rameter �, since (by design) these simulations have only
been performed at a single value of the singlet quark mass.
To extract the sigma commutators from our baryon mass

functions, we use the Feynman-Hellman relation [37],

�Bq ¼ mq

@MB

@mq

; (11)

and, as above, replace quark masses by meson masses
squared: bml ! m2

�=2 and bms ! ðm2
K �m2

�=2Þ. For the
case of the nucleon, we recall the alternative conventional
notation to quantify the strangeness content, namely the
kaon sigma term

�KN ¼ 1

2
ðml þmsÞhNj �uuþ �ddþ �ssjNi: (12)

A direct measure of the magnitude of the strange quark
content of the nucleon relative to its light quark content,
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FIG. 3 (color online). Prediction of QCDSF-UKQCD lattice
data, based on our fit to the PACS-CS octet baryon mass
simulation. Red (square) and green (diamond) points correspond
to 243 and 323 lattice volumes, respectively. Error bands shown
are purely statistical, and incorporate correlated uncertainties
between all fit parameters.
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FIG. 4 (color online). Locations of lattice QCD simulations by
the PACS-CS Collaboration (blue circles), and QCDSF-UKQCD
Collaboration (red squares and green diamonds) in the ml-ms

plane. The star denotes the physical point. Contours indicate
lines of constant singlet quark mass (2m2

K þm2
�), in units of

ðGeVÞ2. Figure 3 shows the fit to the PACS-CS data only,
evaluated at the QCDSF-UKQCD simulation quark masses.
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y ¼ 2hNj�ssjNi
hNj �uuþ �ddjNi ¼

ml

ms

2�s

��N

; (13)

can be trivially evaluated given the strange and light quark
sigma terms. At the physical point, we find ��N ¼ 45�
6 MeV, �KN ¼ 300� 40 MeV, and �s ¼ 21� 6 MeV,
corresponding to a y value of 0:04� 0:01 for ml=ms ¼
0:039ð6Þ [38]. This analysis also constrains ��N � �0 to
be 1:64� 0:53 MeV. The quoted errors include all system-
atic and model-dependent uncertainties combined in quad-
rature. Results for the other octet baryons are made explicit
in Table III.

While the method used here leads to relatively small
uncertainties for all sigma terms calculated, we point out
that there is a systematic effect which arises because of the
need to set the scale for the lattice data. As the Feynman-
Hellman theorem relates the sigma commutators to the
octet baryon masses via a derivative with respect to quark
mass, a spectral determination of these terms will neces-
sarily make reference to the scale away from the physical
point, and hence depend on the scale setting scheme.

Precisely, the application of the Feynman-Hellman
relation requires taking a partial derivative of a baryon
mass with respect to quark mass. That is, all other para-
meters must be held fixed, including the strong coupling �
(or, equivalently, �QCD). In lattice QCD, there is an appar-

ent ambiguity as to how to define a fixed renormalized
coupling � [39,40].

For example, for the analysis in this work the scale
for the PACS-CS lattice data was set assuming that the
dimensionful Sommer scale r0 is independent of quark
mass. This choice is based on the assumption that r0, which
is related to the force between static quarks at relatively
short distance, is essentially disconnected from chiral
physics and should therefore vary slowly with changes in
quark mass.

An alternative scale setting method is to assume that the
lattice scale, at constant bare coupling (e.g., �), is inde-
pendent of the bare quark mass (e.g., 	). In this mass
independent approach, one identifies a single lattice scale
with an entire lattice ensemble at constant bare coupling
by extrapolation of some dimensional observable to the
physical quark masses. For instance, at fixed � the lattice

Sommer scale could be extrapolated to the physical point.
The extrapolated quantity, denoted r�0=a

�, is then matched

to experiment to determine the lattice scale.
Using the mass-dependent scale setting scheme, apply-

ing the Feynman-Hellman relation amounts to evaluating

@ðr0a aMBÞ
@mq

; (14)

which requires one to assume that @r0=@mq ¼ 0. The

mass-independent scheme amounts to calculating

@ðr�0a� aMBÞ
@mq

; (15)

which, in contrast, requires the assumption that a=a� ¼ 1
(or equivalently, @a=@mq ¼ 0). We extend our described

analysis to investigate the latter method of scale determi-
nation, and describe the consequences for the determina-
tion of the sigma terms.
Repeating the analysis described above with a mass

independent scale setting scheme gives ��N ¼ 51ð3Þ�
ð6Þ MeV and �s ¼ 59ð6Þð1Þ MeV [compared to ��N ¼
45ð5Þð4Þ and �s ¼ 21ð6Þð0Þ with the mass dependent
prescription]. We emphasize that our results for the pion-
nucleon sigma term using each scale setting method are
precise and compatible within uncertainties, and that we
are for this reason extremely confident in that result.
With a view to finding a physically significant result

for �s, we point out that direct lattice calculations of this
quantity should not have a large dependence on the scale
setting scheme. An advantage of the method used here
is that we can easily evaluate sigma terms from our fit at
any pion or kaon mass. In particular, we may compare with
the results of recent direct lattice calculations, including
preliminary calculations performed at only one set of
pseudoscalar masses. Such a comparison is given for the
strangeness sigma term�s in Table IV. The available direct
calculations include 2-and 2þ 1þ 1-flavor simulations
[11,12] at a single set of pion and kaon masses, and
2þ 1-flavor calculations which have been chirally ex-
trapolated to the physical point [13,14]. The MILC
Collaboration calculation is not a direct three-point calcu-
lation, but rather uses a ‘‘hybrid’’ method to find the sigma

TABLE IV. Recent direct lattice calculations of �s compared with the results of our analysis. Columns labeled ‘‘Mass-dep scale’’
and ‘‘Mass-indep scale’’ correspond to our analysis of the PACS-CS Collaboration lattice results, evaluated at the indicated ðm�;mKÞ
values, with the scale set using the relevant scale setting prescriptions.

�s (MeV)

ðm�;mKÞ MeV Direct Mass-dep scale Mass-indep scale

QCDSF Collaboration [11] 3-point (281, 547) 12þ23
�16 16(5)(1) 56(6)(1)

ETM Collaboration [12] 3-point (390, 580) 13(5)(1) 12(5)(1) 58(6)(1)

Engelhardt [13] 3-point Physical (chiral extrap) 43(10) 21(6)(0) 59(6)(1)

JLQCD Collaboration [14] 3-point Physical (chiral extrap) 8(14)(15) 21(6)(0) 59(6)(1)

MILC Collaboration [15] Hybrid Physical (chiral extrap) 59(6)(8) 21(6)(0) 59(6)(1)
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term [15]. In comparison with spectral results, the

Collaboration indicates that the mass-independent scale

setting scheme is relevant to their results [41]. We empha-

size that this summary does not include the results of

calculations which use the Feynman-Hellman theorem,

as these may suffer from the same source of scale setting

ambiguity as in our own work. We also note that several

of these calculations are preliminary, with results at only

one lattice spacing and volume.
The results of our calculation using the mass dependent

scale setting approach agree extremely well with the direct

QCDSF and TMC calculations at the simulation values of

m� and mK. A similar level of agreement is found with the

JLQCD result. Finally, the Engelhardt result sits between

the values of �s given by the two scale setting schemes,

while the MILC result favors the mass independent scheme.
The conclusion of our analysis is clear. By developing

closed-form functions for baryon mass as a function of

quark mass based on a fit to PACS-CS Collaboration lattice

data, we were able to determine precise baryonic sigma

terms by simple differentiation. This method allows us to

achieve small statistical and model-dependent uncertain-

ties. Considerable effort was made to check the sensitivity

of the final results to variations in low energy constants as

well as the lattice spacing, with correlations being consis-

tently included in the evaluation of the quoted errors.

The only significant systematic uncertainty we find, which
is discussed in detail, is that arising from the choice of
scale setting method. As an important additional check,
we tested our predictions for the sigma terms against recent
direct lattice calculations of these values at unphysical
pseudoscalar masses, finding excellent agreement when
the scale is set using the mass dependent prescription in
particular. With this scale setting scheme, we find the
pion-nucleon sigma term to be ��N ¼ 45� 6 MeV at
the physical point, in close agreement with other recent
lattice determinations of this value [17,18,42]. This result
is within uncertainties of the value ��N ¼ 51� 7 MeV
found within the mass independent scheme. We also de-
termine the strangeness nucleon sigma term very precisely
within each scale setting scheme. Using a mass indepen-
dent scheme, we find�s ¼ 59� 6 MeV. Comparison with
direct calculations of �s suggests a slight preference for
using the mass dependent prescription to set the lattice
spacing. That yields �s ¼ 21� 6 MeV at the physical
point.
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