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The s-wave pion-pion (��) scattering lengths are computed below the inelastic threshold by the

Lüscher technique with pion masses ranging from 240 to 463 MeV. In the Asqtad-improved staggered

fermion formulation, we calculate the �� four-point functions for the I ¼ 0 and 2 channels with

‘‘moving’’ wall sources without gauge fixing, and we analyze them at the next-to-leading order in the

continuum three-flavor chiral perturbation theory. At the physical pion mass, we secure the s-wave ��

scattering lengths as m�a
I¼0
�� ¼ 0:214ð4Þð7Þ and m�a

I¼2
�� ¼ �0:04430ð25Þð40Þ for the I ¼ 0 and 2

channels, respectively, where the first uncertainties are statistical and the second ones are our estimates

of several systematic effects. Our lattice results for the s-wave �� scattering lengths are in good

accordance with available experimental reports and theoretical forecasts at low momentum. A basic

ingredient in our study for the I ¼ 0 case is properly incorporating the disconnected diagram. These

lattice computations are carried out with the MILC 2þ 1 flavor gauge configurations at two lattice

spacings, a � 0:15 and 0.12 fm.
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I. INTRODUCTION

The research on �� scattering is a basic and classical
subject in the field of strong hadronic interactions. Its
manageability and simplicity essentially stem from the
pseudo-Nambu-Goldstone boson nature of the pion, a
natural aftermath of the spontaneous chiral symmetry
breaking in quantum chromodynamics (QCD), which im-
poses rigid constraints on �� low-energy interactions.
Moreover, the s-wave �� scattering lengths vanish in the
chiral limit when the momentum of the pions approaches
zero. Since these quantities stand for a sensitive probe of
the chiral symmetry breaking generated by the quark
masses, the lattice QCD study, an objective of this paper,
is a nonperturbative method we use in an effort to compre-
hend the low-energy nature of QCD.

With small pion masses and low momenta, the s-wave
�� scattering lengths can be solely predicted at leading
order (LO) in chiral perturbation theory (�PT) [1]. The
next-to-leading order (NLO) and next-to-next-to-leading
order (NNLO) corrections in the chiral expansion [2–4]
lead to perturbative deviations from the LO and involve
both computable nonanalytic contributions and analytic
terms with some unknown low-energy constants (LECs),
which can be obtained from lattice simulations or experi-
mental measurements.

A combination of some experimental and theoretical
inputs from Colangelo et al. [3,4], along with the Roy
equation [5,6], produced a precise result of the s-wave
�� scattering lengths. Zhou et al. studied the pole struc-
ture of the low-energy �� scattering amplitudes using a
proper chiral unitarization method in addition to the

crossing symmetry and low-energy phase shift data, and
they estimated the s-wave �� scattering lengths [7].
K. Sasaki and N. Ishizuka found that the scattering phase
can be obtained directly from the �� wave function [8].
Guo et al. provided a reliable and solid estimation of all
parts of the Oðp6Þ calculation [9], and some resonance
contributions were added in to the former phenomenologi-
cal calculations [3,4]. They also obtained slight differences
with respect to previous results in Refs. [3,4]. Using the
NLO SUð2Þ unitary chiral perturbation theory to examine
�� scattering, Albaladejo and Oller obtained a good re-
production of the s-wave �� scattering lengths [10].
In conjunction with the strict �PT constraints in the

analysis, a considerably improved accuracy for the
s-wave �� scattering lengths has been obtained from
the experimental measurement of the semileptonic Ke4

decay by E865 [11]. With the independent experimental
uncertainties and different theoretical inputs [3,4,12], the
NA48/2 high-precision analyses of the Ke4 and K3� decays
[13–16] gave rise to the complementary information on the
s-wave �� scattering lengths [15]. All of these theoretical
(or phenomenological) predictions and experimental deter-
minations are consistent with one another.
Lattice studies of �� scattering have been conducted in

quenched QCD by various groups [17–23]. The full lattice
study of the s-wave I ¼ 2 �� scattering length was first
carried out by CP-PACS [24]. Fully dynamical computa-
tion of I ¼ 2 �� scattering was explored by NPLQCD
with the domain-wall valence quarks on fourth-rooted
staggered sea quarks [25,26]. Using the Nf ¼ 2maximally

twisted mass fermion ensembles, Xu et al. employed
the lightest pion mass at that time and conducted an
explicit check for lattice artifacts [27]. With an anisotropic
Nf ¼ 2þ 1 clover fermion discretization, the I ¼ 2 ��*fuziwen@scu.edu.cn
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scattering phase shift is calculated by NPLQCD to deter-
mine all of the threshold parameters [28]. Moreover, efforts
were made to first secure the d-wave I ¼ 2 �� phase shift
in some nice works by HSC [29,30]. Using overlap fermion
formulation, Yagi et al. examined the consistency of the
lattice data with the NNLO �PT prediction after correcting
finite volume effects [31].

Nevertheless, only a couple of lattice studies in the I¼0
channel have been reported so far whose computations
are hindered by the so-called ‘‘disconnected diagram.’’
Using the quenched approximation, Kuramashi et al. car-
ried out the pioneering work for isospin-0; however, the
vacuum diagram was disregarded, assuming that vacuum
amplitude remains small for large t [18]. Additionally, for
the rectangular and vacuum diagrams, quark loops are
required to make the scattering amplitudes unitary; other-
wise, the basic part of the physics is lost due to quenched
approximation [17]. Liu conducted the first full QCD
calculation for the I ¼ 0 channel including the vacuum
graph; however, the error of the extracted scattering length
is remarkably large due to the usage of big pion masses
(a small one is 430 MeV) [32]. With the presence of the
vacuum diagram, we have attempted to crudely calculate
�� scattering for isospin-0, and we have made a first
lattice calculation for lI¼0

�� ð�Þ, which is a LEC appearing
in the �PT expression of the �� scattering length for
isospin-0 [33]. Nonetheless, we used the partially
quenched QCD to save computational cost, and worked
with large quark masses [33]. Moreover, the statistical
errors are underestimated, since we only considered the
primary one [33]. Furthermore, we neglected the obvious
oscillating term due to the staggered scheme. We under-
stood that the statistical errors for the ratio of vacuum
amplitudes grow as e2m�t [34]. Consequently, using the
small quark mass is very important for the I ¼ 0 channel.
As presented later, our lattice results will indeed quantita-
tively confirm this argument, and we acquire good signals
of the vacuum diagram for the lattice ensembles with small
pion masses.

To overcome the Maiani-Testa theorem [35], researchers
usually calculate the energy levels of a two- (many-)
particle system enclosed in a torus, so that its scattering
amplitudes can be recovered [36–49]. In this work,
Lüscher’s technique [36–38] is employed to extract the
scattering phase shift with the lattice-calculated energy
eigenstates.

We here use the MILC gauge configurations [50,51]
with the 2þ 1 flavors of the Asqtad-improved staggered
dynamical quarks [52] to compute the s-wave �� scatter-
ing lengths. The technique of the ‘‘moving’’ wall source
without gauge fixing [53], first introduced in Refs. [18,19],
is exploited to calculate all four diagrams classified in
Refs. [17–19], and special effort is payed to the discon-
nected diagram. Our lightest pion mass is about 240 MeV,
which is lighter than those of the former lattice studies on

�� scattering and enables us to further explore the chiral
limit. Consequently, the signals of the vacuum diagram are
remarkably improved. Moreover, due to the nature of
staggered fermions, our computations are automatically
precise toOða2Þ [17]. Additionally, we used the continuum
three-flavor �PT at NLO to extrapolate our lattice-
measured �� scattering lengths to the physical point. As
presented later, we find

m�a
I¼2
�� ¼ �0:04430ð25Þð40Þ;
lI¼2
�� ¼ 3:27ð:77Þð1:12Þ;

where aI¼2
�� denote the s-wave �� scattering lengths in the

I ¼ 2 channel and lI¼2
�� ð�Þ is a LEC evaluated at the

physical pion decay constant. These results are in good
agreement with experimental measurements and theoreti-
cal (or phenomenological) determinations, as well as pre-
vious lattice calculations. Mostly, we obtain

m�a
I¼0
�� ¼ 0:214ð4Þð7Þ; lI¼0

�� ¼ 43:2ð3:5Þð5:6Þ;
which are in fair accordance with experimental reports and
theoretical (or phenomenological) predictions, and which
significantly improve our former study in Ref. [33].
The paper is organized as follows. In Sec. II we will

review the basic formalism for the calculation of s-wave
�� scattering [37,38]. The simulation parameters and our
concrete lattice calculations are shown in Sec. III. We will
give the results of the lattice simulation data in Sec. IV,
fitting analyses in Sec. V, and chiral extrapolation along
with the comparisons of different results in Sec. VI.
Finally, a summary of the conclusions and outlooks we
arrived at are given in Sec. VII. The compact continuum
three-flavor �PT forms at NNLO for the �� scattering
lengths are courteously dedicated to the Appendix.

II. METHOD

On the basis of the original derivations and notations in
Refs. [17–19], we reviewed the indispensable formulas for
the lattice QCD evaluation of the s-wave �� scattering
lengths in a torus. The formulas and the notations adopted
here are actually the same as those in Refs. [33,54]. But, to
make this paper self-supporting, all the essential parts will
be reiterated subsequently.
Let us review scattering of two Nambu-Goldstone pions

in the Asqtad-improved staggered fermion formalism. For
s-wave �� scattering, only the isospin I ¼ 0 and 2 chan-
nels are permitted, owing to Bose symmetry. We build
these �� isospin eigenchannels using the following inter-
polating operators [18,19]:

OI¼0
�� ðtÞ ¼ 1ffiffiffi

3
p f��ðtÞ�þðtþ 1Þ þ �þðtÞ��ðtþ 1Þ

� �0ðtÞ�0ðtþ 1Þg;
OI¼2

�� ðtÞ ¼ �þðtÞ�þðtþ 1Þ; (1)
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with the interpolating pion operators denoted by

�þðtÞ ¼ �X
x

�dðx; tÞ�5uðx; tÞ;

��ðtÞ ¼ X
x

�uðx; tÞ�5dðx; tÞ;

�0ðtÞ ¼ 1ffiffiffi
2

p X
x

½ �uðx; tÞ�5uðx; tÞ � �dðx; tÞ�5dðx; tÞ�:

Then we express the �� four-point function in the zero
momentum state as

C��ðt1; t2; t3; t4Þ ¼
X
x1

X
x2

X
x3

X
x4

hO�ðx4; t4ÞO�ðx3; t3Þ

�Oy
�ðx2; t2ÞOy

�ðx1; t1Þi;

where, to prevent the intricate color Fierz rearrangement
of the quark lines [18,19],1 we familiarly select t1 ¼ 0,
t2 ¼ 1, t3 ¼ t, and t4 ¼ tþ 1 [18,19].
In the isospin limit, only four diagrams contribute to ��

scattering amplitudes; in Fig. 1, we show these quark-line
diagrams, which are identified as direct (D), crossed (C),
rectangular (R), and vacuum (V) diagrams, respectively
[18,19]. A reliable evaluation of the rectangular diagram is
challenging and a rigorous computation of the vacuum
diagram is fairly difficult [18,19].
In our former works [33,54], we calculated these four

diagrams via evaluating T quark propagators [18,19]:

X
x

Dn;xGtðxÞ ¼
X
x

�n;ðx;tÞ; 0 � t � T � 1:

The combination ofGtðnÞwhich we apply for the�� four-
point functions is schematically illustrated in Fig. 1, and
these diagrams can be described by means of G:

CDðt1; t2; t3; t4Þ ¼
X
x3

X
x4

hTr½Gy
t1ðx3; t3ÞGt1ðx3; t3Þ�Tr½Gy

t2ðx4; t4ÞGt2ðx4; t4Þ�i;

CCðt1; t2; t3; t4Þ ¼
X
x3

X
x4

hTr½Gy
t1ðx3; t3ÞGt2ðx3; t3ÞGy

t2ðx4; t4ÞGt1ðx4; t4Þ�i;

CRðt1; t2; t3; t4Þ ¼
X
x2;x3

hTr½Gy
t1ðx2; t2ÞGt4ðx2; t2ÞGy

t4ðx3; t3ÞGt1ðx3; t3Þ�i;

CVðt1; t2; t3; t4Þ ¼
X
x2

X
x3

fhTr½Gy
t1ðx2; t2ÞGt1ðx2; t2Þ�Tr½Gy

t4ðx3; t3ÞGt4ðx3; t3Þ�i

� hTr½Gy
t1ðx2; t2ÞGt1ðx2; t2ÞihTr½Gy

t4ðx3; t3ÞGt4ðx3; t3Þ�ig; (2)

where the indicated traces are conducted over color, the �5

factors are neatly removed using the Hermiticity attributes
of the propagator G, and a vacuum deduction is a natural
companion to the vacuum diagram [56].

The rectangular and vacuum diagrams inevitably create
the gauge-variant noise [18,19], which is neatly diminished
by executing the gauge field average without gauge fixing,
as we practiced in Refs. [33,53,54,57–60]. In the isospin
limit, the �� four-point functions for the I ¼ 0 and 2
channels can be expressed on the strength of four diagrams
[17–19]:

CI¼0
�� ðtÞ � hOI¼0

�� ðtÞjOI¼0
�� ð0Þi

¼ Dþ Nf

2
C� 3NfRþ 3

2
V;

CI¼2
�� ðtÞ � hOI¼2

�� ðtÞjOI¼2
�� ð0Þi ¼ D� NfC; (3)

where the staggered-flavor factor Nf is inserted to rectify

for the extra factor Nf in the valence fermion loops [17].

The fourfold degeneracy of the staggered sea quarks is
removed by conducting the quadruple root of the fermion
determinant [17,61]. The fourth-root recipes are assumed
to be able to restore the right continuum limit of QCD [61],
and our results rest on this hypothesis. See Ref. [62] for
more discussions about the fourth-root trick.
It is customary to make use of the effective range

expansion for parametrizing the low-momentum behavior
of the s-wave �� scattering phase �0,

k cot�0ðkÞ ¼ 1

a
þ 1

2
rk2 þOðk4Þ; (4)

FIG. 1. Quark-line diagrams contributing to �� four-point
functions. Short bars indicate the wall sources. The wall sinks
for local pion operators are represented by open circles.

1Fierz contributions force us to overcome the obstacle due to
the staggered-flavor symmetry breaking [17]. The same problem
is also encountered for �K scattering, which is addressed by
Lang et al. in Ref. [55]. In principle, they can be disentangled by
the method discussed in Ref. [17], but this is strenuous in
practice. Fortunately, it can be trivially handled by the method
introduced in Refs. [18,19]; i.e., �meson operators are separated
by a unit time slice.
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where a is the s-wave �� scattering length, r is the
effective range, and k is the magnitude of the center-of-
mass scattering momentum related to the energy EI

�� of
the �� system with total isospin I in a torus of size L by

k2 ¼ 1

4
ðEI

��Þ2 �m2
�; k ¼ 2�

L
q; (5)

where the dimensionless momentum q 2 R. The s-wave
�� scattering length in the continuum limit is denoted by

a0 ¼ lim
k!0

tan�0ðkÞ
k

;

which is purely elastic below inelastic thresholds.2 We
should keep in mind that the truncation of the effective
range r in Eq. (4) is considered to be an important source of
systematic error, which appears asOð1=L6Þ. The �0ðkÞ can
be computed by the Lüscher formula [37,38]:

k cot�0ðkÞ ¼ 2�

L
��3=2Z00ð1; q2Þ; (6)

where the dimensionless momentum q ¼ kL=ð2�Þ and the
zeta function Z00ð1; q2Þ is formally expressed by

Z00ð1; q2Þ ¼ 1ffiffiffiffiffiffiffi
4�

p X
n2Z3

1

n2 � q2
: (7)

We generally compute the zeta function by the method
discussed in Ref. [24]. Recently, an equivalent formula has
been established [65]. It allows us to avoid the subthres-
hold singularities inherent to the Lüscher technique [65].

The energy EI
�� can be secured from the �� four-point

function which manifests as [66]

CI
��ðtÞ ¼ Z�� cosh

�
EI
��

�
t� 1

2
T

��

þð�1ÞtZ0
�� cosh

�
EI0
��

�
t� 1

2
T

��
þ��� : (8)

For a large t to reduce the excited states, the terms alter-
nating in sign are a representative feature of a staggered
scheme [66], and the ellipsis indicates the contributions
from the excited states which are suppressed exponentially.
In practice, the pollution due to the ‘‘wraparound’’ effects
[21,27,67] should be taken into account.
It should be worthwhile to stress that, even if we project

onto the Goldstone pions at source and sink time slices,
pions with all 16 staggered flavors still emerge at the
intermediate times [17]. However, in large t, the contribu-
tions of non-Goldstone pions in the intermediate states are
exponentially reduced due to their heavier masses, in con-
trast with those of the Goldstone pions [17–19].
In practice, for the sake of a more intuitive presentation

of our results, we compute the ratios3

RXðtÞ ¼ CX
��ð0; 1; t; tþ 1Þ

C�ð0; tÞC�ð1; tþ 1Þ ; X ¼ D;C; R; and V;

(9)

where C�ð0; tÞ and C�ð1; tþ 1Þ are pion correlators with
zero momentum. With the consideration of Eq. (3), we can
depict the �� scattering amplitudes which project out the
I ¼ 0 and 2 isospin eigenstates as

TABLE I. The parameters of MILC gauge configurations used in the present work. The lattice dimensions are expressed in lattice
units in the second column with spatial (L) and temporal (T) size. The gauge coupling � ¼ 10=g2 is shown in column 3. The fourth
and fifth columns give the bare masses of the light and strange quark masses in terms of aml and ams, respectively. The tadpole-
improvement factor u0 is listed in column 6. The ratio r1=a is provided in column 7 (see Ref. [74] for the MILC definition of r1). The
inverse lattice spacing a�1 is recapitulated in column 8 [for the (0.00484, 0.0484) ensemble, we obtain the value of r1=a from Ref. [70]
and then calculate a�1]. In the last column, the numbers of gauge configurations are given.

Ensemble L� T � aml ams u0 r1=a a�1 GeV Ncf

a � 0:12 fm
2464f21b676m005m050 243 � 64 6.76 0.005 0.050 0.8678 2.647(3) 1:679þ43

�16 156

2064f21b676m007m050 203 � 64 6.76 0.007 0.050 0.8678 2.635(3) 1:672þ43
�16 200

2064f21b676m010m050 203 � 64 6.76 0.010 0.050 0.8677 2.619(3) 1:663þ43
�16 200

a � 0:15 fm
2048f21b6566m00484m0484 203 � 48 6.566 0.00484 0.0484 0.8602 2.162(5) 1:373þ34

�14 560

1648f21b6572m0097m0484 163 � 48 6.572 0.0097 0.0484 0.8604 2.140(4) 1:358þ35
�13 250

1648f21b6586m0194m0484 163 � 48 6.586 0.0194 0.0484 0.8609 2.129(3) 1:352þ35
�13 200

2We are only interested in the elastic region, 2m� < EI
�� <

4m�, where there is no 4� channel, and not yet up to the opening
of the K �K channel at around 1 GeV [63], where the K �K channel
contributes remarkably to the isoscalar �� interactions [64].

3In principle, when t � T=2, even if we place the periodic
boundary condition in the temporal direction, the energy shift of
the �� system can still be roughly evaluated from these ratios.
In this work, we do not use these ratios to quantitatively calculate
any physical quantities; nonetheless, these ratios will indeed help
us to qualitatively or intuitively comprehend some physical
quantities.
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RI¼0ðtÞ ¼ RDðtÞ þ 1

2
NfR

CðtÞ � 3NfR
RðtÞ þ 3

2
RVðtÞ;

RI¼2ðtÞ ¼ RDðtÞ � NfR
CðtÞ:

(10)

In this work, wewill employ two approaches to calculate
the pion massm�. The first method is to use both the point-
source and point-sink operators. Nevertheless, the point
operator has a big overlap with excited states [68], and in
practice it is customary to use the wall-source operator
which efficiently reduces these overlaps, along with a point
sink [68]. In addition, we need both propagators to calcu-
late the pion decay constant [50,51].

III. LATTICE CALCULATION

We used the MILC gauge configurations [50,51] with
the 2þ 1 flavors of Asqtad-improved staggered sea quarks
[52] and a Symanzik-improved gluon action [69]. See de-
tailed simulation parameters in Ref. [70]. It is worth men-
tioning that the MILC gauge configurations are generated
using the staggered formulation of lattice fermions [71]
with the fourth root of a fermion determinant which is
hypercubic smeared (HYP smeared) [72]. As shown in
Ref. [73], the chiral symmetry is significantly enhanced
via the HYP-smeared gauge link.

The lattice simulation parameters of the MILC gauge
configurations used here are epitomized in Table I. The
simulated bare masses of light and strange sea quarks are
denoted by aml and ams, respectively. The masses of the u
and d quarks are degenerate and small enough that the
physical up- and down-quark masses can be attained by the
chiral extrapolation. The lattice spacing a for first three
lattice ensembles is about 0.12 fm, and that of the last three
lattice ensembles is around 0.15 fm. By MILC convention,
the lattice ensembles are referred to as ‘‘coarse’’ for a �
0:12 fm and ‘‘medium coarse’’ for a � 0:15 fm. For easy
notation, it is convenient to use ðaml; amsÞ to mark lattice
ensembles, e.g., ‘‘the (0.01, 0.05) ensemble.’’ The tadpole
factors u0 [75] are utilized to enhance the gauge configu-
ration action [50,51].

To compute the �� four-point functions C��ðtÞ, the
standard conjugate gradient technique4 is used to acquire
the required matrix element of the inverse fermion matrix.
The periodic boundary condition is applied to the three
spatial directions and temporal direction. We compute
C��ðtÞ on all possible time slices, and collect them at the
end of the measurement, namely,

C��ðtÞ ¼ 1

T

XT�1

ts¼0

hð��Þðtþ tsÞð��ÞyðtsÞi:

After averaging the correlators over all possible T values of
common time shift ts, as illustrated later, we found that the
statistics are indeed significantly improved.
For each time slice, three fermion matrix inversions are

needed, corresponding to the three color choices for the
pion source, and each inversion takes about 1000 iterations
[about 2000 for the (0.00484, 0.0484) and (0.005, 0.05)
ensembles] during the conjugate gradient calculation.
Thus, in total, we carry out 3T inversions on a single gauge
configuration. As shown later, this rather big number of
inversions offers the substantial statistics needed to get the
�� scattering amplitudes with high accuracy.
In practice, we calculate the pion correlators,

CPP
� ðtÞ ¼ 1

T

XT�1

ts¼0

h0j�yðtþ tsÞ�ðtsÞj0i;

CWP
� ðtÞ ¼ 1

T

XT�1

ts¼0

h0j�yðtþ tsÞW�ðtsÞj0i;
(11)

where � is the pion point-source operator and W� is the
pion wall-source operator [50,51]. To simplify the notation
in this section, the summation over the lattice space point
in sink is not written out. In this work, we will adopt the
shorthand notation: ‘‘PP’’ for the point-source point-sink
propagators and ‘‘WP’’ for the wall-source point-sink
propagators [51]. We should stress that the summations
are also taken over all the time slices for the pion propa-
gators, and we found that the statistics are indeed signifi-
cantly improved. This is very important to obtain a pion
mass with high accuracy.
Overlooking the excited state contributions, the pion

massm� can be secured at large twith a single exponential
fit ansatz [61,70,76]

FIG. 2 (color online). Pion masses (magenta octagons) and
WP amplitudes AWP

� (red diamonds) as a function of the mini-
mum time distance in the fit for the (0.007, 0.05) ensemble. The
amplitudes have been divided by 2060.

4The conjugate gradient residual used in this work is 1:0�
10�5, which is smaller than that used in generating gauge
configurations [50,51]. Moreover, to avoid the potential roundoff
errors as much as possible, all of the numerical calculations are
calculated in double precision.
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CPP
� ðtÞ ¼ APP

� ½e�m�t þ e�m�ðT�tÞ�; (12)

CWP
� ðtÞ ¼ AWP

� ½e�m�t þ e�m�ðT�tÞ�; (13)

where T is the temporal extent of the lattice, and APP
� and

AWP
� are overlapping amplitudes. We will use these values

to estimate the wraparound contributions [21,27,67] and
calculate the pion decay constant [68] as well.

We should remark at this point that, in the calculation of
the �� four-point functions for the I ¼ 0 channel, we try
our best to compute the vacuum diagram, since the other
three diagrams can be relatively easily calculated. We
found that the vacuum diagram plays a critical role in
this correlator.5

IV. LATTICE SIMULATION RESULTS

A. Pion mass and pion decay constant

In practice, the � propagators were fit by varying mini-
mum fitting distances Dmin and by putting the maximum
distance Dmax either at T=2 or where the fractional statis-
tical errors surpassed about 20% for two sequential time
slices [50,51,61].6 In this work, pion masses were secured
from the ‘‘effective mass’’ plots for each of the MILC
lattice ensembles, and they were strenuously selected by
looking for a combination of a ‘‘plateau’’ in the mass as a
function of Dmin , good fit quality (i.e., �

2=d:o:f: � 1), and
Dmin large enough to reduce the excited states [25–27].
The WP propagators were fit to Eq. (13) using a minimum
time distance of 14a for the medium-coarse lattices and

20a for the coarse lattices, and the full covariance matrix is
used to compute statistical errors. At these large distances,
the pollution from excited states is at most comparable to
the statistical errors [68]. For example, Fig. 2 exhibits the
results for pion masses and amplitudes as a function of
Dmin for the (0.007, 0.05) ensemble. Since the major objec-
tive of this work is to present the work for isospin-0, as
explained later, for �� scattering in the I ¼ 0 channel, the
systematic error of the energy of the �� system is fairly
large; we can temporarily neglect the systematic effect for
pion mass due to excited states. All of these fitted values of
pion masses are listed in Table II.
In our previous work [33], we used the method described

in Ref. [68] to extract the pion decay constant for the
(0.0097, 0.0484) ensemble [33]. In light of the same pro-
cedures, we calculated the pion decay constants for other
medium-coarse ensembles. All of these fitted values of
pion decay constants are listed in Table II.
As a consistency check, the PP correlators were reliably

measured in this work. Using these correlators, we can
secure pion masses via Eq. (12), which are listed in the last
column in Table II, and these pion masses are found to be
consistent with their counterparts extracted with WP
propagators, which are summarized in Table II.
Our fitted values of pion masses and pion decay con-

stants listed in Table II are in rather good agreement with
the same quantities which are computed on the same lattice
ensembles by theMILC Collaboration in Refs. [70,76]. For
the coarse ensembles, the MILC’s determinations on pion
decay constants are directly quoted [70,76], which are also
summarized in Table II.

B. Diagrams D, C, R, and V

As practiced in our former work [33], the �� four-point
functions are robustly calculated on six MILC lattice en-
sembles listed in Table I using the technique of the moving
wall source without gauge fixing [18,19,53]. In Fig. 3, the

TABLE II. Summaries of the pion masses and pion decay constants. The third column shows the pion masses in lattice units and the
fifth column gives the overlapping amplitude using WP propagators. The product of m�L is presented in column 4. The pion decay
constants in lattice units are provided in the sixth column. Column 2 shows the values of pion mass in MeV, where the errors are
estimated from both the error on lattice spacing a and statistical errors in column 3. The seventh column shows the dimensionless ratio
m�=f�, where the errors are estimated from the am� and af�. The last column shows the pion masses which are measured by the
point-wall point-sink propagators, and only used as a consistency check.

Ensemble m� (MeV) amWP
� mWP

� L AWP
� af� m�=f� amPP

�

(0.00484, 0.0484) 240(4) 0.17503(09) 3.5006(18) 1000:18	 1:580 0.11767(45) 1.4874(57) 0.17504(09)

(0.005, 0.05) 268(5) 0.15970(15) 3.8345(48) 770:534	 2:577 0.09054(33)a 1.7639(66) 0.15992(16)

(0.007, 0.05) 315(6) 0.18868(22) 3.7736(44) 399:094	 1:393 0.09364(20)a 2.0149(49) 0.18871(24)

(0.0097, 0.0484) 334(6) 0.24566(18) 3.9306(29) 395:107	 1:151 0.12136(29) 2.0242(51) 0.24587(21)

(0.01, 0.05) 373(7) 0.22455(27) 4.4910(54) 365:595	 2:039 0.09805(14)a 2.2902(42) 0.22447(17)

(0.0194, 0.0484) 463(8) 0.34279(19) 5.4846(30) 315:695	 0:865 0.13055(48) 2.6258(98) 0.34279(23)

aThe superscript indicates the MILC’s determination.

5In our previous work [77], we presented a detailed procedure
to calculate the disconnected diagram for the f0ð600Þ meson. It
helps us greatly to implement the evaluation of the vacuum
diagram here, especially for conducting a vacuum subtraction.

6Since the lattice data points at the largest distances contain
relatively little information, the exact selection of large distance
cutoff Dmax is not very critical [50,51,61].
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FIG. 3 (color online). Individual amplitude ratios RXðtÞ of the �� four-point functions computed via the moving wall source without
gauge fixing as the functions of t for six MILC lattice ensembles: direct diagram (red diamonds) displaced by 0.8 [except for the
(0.00484, 0.0484) ensemble, where the direct diagram shifted by 0.95], vacuum diagram (magenta octagons), crossed diagram (red
squares), and rectangular diagram (blue diamonds).
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individual ratios RX(X ¼ D, C, R, and V), which are
denoted in Eq. (9), are illustrated as the functions of t for
each lattice ensemble.

The ratio values of the direct amplitude RD are quite
close to oneness, indicating a fairly weak interaction in this
channel. The crossed amplitude, in another aspect, in-
creases linearly up to t
 18 for the medium-coarse en-
semble and t
 24 for the coarse ensemble, implying a
repulsive interaction between two pions in the I ¼ 2
channel. In contrast, after a beginning increase up until
t
 4, the rectangular amplitude demonstrates a roughly
linear decrease up until t
 18 for the medium-coarse
ensemble and t
 24 for the coarse ensemble, suggesting
an attractive force among two pions for the I ¼ 0 channel.
Additionally, the magnitude of the slope is similar to that of
the crossed amplitude but with opposite sign. Furthermore,
we observe that the crossed and rectangular amplitudes
have the same values at t ¼ 0 and close ones for small t.
These characteristics are in good keeping with the theo-
retical predictions [17].

For the vacuum amplitude of the (0.0194, 0.0484) en-
semble, we only obtain a good signal up to t ¼ 10, beyond
which signals are quickly lost. For the lattice ensembles
with the pion mass becoming smaller, the signals of the
vacuum amplitude are lost more slowly. Moreover, for the
(0.00484, 0.0484) ensemble, good signals can be observed
up to t ¼ 20 for the vacuum amplitude. These character-
istics are in good accordance with the empirical Okubo-
Zweig-Iizuka (OZI) rule and �PT which expect the
disappearance of the vacuum amplitude in leading order
[17–19]. Additionally, this qualitatively confirmed the ana-
lytical arguments in Ref. [34], which indicates that the
error of the vacuum amplitude grows exponentially as
e2m�t. The numerical calculation of the amplitude for the
vacuum diagram stands as our principal and distinctive
accomplishment of this paper.

The systematically oscillating behavior of the rectangu-
lar amplitude in large t is evidently observed, which is a
typical feature of the staggered formulation of lattice fer-
mions and corresponds to the contributions from the inter-
mediate states with opposite parity [66], and for the lattice
ensemble with large pion mass, this oscillating feature
become more obvious. In contrast, for that with small
pion mass, this feature is not appreciable, and not even
perceptible for the MILC (0.00484, 0.0484) ensemble. The
physical meaning of this fascinatingly oscillating behavior
is easily understood [66]. Nevertheless, its quantitative
mass dependence is not clear to us and needs further
investigation.

C. The errors of RVðtÞ and RRðtÞ
According to the analytical arguments in Ref. [34], the

error of the ratio for the vacuum amplitude increases
exponentially as e2m�t. Therefore, it is fairly difficult
to secure the correct signal for large t [34]. Likewise, the

ratio for the rectangular diagram has errors, which grow
exponentially as em�t for large t [34]. Our lattice data
indeed demonstrate such dependence with the expected
slopes.
The magnitudes of these errors are quantitatively in line

with these analytical predictions, as demonstrated in Fig. 4.
Fitting the errors �RVðtÞ and �RRðtÞ by a single exponen-
tial fit ansatz �RVðtÞ 
 e�Vt and �RRðtÞ 
 e�Rt, respec-
tively, for six lattice ensembles, we extract the fitted
values of �V and �R, which are summarized in Table III,
together with their fitting ranges.
From Table III, we note that the fitted values of �R can

be compared with the pion masses m� listed in Table II,
and half of the fitted values of �V can also be reasonably
compared with these pion masses. Here we have numeri-
cally confirmed Lepage’s analytical arguments [34] about

FIG. 4 (color online). The errors of the amplitude ratios RXðtÞ
ðX ¼ V;RÞ as the functions of t for each of the MILC lattice
ensembles. Solid lines are single exponential fits, and the fitting
ranges are listed in Table III. (a) The errors of the amplitude
ratios RVðtÞ. (b) Those of RRðtÞ.
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�� scattering. This testifies to the practical applicability
of the moving wall source without gauge fixing from
another point of view. Thus, we can reasonably assume
that the vacuum amplitude remains small for large t. In
principle, we can overlook the vacuum amplitude in
the rest of the analysis. However, we will explicitly include
it for the sake of completeness of the lattice QCD
calculation.

D. RI projected onto the I ¼ 0 and 2 channels

The ratios RIðtÞ projected onto the isospin I ¼ 0 and 2
eigenchannels for the MILC (0.00484, 0.0484) and (0.005,
0.05) ensembles are demonstrated in Fig. 5. A decrease of
the ratio RI¼2ðtÞ indicates a repulsive interaction among
two pions for the I ¼ 2 channel; on the other hand, an
increase of the ratio RI¼0ðtÞ suggests an attractive interac-
tion for the I ¼ 0 channel. In the I ¼ 0 channel, a dip at
t ¼ 3 for (0.00484, 0.0484) and t ¼ 5 for (0.005, 0.05) can
be clearly observed, and their physical origin is not clear to
us as well [18,19].

Due to the rather small quark mass of two lattice
ensembles, the systematically oscillating behavior for the
I ¼ 0 channel in large t is not clearly observed, which is a
typical characteristic of the Kogut-Susskind formulation of
lattice fermions [66]. Additionally, this oscillating feature
is hardly noticed for the I ¼ 2 channel.

In order to present the contribution from the vacuum
term more intuitively, we employ the green cross points to
indicate the ratioRIðtÞ for the�� four-point function in the
I ¼ 0 channel without the presence of the disconnected
diagram. From Fig. 5, we can clearly notice that the
contribution from the disconnected diagram is only
obvious when t � 20 for the (0.00484, 0.0484) ensemble
and t � 16 for the (0.005, 0.05) ensemble.

E. Lattice artifact

From Fig. 3, we observe that there exists a pollution
from the wraparound effects [21,27,67], approximately
starting as early as at t ¼ 12–18 for the MILC medium-
coarse ensembles and t ¼ 22–25 for the coarse ensembles.
As discussed in Refs. [21,27,31,67], one of two pions can

propagate T � t time steps backwards due to the periodic
boundary condition in the temporal direction. This oper-
ates as a constant contribution and deforms the ��
four-point functions in large t (especially around T=2);
according to the discussions in Refs. [21,27,31,67], it is
roughly suppressed by

exp ð�m�TÞ= exp ð�2m�tÞ;

as compared to forward propagation of the �� state. We
can select the fitting ranges satisfying tmax � T=2 to
reduce this effect [21]. However, according to the argu-
ments in Refs. [21,27,31,67], if pion mass is small enough
[e.g., the (0.00484, 0.0484) ensemble], the wraparound

TABLE III. Summaries of the fitted values for �V and �R in
lattice units. The second and third columns show the fitted values
of �V and �R, respectively, and column 4 gives the time range
for the chosen fit.

Ensemble a�V a�R Range

(0.00484, 0.0484) 0.3392 0.1621 10–18

(0.0097, 0.0484) 0.4956 0.2457 8–16

(0.0194, 0.0484) 0.6927 0.3487 8–16

(0.005, 0.05) 0.3178 0.1513 10–20

(0.007, 0.05) 0.3701 0.1895 10–20

(0.01, 0.05) 0.4463 0.2237 10–20

FIG. 5 (color online). RIðtÞ (I ¼ 0 and 2) for the �� four-
point function at zero momenta calculated by the moving wall
source without gauge fixing as the functions of t for the MILC
lattice (a) (0.00484, 0.0484) ensemble and (b) (0.005, 0.05)
ensemble. The green cross points indicate the ratio RIðtÞ in the
I ¼ 0 channel where the vacuum diagram is turned off.
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pollution cannot be suppressed even for t � T=2; we
should include this term for the successful fit,7

CI
��ðtÞ ¼ Cþ A�� cosh

�
EI
��

�
t� 1

2
T

��

þ ð�1ÞtA0
�� cosh

�
EI0
��

�
t� 1

2
T

��
þ � � � ; (14)

where C is a constant corresponding to the wraparound
term. This can be easily understood by evaluating the
contribution of two fake diagrams in Fig. 2 of Ref. [31],
and C can be expressed as

C ¼ 2A2
�e

�m�T: (15)

For easy notation, the superscript WP in A� is omitted in
the rest of our analyses.

In this work, we accurately extract the overlapping
amplitudes A� and pion masses m� corresponding to
pion correlators [78], which are listed in Table II, and these
values are sufficiently precise to estimate the wraparound
terms with Eq. (15), which are listed in Table IV.

We note that Ref. [30] has recently taken the similar
definition as

C ¼ 2A��e
�m�T; (16)

where A�� is defined in Eq. (14). Additionally, there exists
the similar general formwhich contains the two-particle, as
well as one-particle, eigenvalues and gives a not-quite
rigorous proof in Ref. [79]. Furthermore, when studying
K ! �� decay amplitudes, there is an analogous fitting
functional form in Ref. [56].

In order to comprehend these wraparound effects at a
quantitative level, we denote a quantity

RWCðtÞ ¼ C

CI¼2
�� ðtÞ ; (17)

which is the ratio of the wraparound pollution to the ��
four-point function in the I ¼ 2 channel. In fact, we ex-
ploited the data of the wraparound contribution C listed in
Table IV and CI¼2

�� ðtÞ calculated from Eq. (3) to approxi-
mately evaluate these ratios. The ratios for six MILC lattice
ensembles are illustrated in Fig. 6. All of these ratios make
a significant contribution and are approximately close to
1=2 as t approaches to T=2, as expected from the argu-
ments in Refs. [21,27,31,67]. We can note that as the pion
mass of the lattice ensemble becomes smaller, the
wraparound contribution C is clearly observed even at
small t. For example, we can keenly notice the wraparound
term even as early as at t ¼ 10–12, satisfying t � T=2 for
the (0.00484, 0.0484) ensemble. It is, therefore, absolutely
necessary for us to explicitly consider the wraparound
term, especially for lattice ensembles with small pion
masses when we extract the energy E of the ��
system [31].
To get rid of this pollution, Xu et al. [27] employed a

derivative method and denoted a modified ratio [67]. By
ignoring terms suppressed relative to the leading contribu-
tion, the energy shift �E can be obtained from the asymp-
totic form of the modified ratio. To identify the time
separations where the ground state dominates, Yagi et al.
used their self-defined ratios [31]. Moreover, Dudek et al.
[30] recently eliminated this unwanted pollution term by
the shifted correlator.
In principle, we can use one of the three above-

mentioned methods to process our �� scattering data for
isospin-2. However, for those of the I ¼ 0 channel, there is
a further complication introduced by staggered fermions:
the oscillating term is appreciable, so we must consider the
oscillating term and modify the corresponding functional

TABLE IV. Summaries of the calculated wraparound contri-
butions from overlapping amplitude A� and pion mass am�. The
second column shows the wraparound contributions calculated
from Eq. (15), where its errors are roughly estimated from the
statistical errors of A� and m�.

Ensemble C

(0.00484, 0.0484) 451.36(2.63)

(0.005, 0.05) 43.23(51)

(0.007, 0.05) 1.815(29)

(0.0097, 0.0484) 2.362(25)

(0.01, 0.05) 0.1533(31)

(0.0194, 0.0484) 0.01424(15)

FIG. 6 (color online). The ratios of the wraparound terms to
the corresponding �� four-point functions for six MILC lattice
ensembles calculated by Eq. (17). All of these ratios make a
significant contribution and are approximately close to 1=2 as t
approaches to T=2, as expected from the arguments in
Refs. [21,27,31,67].

7It turns out that a five-parameter cosh fit of C, A��, E
I
��, A

0
��,

and EI0
�� yields a satisfactory result with a fairly acceptable �2.

Moreover, the excited states will be taken into account as one of
the important sources of systematical error in this work.

ZIWEN FU PHYSICAL REVIEW D 87, 074501 (2013)

074501-10



forms. As a consequence, it is not convenient to use these
methods. Additionally, for pion-kaon (�K) scattering
[53,78] and the �� correlators ‘‘in flight’’ [30], the wrap-
around term is not a constant, and these methods are not
suitable.

Nagata et al. solved this problem by subtracting the
wraparound term numerically from the obtained quantities
[78], since the lattice-measured data are sufficiently pre-
cise to allow such subtraction. Dudek et al. eliminated this
term by means of the shifted correlator for�� scattering at
rest and the weight-shifted correlator for �� scattering in
flight [30]. We already exhibited that the overlapping am-
plitude A� and pion mass m� can be calculated with high
accuracy, so it is natural to borrow these methods for our
case [30,78]. As a consistency check, we numerically com-
pared these results calculated from the above-mentioned
methods for lattice data in the I ¼ 2 channel, and we found
that they are consistent with each other within errors.
Therefore, in this work we only present the results from
the last method, namely, using Eq. (14) to extract the
energy E of the �� system in a conceptually clean way.

V. FITTING ANALYSES

As already explained in previous sections, we will use
Eq. (14) to get the energies aE of the�� system, which are
inserted into the Lüscher formula (6) to obtain the corre-
sponding s-wave �� scattering lengths. Hence, appropri-
ately extracting the energies is a central step toward our
ultimate results. A persuasive way to process our lattice
data is to resort to the ‘‘effective energy’’ plot, which is a
variant of the effective mass plot, and very similar to the
‘‘effective scattering length’’ plot [25,26].

A. I ¼ 2 channel

In practice, �� four-point functions were fit by varying
the minimum fitting distances Dmin and by putting the
maximum distance Dmax either at T=2 or where the frac-
tional statistical errors surpassed about 20% for two
sequential time slices [50,51,61]. Additionally, the fitting
parameter C was constrained by priors to conform to the
lattice-calculated wraparound contribution C listed in
Table IV [80]. For each ensemble, the effective energy
plots as a function of Dmin are illustrated in Fig. 7. The
central value and statistical error at each time slice were
evaluated by the Levenberg-Marquardt algorithm [81]. To
make these fits more robust, we double-check them with
SNOBFIT, which is a soft constrained noisy optimization

[82]. From Fig. 7, we also observed that the effective
energies have larger statistical errors near t
 T=2 because
of the wraparound effect, as discussed in detail in Ref. [31].

In this work, the energies aE of the �� system in the
I ¼ 2 channel were secured from the effective energy plots
for each of the MILC lattice ensembles, and they were
strenuously selected by looking for a combination of the
plateau in the energy as the function of Dmin , good fit

quality [25–27], and Dmin large enough to suppress the
excited states. We found that the effective energy of the��
system for the I ¼ 2 channel has relatively small errors
within a broad minimum time distance region.
We should remark that the physical model in Eq. (14)

just includes the ground state [25–27]. In fact, we can
fit with the inclusion of the first excited state, and the
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FIG. 7 (color online). The effective energy plots as the func-
tions of Dmin for �� scattering in the I ¼ 2 channel in lattice
units. The effective energy plots have small errors within a broad
minimum fitting distance region.
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difference between these procedures, as well as the
difference arising from the arbitrary choice of Dmax , is
incorporated in the systematic error for the energies aE
of the �� system.

For the same fitting range, analogously, we secured the
wraparound term C from the corresponding effective wrap-
around constant plots in Fig. 8. It is worth mentioning that

the fitted wraparound pollution C is in fair agreement with
the calculated wraparound pollution C within errors.
Nonetheless, it is interesting to note that there exist differ-
ences of about 1%; the physical indication is not clear to us
and needs further investigation in future work.
The fitted values of the energies aE of the �� system

with isospin-2, fitting range, and fit quality (�2=d:o:f:) are
tabulated in Table V, together with the fitted values of the
wraparound contribution C. We note that the fitted values
of C are de facto statistically significant constant terms for
the lattice ensembles with small pion masses. Additionally,
we clearly found that these fitted values of C are close to
our estimated values listed in Table IV, as already noticed
in Ref. [30].
It is well known that the interaction between two pions

in the I ¼ 2 channel is fairly weak, such that the energy
difference between the interacting and noninteracting ��
states is quite a small fraction of the total energy of the ��
system,8 which can be estimated from the data in Tables II
and V. This forces us to make the rigorous measurements
of both the energy spectra of the �� system and pion
masses, and even to seriously account for various small
systematic effects to resolve the rather small differences.
We have indeed extracted the energies of the �� system
and pion masses with significantly high precision. These
are shown in Tables II and V.
Now it is straightforward to substitute these energies aE

into Lüscher formula (6) and secure the relevant s-wave
scattering lengths aI¼2

�� , where we plugged in the pion
masses from column 3 in Table II. The center-of-mass
scattering momentum k2 is computed by Eq. (5) with
pion masses given in Table II. However, to get rid of the
scale-setting uncertainties, it turns out to be more custom-
ary to adopt the dimensionless quantity: m�a

I¼2
�� [25,26].

All of these values for each lattice ensemble are summa-
rized in Table V, where the statistical errors of k2 are
calculated from the statistical errors of aE and am�, and
its systematic errors are only estimated from the systematic
errors of aE. Likewise, the statistical errors form�a

I¼2
�� are

computed from the systematic errors of k2 and am�, while
its systematic errors are estimated from the systematic
errors of k2 and the subsequently mentioned two finite
volume effects.
Since the periodic boundary condition is imposed in the

spacial directions of the lattice, there is an exponentially
small finite volume (FV) correction to the s-wave ��
scattering length in the I ¼ 2 channel, which has been
determined in the vicinity of the threshold in Ref. [83].
The consequent finite volume correction �FV is provided
here as [83],
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FIG. 8 (color online). The effective wraparound constant plots
as the functions of Dmin for �� scattering in the I ¼ 2 channel
in lattice units.

8In this work, the ratio of the energy shift to total energy is
about 2%. For other lattice studies [17–31], it is actually close to
this number. On the other hand, this ratio for the I ¼ 0 channel is
around 5% [18,19,32], and the ratio of this work is approxi-
mately 5% as well.
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ðm�a
I¼2
�� ÞL ¼ ðm�a

I¼2
�� Þ1 þ �FV; (18)

where

�FV ¼ 1

213=2�5=2

�
m�

f�

�
4 X0

n2Z3

e�jnjm�Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijnjm�L
p

�
1� 17

8

1

jnjm�L

þ 169

128

1

jnj2m2
�L

2
þOðL�3Þ

�
: (19)

Here
P0

n2Z3

indicates a summation without n ¼ 0. Using this

formula, we compute the finite volume corrections to
m�a

I¼2
�� , which are listed in Table VI, where we insert

the values of m�L and m�=f� listed in Table II.
From Table VI, we note that these corrections are more

and more important for the lattice ensembles with smaller
and smaller pion masses [83]. Since we use the lattice
ensembles with small pion masses, we should consider
these effects, although they are slight, and never more
than 7% of the corresponding statistical errors [27].

Another important finite volume effect stems from ef-
fective range approximation, k cot�ðkÞ ¼ 1=aI¼2

�� þ 1
2 rk

2

[26]. While the dependence on the effective range r is
small, the range truncation actually leads to the correction
at OðL�6Þ in Lüscher formula (6) [26]. In practice, we

compute this correction for each lattice ensemble, as sug-
gested in Ref. [26].
These two finite volume corrections have also been

added in quadrature to the systematical errors listed in
Table V. Other sources of systematic uncertainty such as
isospin violation, finite volume effect due to the fixed
global topology, pion mass correction [26,31], etc. are
believed to be very small, or we currently do not have
enough computational resources to fulfill them. These
effects should be incorporated into the more sophisticated
lattice computation at some point in the future.

B. I ¼ 0 channel

As already performed for the I ¼ 2 channel, we analyze
our lattice data with the effective energy plot. We should
stress that when using physical fitting model (14) to extract
the desired energies aE of the �� system, we fix the
fitting parameters of wraparound contribution C with the
estimated values listed in Table IV.9 In practice, the ��
four-point functions were fit by altering the minimum fitting
distances Dmin and putting the maximum distance Dmax

either at T=2 or where the fractional statistical errors ex-
ceeded about 20% for two sequential time slices [50,61].
The effective energy plots as the functions of Dmin are
illustrated in Fig. 9. The central value and statistical error
at each time slice were evaluated by the Levenberg-
Marquardt method [81]. To make these fits robust, we
double-check them with SNOBFIT [82]. We do not show
the result of the (0.0194, 0.0484) ensemble in Fig. 9 since
it is too noisy.
For each lattice ensemble, the energies aE of the ��

system for the I ¼ 0 channel are secured from the effective
energy plots and chosen by looking for a combination of a
plateau in the energy as the function of Dmin , a good
confidence level, and Dmin large enough to suppress the
excited states [25–27]. In addition, as performed for

TABLE V. Summaries of lattice results of the s-wave scattering lengths for the I ¼ 2 channel. The second column presents the
energies in lattice units, where the first uncertainties are statistical and the second ones are the estimates of the systematic uncertainties
due to fitting. Column 3 shows the fitted values of the wraparound term C, column 4 indicates the time range for the chosen fit, and
column 5 gives the fit quality �2=d:o:f. Column 7 gives the center-of-mass scattering momentum k2 in GeV, and column 8 presents the
product of the pion mass and scattering length, m�a

I¼2
�� , where the first uncertainty is statistical and the second one is systematic.

Ensemble aE C Range �2=d:o:f: k2 [GeV2] m�a
I¼2
��

(0.00484, 0.0484) 0.35520(25)(20) 438.05(1.94) 14–24 4:21=6 0.00167(10)(7) �0:0915ð52Þð35Þ
(0.005, 0.05) 0.32424(35)(33) 42.44(29) 16–32 10:6=12 0.00220(21)(15) �0:125ð11Þð8Þ
(0.007, 0.05) 0.38606(44)(37) 1.776(17) 16–32 11:5=12 0.00444(31)(20) �0:167ð10Þð7Þ
(0.0097, 0.0484) 0.50087(41)(38) 2.320(14) 14–24 6:1=6 0.00437(25)(17) �0:167ð9Þð6Þ
(0.01, 0.05) 0.45648(56)(41) 0.1493(18) 18–32 8:7=10 0.00464(48)(26) �0:209ð19Þð10Þ
(0.0194, 0.0484) 0.69392(40)(34) 0.01414(11) 13–24 6:6=7 0.00527(35)(22) �0:277ð16Þð10Þ

TABLE VI. Summaries of the finite volume corrections �FV.
Column 2 shows the finite volume corrections to the I ¼ 2 ��
scattering length, and column 3 gives ratios of the finite volume
corrections to the corresponding statistical error. Here we use the
pion masses, pion decay constants, and m�L values listed in
Table II.

Ensemble �FV Ratios

(0.00484, 0.0484) 0.000258 0.049

(0.005, 0.05) 0.000341 0.031

(0.007, 0.05) 0.000625 0.060

(0.0097, 0.0484) 0.000529 0.062

(0.01, 0.05) 0.000453 0.023

(0.0194, 0.0484) 0.000257 0.016

9For rectangular (R) and vacuum (V) diagrams, there is no
wraparound pollution. So the wraparound contribution for the
I ¼ 0 channel is the same as that in the I ¼ 2 channel. It is
reasonable to fix the wraparound contribution C.
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isospin-2, we approximately estimate the systematic errors
owed to fitting [25–27].

The fitted values of the energies aE of the�� system, fit
range, and fit quality (�2=d:o:f:) are summarized in

Table VII. The fit quality �2=d:o:f: is reasonable for the
I ¼ 0 channel. It is well known that the disconnected term
gives rise to the considerable fluctuations in the �� four-
point function, and it is fairly difficult to reliably calculate
this term. In reality, only the lattice ensembles with small
pion mass have a good signal. From Fig. 9, we found that,
for the (0.097, 0.0484) and (0.01, 0.05) ensembles, the
plateaus are not too obvious, so in this work, we do not
include these results.
Nevertheless, one thing greatly comforting us is that the

interaction between two pions in this channel is not too
weak, such that the discrete energies in a torus are shifted
relatively bigger than those of the I ¼ 2 channel from the
values relevant for noninteracting pions, and as we can see
from Tables II and VII, the energy shift between the
interacting and noninteracting �� states is not too small
a fraction of total energy. This indicates that the rigorous
calculation of disconnected diagrams is at present the most
important thing.
The center-of-mass scattering momentum k2 is calcu-

lated by Eq. (5) with pion masses listed in Table II, and
then the corresponding s-wave scattering lengths m�a

I¼0
��

can be obtained through Eq. (6). All of these values are
summarized in Table VII, where the statistical errors of k2

are calculated from the statistical errors of the energies aE
and pion mass am�, and its systematic errors are only
estimated from the systematic errors of aE. Likewise, the
statistical errors for m�a

I¼0
�� are computed from the statis-

tical errors of k2 and am�, and its systematic errors are
estimated from the systematic errors of k2 and one finite
volume effect [27].
As already explained in the previous section, the depen-

dence on the effective range r is small, and the range
truncation actually leads to the finite volume correction
at OðL�6Þ in Lüscher formula (6) [26]. In practice, we
compute this correction for each lattice ensemble, as sug-
gested in Ref. [26]. These finite volume corrections have
been combined in quadrature to the systematical errors
listed in Table VII. Other sources of systematic uncertainty
such as nonuniversal exponentially suppressed corrections
[83], pion mass corrections [26,31,83], etc. are believed
to be very small as compared with the rather large system-
atic error of the energies aE, or we currently do not have
enough computational resources to fulfill them. With more
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FIG. 9 (color online). Effective energy plots as the functions of
Dmin for �� scattering in the I ¼ 0 channel in lattice units.

TABLE VII. Summaries of the lattice results for the fitted energies of the �� system for the I ¼ 0 channel. The second column
shows the energies in lattice units, where the first uncertainties are statistical, and the second ones are the estimates of the systematic
uncertainties. Column 3 shows the fitting range, and column 4 shows the number of degrees of freedom (d.o.f.) for the fit. The sixth
column shows the center-of-mass scattering momentum k2 in GeV, and column 7 gives the product of pion mass and scattering length,
m�a

I¼0
�� , where the first uncertainty is statistical and the second one is systematic.

Ensemble aE Range �2=d:o:f: k2 [GeV2] m�a
I¼0
��

(0.00484, 0.0484) 0.33226(63)(78) 9–24 13:3=12 �0:00572ð21Þð24Þ 0.476(25)(29)

(0.005, 0.05) 0.3013(16)(18) 11–24 14:6=10 �0:00791ð71Þð76Þ 0.811(123)(133)

(0.007, 0.05) 0.3499(23)(26) 9–32 28:3=20 �0:0140ð12Þð13Þ 1.181(202)(223)
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reliable calculation of the energies aE of the �� system in
the I ¼ 0 channel in the future, these effects should even-
tually be incorporated into the more sophisticated lattice
computation.

We should point out that, in this work, we do not quote
our results for the (0.01, 0.05), (0.097, 0.0484) and (0.0194,
0.0484) ensembles due to two considerations: First, the
vacuum contributions of these ensembles are noisy (see
Fig. 3), and it is fairly difficult to see the clear plateau (see
Fig. 9) in the effective energy plots. Second, the presence
of the � resonance is clearly presented in low energy
[53,84], and thus it should be necessary for us to map out
‘‘avoided level crossings’’ between � resonances and ��
states with isospin-0 to secure the reliable scattering
length, as investigated in �K scattering in Refs. [53,84].
Luckily, as studied in Refs. [10,53,84], the contaminations
from � mesons for three lattice ensembles with small pion
masses are negligible. Therefore, we only consider these
results in the rest of the analysis.

VI. CHIRAL EXTRAPOLATIONS

In this work, we employed the rather small pion masses
ranging from 240 to 463 MeV, which are still larger than
the physical one. Therefore, �PT is needed to carry out a
chiral extrapolation of the scattering lengths to the physical
pion mass. The resulting NLO �PT formulas, which can be
directly built from the results in Ref. [2] (see the Appendix
for details), are described as [27,33]

m�a
I¼0
�� ¼ 7m2

�

16�f2�

�
1� m2

�

16�2f2�

�
9 ln

m2
�

f2�
� 5

� lI¼0
�� ð� ¼ f�;phyÞ

��
; (20)

m�a
I¼2
�� ¼ � m2

�

8�f2�

�
1þ m2

�

16�2f2�

�
3 ln

m2
�

f2�
� 1

� lI¼2
�� ð� ¼ f�;phyÞ

��
; (21)

where the values of m� and f� listed in Table II are
inserted, and the �PT renormalization scale is fixed at
the physical pion decay constant � ¼ f�;phy. Wherever a

quantity appears with a ‘‘phys’’ subscript, it refers to the
value of that quantity in the physical case. The lI¼0

�� ð�Þ and
lI¼2
�� ð�Þ are the combinations of the LECs in �PT at a
quark-mass independent scale � [25–27]. From the dis-
cussions in the Appendix, the lI¼0

�� ð�Þ and lI¼2
�� ð�Þ are

connected to the LECs �ln as [2,85]

lI¼0
�� ¼ 40

21
�l1 þ 80

21
�l2 � 5

7
�l3 þ 4�l4 þ 9 ln

m2
�

f2�;phy
; (22)

lI¼2
�� ¼ 8

3
�l1 þ 16

3
�l2 � �l3 � 4�l4 þ 3 ln

m2
�

f2�;phy
: (23)

It should be noted that Eqs. (20) and (21) are expressed in
terms of the full f� computed on the lattice, and not the
physical value f�;phy. In reality, in the chiral expansion, the

difference between utilizing f� and f�;phy in the argument

of the logarithm only alters scattering lengths at higher
orders [25,26].
As recommended in Refs. [25–27], we will carry out the

extrapolation of the products m�a
I¼2
�� and m�a

I¼0
�� by

means of the ratio m�=f� in place of m�. From the
Appendix, we note that extrapolating in m�=f� in lieu of
m� does transform the representations for m�a

I¼2
�� and

m�a
I¼0
�� but only at NNLO or higher. Additionally, since

m�=f� is a dimensionless quantity, there is no systematic
error arising from the scale setting [25–27].
We should remark that the lattice calculations reported

here used two lattice spacings of 0.15 fm and 0.12 fm.
Thus, it is meaningless to directly compare the energies aE
of the �� system. However, on the assumption that the
Lüscher technique properly explains the finite volume
dependence of the energies aE for these lattice ensembles,
we can compare m�a

I¼2
�� and m�a

I¼0
�� for two lattice spac-

ings [27], and we observe such agreement with statistical
error in Table V.

A. I ¼ 2 channel

We are now in a position to fit lattice results of m�a
I¼2
��

in Table V to the NLO �PT functional form (21) to obtain
the low-energy constant lI¼2

�� ð� ¼ f�;phyÞ, and then the

extrapolated value at the physical point ðm�a
I¼2
�� Þphys can

be obtained. The lattice-calculated values ofm�a
I¼2
�� as the

function ofm�=f� are shown in Fig. 10, and the outer error
on the extrapolated result represents the systematic error
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FIG. 10 (color online). The lattice-measured values of m�a
I¼2
��

as a function of m�=f�. The red plus point indicates the
scattering length at the physical limit, ðm�a

I¼2
�� Þphys. The shaded

bands correspond to statistical (inner, cyan) errors and statistical
and systematic errors combined in quadrature (outer, yellow).
The solid (black) curve is the central value of the NLO �PT fit.
The dashed (magenta) line is the tree-level �PT prediction.
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and statistical error combined in quadrature. The one-loop
�PT fit curve is displayed by the black solid line, and the
red plus point indicates its physical s-wave scattering
length, ðm�a

I¼2
�� Þphys, which is the chiral extrapolation of

m�a
I¼2
�� at the physical limit. In the same figure, we present

the tree-level prediction as well. It is important to note that
lattice data manifest fairly small displacement from the
tree-level forecast. Additionally, we notice that our lattice
results for m�a

I¼2
�� are in general agreement with the one-

loop formula. In fact, the deviation of ðm�a
I¼2
�� Þphys from

the tree-level prediction is a natural aftermath of NLO �PT
fitting [27].

In principle, we can fit our lattice-calculated data to the
NNLO �PT form for m�a

I¼2
�� [2,3] [see the concrete form

in Eq. (A10)], as in Ref. [31], since we have six lattice data
at our disposal. In the meantime, we can make an estimate
of NNLO LECs with a careful analysis for the chiral
extrapolation of m�a

I¼2
�� , since we have lattice data points

at the lighter quark masses. However, the NNLO fit has
larger errors in both lI¼2

�� and m�a
I¼2
�� than those with NLO

fit, as shown in Refs. [25–27,31], and the errors of the

LECs lð2Þ��;I¼2 and lð3Þ��;I¼2 are rather large, like the corre-

sponding obtained values in Ref. [31]. Therefore, the cal-
culations of NNLO LECs with physical meaning cannot be
obtained in this work. A rigorous NNLO �PT fit should
wait for more lattice data at pion masses closer to the
physical point than we presently have. Admittedly, the
resulting NNLO extrapolated value of m�a

I¼2
�� is indeed

in harmony with NLO fit, as we expect [27]. Actually, we
use the NNLO �PT functional form to estimate systematic
errors due to truncating the �PT series to NLO form [25].

As practiced in Ref. [27], we only consider three major
sources of systematic uncertainty on the extrapolated value
of m�a

I¼2
�� and lI¼2

�� . First, the lattice-calculated systematic
errors of m�a

I¼2
�� per ensemble are spread by the chiral

extrapolation [27]. Second, the systematic error inherently
stems from the NLO �PT fit [25,26], which can be roughly
calculated by taking the discrepancy between the NLO
�PT extrapolated value from all six data sets and that
from ‘‘pruning’’ the heaviest data set [27]. Third, the
experimental errors on m� and f� [86] give rise to another
important source of systematic error [27]. All three com-
ponents are combined in quadrature to make up the
entire systematic error. Taking the latest PDG data [86]
for the most accurate charged pion mass m� ¼ m�þ ¼
139:57018ð35Þ MeV and pion decay constant f� ¼ f�þ ¼
130:41ð20Þ MeV, where a couple of experimental errors
are added in quadrature, and hence m�=f� ¼
1:07024ð166Þ, we finally secure the upshots

m�a
I¼2
�� ¼ �0:04430ð25Þð40Þ;

lI¼2
�� ð� ¼ f�;physÞ ¼ 3:27ð:77Þð1:12Þ;

(24)

where the first uncertainty is statistical and the second one
is an estimate of the systematic error.
These outcomes are comparable with the aforemen-

tioned results of theoretical (or phenomenological) studies
[1,3,7,9,10], experimental determinations [11,15,16], and
lattice calculations [25–27,31] within statistical errors.
The relevant results for m�a

I¼2
�� are courteously compiled

in Table VIII. The first group is lattice QCD results.
The second one is theoretical (or phenomenological)

TABLE VIII. A compilation of the various theoretical (or phenomenological), experimental, and lattice QCD determinations of
m�a

I¼2
�� extracted from the literature. Together with every reference, for an easier comparison, the first author name or the

collaborations are given. The first uncertainty is statistical and second one is systematic if provided.

References m�a
I¼2
�� Remarks

This work �0:04430	 0:00025	 0:00040 The calculation made in this paper

Yagi [31] �0:04410	 0:00069	 0:00018 Extrapolation with NNLO�PT
Xu [27] �0:04385	 0:00028	 0:00038 Using two flavors of maximally twisted mass fermions

NPLQCD [26] �0:04330	 0:00042 Error combines statistical and systematic errors in quadrature

CLQCD [20] �0:0399	 0:0070 The result from Scheme I of anisotropic lattices

NPLQCD [25] �0:0426	 0:0006	 0:0003 With fully dynamical domain-wall valence-quark propagators

Du [23] �0:0467	 0:0045 Using anisotropic lattices in an asymmetric box

CP-PACS [24] �0:0413	 0:0029 Compensating the mass dependence of the scattering length

JLQCD [22] �0:0410	 0:0069 Selecting the result from EXP, which employs a single exponential

Albaladejo [10] �0:0424	 0:0012 Employing unitary chiral perturbation theory

Guo [9] �0:0444	 0:0011 Providing full results for all the contributing Oðp6Þ couplings
Sasaki [8] �0:0431	 0:0015 Obtaining directly from the �� wave function

MILC [68] �0:0433	 0:0009 Using MILC’s determinations of LECs along with Roy equations

Zhou [7] �0:0440	 0:0011 Chiral unitarization with crossing symmetry and phase shift data

CGL [3] �0:0444	 0:0010 Two-loop accuracy

Weinberg [1] �0:04557	 0:00014 Tree-level prediction

NA48/2 [15,16] �0:0429	 0:0044	 0:0016 With independent experimental errors and different theoretical inputs

E865 [11] �0:0454	 0:0031	 0:0010 With the �PT constraints in the analysis
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studies. Also included are two experimental values in the
third group.

To make our demonstrations of these results more in-
tuitive, they are offered graphically in Fig. 11, where we
clearly note that the various results for every m�a

I¼2
�� are

fairly compatible with one another within errors.
Our calculation of the LEC lI¼2

�� is satisfactory as well.
Although it only has around 25% precision, it is compa-
rable with relevant results obtained by phenomenological
predictions [3], experimental determinations [11,15,16],
and lattice calculations [25–27,31]. The relevant values
of lI¼2

�� are collected in Table IX. The first group is lattice
results. The second one is phenomenological and experi-
mental determinations, which are transformed directly
from the experimental and phenomenological results of
m�a

I¼2
�� into lI¼2

�� at NLO �PT, as preformed in Ref. [27].
The reason why we made a significant improvement in

precision over our previous work [33] is the recent com-
prehension of various lattice-spacing artifacts (in particu-
lar, the wraparound effect). In fact, the approximate 0.5%
accuracy of our ultimate result for m�a

I¼2
�� is typically a

joint effort from lattice QCD and �PT. This can be under-
stood from two aspects: First, we have lattice data closer to
the physical point, which have relatively smaller uncer-
tainties for m�a

I¼2
�� . Second, the chiral extrapolation of

m�a
I¼2
�� is considerably restricted by �PT and m�a

I¼2
�� is

solely predicted in terms of m�=f� at LO and depends

uniquely upon a LEC, lI¼2
�� , at NLO. This means that the

statistical error of NLO �PT extrapolation of m�a
I¼2
��

solely rests on the statistical error of lI¼2
�� . Consequently,

although our lattice-calculated results of m�a
I¼2
�� are only

within about 6%–10% accuracy, we still obtain a less than
1% precise determination of ðm�a

I¼2
�� Þphys.

B. I ¼ 0 channel

We are now in a position to fit the lattice results of
m�a

I¼0
�� in Table VII to NLO �PT functional form (20)

to secure the low-energy constant lI¼0
�� ð� ¼ f�;phyÞ, and

then we can obtain the extrapolated value at the physical
point ðm�a

I¼0
�� Þphys. The lattice-measured values ofm�a

I¼0
��

as the function of m�=f� are demonstrated in Fig. 12. The
one-loop �PT fit curve is displayed by the solid black line,
and the red circle point indicates its physical s-wave
scattering length, ðm�a

I¼0
�� Þphys, which is the chiral extrapo-

lation of the m�a
I¼0
�� at the physical point. In the same

figure, we present the tree-level prediction as well. It is
important to note that lattice data manifest a rather large
displacement from the tree-level �PT forecast, which is
consistent with a conclusion of Ref. [3] that the NLO
corrections make about a 25% modification to the tree-
level prediction. Additionally, we can notice that our lattice
results for m�a

I¼0
�� generally agree with the one-loop for-

mula. The large deviation of ðm�a
I¼0
�� Þphys from the tree-

level prediction is entirely a natural aftermath of the NLO
�PT fitting.
In this work we cannot fit our lattice-calculated data to

the NNLO �PT functional form (20) [2,3] [see concrete
form (A10)], since we only have three lattice data at our
disposal. A NNLO �PT determination should wait for
more lattice data at pion masses closer to the physical point
than we now have. Admittedly, as explained in detail in
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FIG. 11 (color online). A collection of the various lattice QCD,
theoretical (or phenomenological), and experimental results of
m�a

I¼2
�� listed in Table VIII. The lattice studies are shown by red

diamonds, purple circles are theoretical (or phenomenological)
predictions, and the experimental ones are given by green
crosses. Our result is indicated by a black square. For an easier
comparison, the (cyan) inner strip corresponds to the statistical
error whereas the (yellow) outer strip represents the statistical
and systematic errors added in quadrature.

TABLE IX. Some values of lI¼2
�� extracted from the literature.

The first uncertainty is statistical, and the second one is system-
atic if present. The first group is lattice QCD results. The second
one is phenomenological and experimental determinations,
which are transformed directly from the corresponding results
of m�a

I¼2
�� into lI¼2

�� at NLO �PT [27].

References lI¼2
��

This work 3:27	 0:77	 1:12
Yagi [31] 5:8	 1:2
Xu [27] 4:65	 0:85	 1:07
NPLQCD [26] 6:2	 1:2
NPLQCD [25] 3:3	 0:6	 0:3
CGL [3] 3:0	 3:1a

NA48/2 [15,16] 7:5	 13:3	 4:8b

E865 [11] 0:0	 9:4	 3:0

aIt is interesting to note that if we make use of Eq. (23) with the
values of �li reported in Ref. [3], and necessary PDG values, we
obtain lI¼2

�� ¼ 2:0	 3:1.
bUsing the data from Ref. [15].
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Ref. [3], the NLO correction increases the LO prediction
by about 25%, and the NNLO correction further raises the
LO prediction by more than 10%; this means that the
NNLO �PT determination of m�a

I¼0
�� should be signifi-

cantly more rigorous than the NLO �PT determination of
ðm�a

I¼0
�� Þphys, and this can in part explain the relatively

large error for our final NLO �PT extrapolated result of
ðm�a

I¼0
�� Þphys. As a consequence, the systematic error from

truncating the �PT series to the NLO form should be
considered.

In this work, we only consider two major sources of
systematic errors in the extrapolated value of m�a

I¼0
�� ,

since the systematic error from the experimental errors
on m� and f� is found to be fairly small as compared
with its statistical error. First, the lattice-computed

systematic errors of m�a
I¼0
�� per ensemble are propagated

via the chiral extrapolation. Second, the systematic error
inherently stems from the NLO fit, which is computed by
taking the difference between the extrapolated values from
the NLO fit to all three data sets and then from ‘‘cropping’’
the heaviest data set [27]. Both parts are added in quad-
rature to give the whole computed systematic error. We get
the final upshot

m�a
I¼0
�� ¼ 0:214ð4Þð7Þ;

lI¼0
�� ð� ¼ f�;physÞ ¼ 43:2	 3:5	 5:6;

(25)

where the numbers in the first and second parentheses are
the statistical and systematic uncertainties, respectively.
These results can be fairly comparable with the above-

mentioned results by theoretical (or phenomenological)
studies [1,3,7,9,10,87,88] (except the tree-level prediction)
and experimental determinations [11,15,16]. The relevant
results form�a

I¼0
�� are compiled in Table X. The first group

is lattice results. The second one is theoretical (or phe-
nomenological) studies. Two experimental values are also
given in the third group.
To make our report of these results more intuitive, these

results are given graphically in Fig. 13 as well, where the
various results of m�a

I¼0
�� are compatible with one another

within errors, except for the tree-level prediction [1] and
our crude lattice study [33].
Our calculation of the LEC lI¼0

�� is satisfactory as well.
Although it is within about 5% accuracy, nevertheless, as
we show soon, this result can be comparable with the
results of phenomenological [3] and experimental deter-
minations [11,15,16] and lattice studies [25–27,31]. The
relevant values of lI¼0

�� are collected in Table XI. The first
group is lattice results. The second one is phenomenologi-
cal and experimental determinations, which are converted
directly from the experimental phenomenological results
ofm�a

I¼0
�� into lI¼0

�� at NLO �PT as conducted by Xu et al.
in Ref. [27] for the I ¼ 2 channel.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

mπ/fπ

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60

m
π a

ππI=
0

Tree level
One loop
Lattice data

FIG. 12 (color online). The lattice-measured values of m�a
I¼0
��

as a function of m�=f�. The red circle point indicates the
scattering length at the physical limit, ðm�a

I¼0
�� Þphys. The shaded

bands correspond to statistical (inner, cyan) errors and statistical
and systematic errors combined in quadrature (outer, yellow).
The solid (black) curve is the central value of the NLO �PT fit.
The dashed (magenta) line is the tree-level �PT prediction.

TABLE X. A compilation of the various theoretical (or phenomenological), experimental, and lattice QCD determinations of
m�a

I¼0
�� extracted from the literature. Together with every reference, for an easier comparison, the first author or the collaborations are

given. The first uncertainty is statistical and the second one is systematic if given.

References m�a
I¼0
�� Remark

This work 0:214	 0:004	 0:007 Full QCD

Fu [33] 0:186	 0:002 Partially quenched QCD

Albaladejo [10] 0:219	 0:005 Employing unitary chiral perturbation theory

Guo [9] 0:220	 0:005 Full results for all the contributing Oðp6Þ couplings
Caprini [88] 0:218	 0:014 Using a large class of analytic parametrizations

Yndurain [87] 0:233	 0:013 Extrapolating to the pole of the sigma resonance

Zhou [7] 0:211	 0:011 Using chiral unitarization with crossing symmetry and phase shift data

CGL [3] 0:220	 0:005 Two-loop accuracy

Weinberg [1] 0:1595	 0:0005 Tree-level prediction

NA48/2 [15,16] 0:2210	 0:0047	 0:0015 With independent experimental errors and different theoretical inputs

E865 [11] 0:216	 0:013	 0:002 With the �PT constraints in the analysis
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The remarkable improvement in accuracy over our pre-
vious results [33] is a joint effort from lattice QCD and
�PT. First, we have measured the lattice data closer to the
physical point, which has smaller uncertainties. Second,
chiral perturbation theory considerably constrains the chi-
ral extrapolation of the product m�a

I¼0
�� , which is uniquely

predicted in terms of m�=f� at LO and relies solely on a
LEC, lI¼0

�� , at NLO. This suggests that the statistical error
of NLO �PT extrapolation of m�a

I¼0
�� solely rests on the

statistical error of lI¼0
�� . Consequently, although our lattice-

calculated results of m�a
I¼0
�� are only within 5%–17%

accuracy, we still obtain about a 2% precise determination
of ðm�a

I¼0
�� Þphys.

VII. SUMMARYAND OUTLOOK

We have reported results of a lattice QCD calculation of
the s-wave �� scattering lengths for both I ¼ 0 and 2
channels on the MILC medium-coarse (a � 0:15 fm) and
coarse (a � 0:12 fm) lattice ensembles with the 2þ 1
flavors of the Asqtad-improved staggered sea quarks. We
exploited the moving wall sources without the gauge fixing
[18,19] to compute all four diagrams assorted in
Refs. [17,18], and we viewed a clear attractive signal for
the I ¼ 0 channel and a good repulsive one for the I ¼ 2
channel, respectively. Moveover, extrapolating our lattice
data of the s-wave scattering lengths for both isospin
eigenstates to the physical pion mass gives the scattering
lengths m�a

I¼2
�� ¼ �0:04430ð25Þð40Þ and m�a

I¼0
�� ¼

0:214ð4Þð7Þ for the I ¼ 2 and 0 channels, respectively,
which are in fair agreement with the current theoretical
(or phenomenological) predictions to one-loop levels and
the present experimental reports, and they can be compa-
rable with other lattice studies.
After our extremely crude estimation of the �� scatter-

ing length in the I ¼ 0 channel in Ref. [33], and this
relatively more sophisticated computation, we can fairly
claim that even with limited computing resources, the
lattice calculation of the �� scattering length in the
I ¼ 0 channel is feasible, although this work absolutely
needs to be further improved, and the various sources of
systematic error need to be clarified thoroughly. Most of
all, from this work, we found that the rule of thumb
estimation of lattice ensemble with the Goldstone pion
mass eligible to study s-wave �� scattering in the I ¼ 0
channel should be less than about 300 MeV (the smaller,
the better), which is very helpful for researchers to pursue
this fascinating enterprise. We view it as one of the im-
portant results of this work.
As we revealed, a reasonable signal can be gained for the

(0.00484, 0.0484) and (0.005, 0.05) ensembles in the vacuum
diagram of �� scattering. In principle, the signal-to-noise
ratio can be further enhanced by launching the same calcu-
lation on the lattice ensembles with a smaller pion mass (of
course, we can also improve the statistics by using more
lattice gauge configurations or performing the calculation on
a larger volume). In addition, the behavior close to the
physical point is intensely influenced by the chiral logarithm
term, so an extraction of the�� scattering lengths without a
long extrapolation is still much needed to guarantee the
convergence of the chiral expansion. Fortunately, the
MILC collaboration has generated enough lattice ensembles
whose Goldstone pion masses are smaller than or close to
240 MeV [89,90] [e.g., the fine (0.00155, 0.0310) ensemble,
whose Goldstone pion mass is about 177 MeV].
Furthermore, as we explained early, the NNLO �PT will
be the proper physical functional form to fit the lattice data
(at least four data points) of the I ¼ 0 �� scattering length
and it needs more lattice data near the physical point. We
have an impetus to do theseworks. However, it is beyond the

0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

mπ aππ
I=0

This work

Fu [33]

Albaladejo [10]

Guo [9]

Caprini [88]

Yndurain [87]

Zhou [7]

CGL [3]

Weinberg [1]

NA48/2 [15,16]

E865 [11]

FIG. 13 (color online). A collection of various lattice QCD,
theoretical (or phenomenological), and experimental results of
m�a

I¼0
�� listed in Table X. The red diamonds are lattice deter-

minations, purple circles are theoretical (or phenomenological)
studies, and experimental ones are represented by green crosses.
Our result is shown by a black square. For an easier comparison,
the (cyan) inner strip corresponds to the statistical error whereas
the (yellow) outer strip represents the statistical and systematic
errors added in quadrature.

TABLE XI. Some values of lI¼0
�� extracted from the literature.

The first uncertainty is statistical, and the second one is system-
atic if present. The first group is lattice simulation results. The
second one is phenomenological and experimental determina-
tions, which are directly transformed from the corresponding
results of m�a

I¼0
�� into lI¼0

�� at NLO �PT [27].

lI¼0
��

This work 43:2	 3:5	 5:6
Fu [33] 18:7	 1:2
CGL [3] 48:5	 4:3a

NA48/2 [15] 49:3	 4:1	 1:3
E865 [11] 45:0	 11:2	 3:5

aIf we make use of Eq. (22) with the values of �li reported in
Ref. [3], and required PDG values, we get lI¼0

�� ¼ 32:4	 2:3.
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scope of this work, since this will need an astronomical
amount of computing allocations. We will enthusiastically
appeal for all the possible computational resources to ac-
complish this peculiar and challenging task.

It is well known that �� scattering in the I ¼ 0 channel
is challenging and stimulating phenomenologically due to
the existence of the � resonance. In this work, we have
exhibited that �� scattering for the I ¼ 0 channel can be
reliably calculated by the moving wall sources without
gauge fixing [18,19]. It prompts us to anticipate that this
technique can be successfully exploited to study the �
resonance. In our previous work [77], we evaluated the �
mass from lattice QCD and found that the decay � ! ��
is allowed kinematically only for a small enough u quark
mass. This work and our lattice calculation for the ��
scattering lengths delivered in this paper will encourage
researchers to study the � resonance. We have been inves-
tigating the � resonance parameters with the isospin rep-
resentation of ðI; IzÞ ¼ ð0; 0Þ, and the preliminary lattice
results are already reported in Ref. [54].

Additionally, for �� scattering in the I ¼ 0 channel, we
realize an important issue: the presence of � resonance is
possible at low energy, and thus it should be necessary for us
to employ the variational method [38] to secure the rigorous
scattering length, as investigated in�K scattering in the I ¼
1=2 channel in Refs. [53,84]. Since we only make use of
relatively small quark masses to study �� scattering in the
I ¼ 0 channel, we can temporarily and reasonably overlook
this contamination in the present study, as already explained
in Ref. [53]. However, we should bear in mind that this issue
should be settled in the more sophisticated lattice examina-
tion. It will be very interesting to systematically study this
pollution for �� scattering in the I ¼ 0 channel.

Admittedly, due to the intense theoretical and experi-
mental efforts recently put into the scalar-isoscalar and
scalar-isovector sector of meson-meson scattering, study-
ing the K �K scattering length on the lattice is gradually
becoming a very interesting enterprise. As pointed out in
Ref. [91], the robust calculation of the �� scattering
lengths (in particular for the I ¼ 0 channel) will naturally
encourage us to study other challenging systems like K �K,
etc. Physically, as explained in Refs. [60,65,92], studying
K �K is very important, and the calculation of the s-wave
K �K scattering length in the I ¼ 0 channel is a genuine two-
coupled-channel problem [65,93], where the system can be
approximately described only by two�� andK �K channels
(we refer to�� as channel 1 andK �K channel 2); then the S
matrix is a 2� 2 unitary matrix which contains three real
parameters [65,93] (the s-wave K �K scattering in the I ¼ 1
channel can be treated analogously [59], and the lattice
study of �� scattering is then highly desirable). Therefore,
it is absolutely necessary to incorporate the s-wave I ¼ 0,
�� channel for a physical calculation of the s-wave K �K
scattering length in the I ¼ 0 channel. The generalized
Lüscher’s formula in this case gives a relation among these

three parameters, all of which are functions of the energy
[93]. Since some of these parameters are still poorly mea-
sured in the present experiments, the lattice calculation is
valuable and highly desirable. With our lattice efforts on
channel 2 in Ref. [60], at present, if we can compute
s-wave �� ! K �K scattering in the I ¼ 0 channel, in
principle, we can solve this problem. We are launching a
series of lattice studies toward these aims.
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APPENDIX: SCATTERING LENGTH
OF �� IN �PT AT NNLO

In Ref. [33], we provided the compact continuum three-
flavor �PT form for the s-wave �� scattering length for
isospin-0 at the NLO in the continuum limit of QCD by
constructing from Appendix C in Ref. [2]. Here we follow
the original derivations and notations in Refs. [2–4,31] to
derive its compact form at the NNLO.
The �� scattering lengths are provided at the NNLO of

�PT in Refs. [2–4], and the s-wave �� scattering length in
the I ¼ 0 channel is described as [2–4]

m�a
I¼0
�� ¼ 7m2

�

32�f2�

�
1þ x

7
½49þ 5 �b1þ 12 �b2þ 48 �b3þ 32 �b4�

þ x2
�
7045

63
� 215�2

126
þ 10 �b1þ 24 �b2þ 96 �b3

þ 64 �b4þ 192

7
�b5

��
þOðx4Þ; (A1)

ZIWEN FU PHYSICAL REVIEW D 87, 074501 (2013)

074501-20



where x ¼ m2
�=ð16�2f2�Þ is the chiral expansion parameter and �bi’s are dimensionless combinations of the coupling

constants introduced in Refs. [2,3] to parametrize the pion scattering amplitude. After some strenuous algebraic
manipulations, we can check that

5 �b1 þ 12 �b2 þ 48 �b3 þ 32 �b4 ¼ 63

2
~L� 503

6
x ~L2 � 20

3
~l1 þ 40

3
~l2 � 5

2
~l3 þ 14~l4 � 63

2
þ x ~L

�
� 388

3
~l1 � 472

3
~l2 � 35~l3

þ 154~l4 þ 1405

12

�
þ x

�
80

3
~l1~l4 þ 160

3
~l2~l4 � 15~l3~l4 þ 35~l 24 �

5

2
~l 23 þ

364

3
~l1 þ 1336

9
~l2

þ 141

4
~l3 � 126~l4 þ 162719

432
� 373

18
�2 þ 5~r1 þ 12~r2 þ 48~r3 þ 32~r4

�
; (A2)

where the low-energy constants ~li, ~ri are the quark-mass
independent couplings from the subleading orders L4, L6

of the effective Lagrangian, respectively [3], and renor-
malized at the running scale �; and ~L ¼ ln ð�2=m2

�Þ.
Inserting Eq. (A2) into Eq. (A1) and considering ex-

pression B.3 of Ref. [3],

�b5 ¼ 85

72
~L2 þ ~L

�
7

8
~l1 þ 107

72
~l2 � 625

288

�
þ ~r5 þ 7

54
�2

� 66029

20736
þOðx4Þ:

We recast the result in the order of x as

m�a
I¼0
�� ¼ 7m2

�

32�f2�

�
1þ x

2
ð9 ~Lþ l0aÞ

þ x2
�
857

42
~L2 þ l0b

~Lþ l0c

��
þOðx4Þ; (A3)

with

l0a ¼ 40

21
~l1 þ 80

21
~l2 � 5

7
~l3 þ 4~l4 þ 5;

l0b ¼
116

21
~l1 þ 128

7
~l2 � 5~l3 � 22~l4 � 3595

84
;

l0c ¼ 5

7
~r1 þ 12

7
~r2 þ 48

7
~r3 þ 32

7
~r4 þ 192

7
~r5 þ 80

21
~l1~l4

þ 160

21
~l2~l4 � 15

7
~l3~l4 þ 5~l 24 �

5

14
~l 23 þ

148

21
~l1 þ 232

21
~l2

þ 1

28
~l3 þ 10~l4 � 17561

504
þ 394

63
�2: (A4)

The right-hand side (rhs) of Eq. (A1) is scale independent
[3]. On the whole, the rhs of Eq. (A3) is scale invariant as
well. Therefore, in principle, we can select the running
scale � stochastically. However, when fitting our lattice-
obtained scattering lengths as a function of x, it is highly
desirable for us to set the fitting parameters to be quark-
mass independent. As in Ref. [31], we select � ¼
4�f�;phy. Using this scale, we can see

~Lð� ¼ 4�f�;phyÞ ¼ � ln x� 2x~l4ð� ¼ 4�f�;phyÞ
þ 2x ln xþOðx2Þ; (A5)

where we exploit the chiral expansion of the pion decay
constant f� ¼ f�;phyf1þ x�l4 þOðx2Þg [3].
Plugging Eq. (A5) into Eq. (A3), and rearranging the

result in the order of x, we achieve the�� scattering length
in the I ¼ 0 channel as

m�a
I¼0
�� ¼ 7m2

�

32�f2�

�
1þ m2

�

32�2f2�

�
�9 ln

�
m2

�

16�2f2�

�
þ l0a

�

þ x2
�
857

42
ðln xÞ2 � ðl0b þ 9Þ ln xþ ðl0c þ 9~l4Þ

��

þOðx4Þ: (A6)

The continuum �PT forms for the s-wave �� scattering
length in the I ¼ 2 channel aI¼2

�� at the NNLO was pre-
sented by Yagi et al. in Ref. [31], namely,

m�a
I¼2
�� ¼� m2

�

16�f2�

�
1þ m2

�

32�2f2�

�
3 ln

�
m2

�

16�2f2�

�
þ l2a

�

þ x2
�
�31

6
ðlnxÞ2 � ðl2b þ 3Þ lnxþ ðl2c þ 3~l4Þ

��

þOðx4Þ; (A7)

with

l2a ¼ � 8

3
~l1 � 16

3
~l2 þ ~l3 þ 4~l4 � 1;

l2b ¼ � 4

3
~l1 � 8~l2 þ ~l3 � 2~l4 þ 119

12
;

l2c ¼ 1

2
~l23 �

�
16

3
~l1 þ 32

3
~l2 � 3~l3 � 5~l4

�
~l4 þ 4

3
~l1 þ 16

3
~l2

þ 7

4
~l3 � 2~l4 þ 163

16
� 22

9
�2 � ~r1 � 16~r4: (A8)

In the above equations, f� is the pion decay constant,
which is originally written as F� (around 92.4 MeV) [2–4].

In the present work,
ffiffiffi
2

p
F� is denoted by f� (about

130 MeV) for the convenience of fitting our lattice data.
Then the above equations are recast as
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m�a
I¼0
�� ¼ 7m2

�

16�f2�

�
1� m2

�

16�2f2�

�
9 ln

m2
�

f2�
� 5� lI¼0

��

�

þ m4
�

64�2f4�

�
857

42

�
ln
m2

�

f2�

�
2 þ lð2Þ��;I¼0 ln

m2
�

f2�

þ lð3Þ��;I¼0

��
; (A9)

m�a
I¼2
�� ¼ � m2

�

8�f2�

�
1þ m2

�

16�2f2�

�
3 ln

m2
�

f2�
� 1� lI¼2

��

�

þ m4
�

64�4f4�

�
� 31

6

�
ln
m2

�

f2�

�
2 þ lð2Þ��;I¼2 ln

m2
�

f2�

þ lð3Þ��;I¼2

��
; (A10)

where lðiÞ��s are the combinations of LECs in �PT at a
quark-mass independent running scale, since all the
LECs are independent of quark mass; therefore, we can

regard them as the fitting parameters in the chiral extrapo-
lation of the s-wave �� scattering lengths [31].
From Eqs. (A4) and (A6)–(A8), we can easily get the

specific forms of lI¼0
�� and lI¼2

�� , which are related to the

Gasser-Leutwyler coefficients ~li as [2,85]

lI¼0
�� ¼ 40

21
�l1 þ 80

21
�l2 � 5

7
�l3 þ 4�l4 þ 9 ln

m2
�

f2�;phy
; (A11)

lI¼2
�� ¼ 8

3
�l1 þ 16

3
�l2 � �l3 � 4�l4 þ 3 ln

m2
�

f2�;phy
; (A12)

where we consider the equality �ln ¼ ~ln þ ln ðm2
�=�

2Þ [3].
These are the forms that we used in our previous work

[33]. For the other lðiÞ��’s, their explicit forms are given or
can be inferred from Eqs. (A4) and (A6)–(A8). It is inter-
esting and important to note that if we select the running
scale � ¼ f�;phy, we obtain the same expressions.
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Ph.D. thesis, Lajos Kossuth University, Debrecen, 1998.

[67] T. Umeda, Phys. Rev. D 75, 094502 (2007).
[68] C. Aubin, C. Bernard, C. DeTar, J. Osborn, S. Gottlieb,

E. B. Gregory, D. Toussaint, U.M. Heller, J. E. Hetrick,
and R. Sugar (MILC Collaboration), Phys. Rev. D 70,
114501 (2004).

[69] M.G. Alford, W. Dimm, G. P. Lepage, G. Hockney, and
P. B. Mackenzie, Phys. Lett. B 361, 87 (1995).

[70] A. Bazavov et al. (MILC Collaboration), Rev. Mod. Phys.
82, 1349 (2010).

[71] D. B. Kaplan, Phys. Lett. B 288, 342 (1992); Y. Shamir,
Nucl. Phys. B406, 90 (1993); Phys. Rev. D 59, 054506
(1999).

[72] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001); T. A. DeGrand, A. Hasenfratz, and T.G. Kovacs,
Phys. Rev. D 67, 054501 (2003); T. DeGrand, Phys. Rev.
D 69, 014504 (2004); S. Durr, C. Hoelbling, and U.
Wenger, Phys. Rev. D 70, 094502 (2004).

[73] D. B. Renner, W. Schroers, R. Edwards, G. T. Fleming, Ph.
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