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A model is developed to describe odd-parity baryon resonances generated dynamically through a

unitary baryon-meson coupled-channels approach. The scheme applies to channels with light- and/or

heavy-quark content. Distinct features of the model are that i) the interaction is an S-wave contact one,

ii) it reduces to the SU(3) Weinberg-Tomozawa Hamiltonian when light pseudoscalar mesons are

involved, thus respecting chiral symmetry, iii) spin-flavor is preserved in the light-quark sector, and

iv) heavy-quark spin symmetry is fulfilled in the heavy-quark sector. In particular, baryon-meson states

with different content in c or in �c do not mix. The model is a minimal one and it contains no free

parameters. In this work, we focus on baryon resonances with hidden charm (at least one �c and one c

quark). We analyze several possible sectors and, for the sector with zero net charm, we write down the

most general Lagrangian consistent with SU(3) and heavy-quark spin symmetry. We explicitly study the N

and � states, which are produced from the S-wave interaction of pseudoscalar and vector mesons with

1=2þ and 3=2þ baryons within the charmless and strangeless hidden-charm sector. We predict seven odd-

parity N-like and five �-like states with masses around 4 GeV, most of them as bound states. These states

form heavy-quark spin multiplets, which are almost degenerate in mass. The predicted new resonances

definitely cannot be accommodated by quark models with three constituent quarks and they might be

looked for in the forthcoming PANDA experiment at the future FAIR facility.
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I. INTRODUCTION

The possible observation of new states with the charm
degree of freedom has attracted a lot of attention over the
past years in connection with many experiments, such as
CLEO, Belle, BABAR, and others [1–36]. Moreover, the
future PANDA and compressed baryonic matter (CBM)
experiments at the FAIR facility of Gesellschaft für
Schwerionenforschung (GSI) [37,38] will aim at obtaining
data in the heavy-flavor sector, thus opening the possibility
for the observation of new exotic states with quantum
numbers of charm and strangeness. In this regard, a clear
goal would be to understand the nature of these states, and
in particular whether they can be described with the usual
three-quark baryon or quark-antiquark meson interpreta-
tion or if they qualify better as hadron molecules within a
baryon-meson coupled-channels description.

Unitarized coupled-channels approaches have shown to
be very successful in describing some of the existing
experimental data. These schemes include, for example,
models based on the chiral perturbation amplitudes for
S-wave scattering of 0� octet Goldstone bosons off
baryons of the nucleon 1=2þ multiplet [39–60]. Recently
the charm degree of freedom has been incorporated in
these models and several experimental states have been

described as dynamically generated baryon molecules
[61–77]. This is the case, for example, of the�cð2595Þ, which
is the charm sector counterpart of the�ð1405Þ. Some of these
approaches are based on a bare baryon-meson interaction
saturated with the t-channel exchange of vector mesons be-
tweenpseudoscalarmesons andbaryons [61–70]; othersmake
use of the Jülich meson-exchange model [71–73], or some
rely on the hidden gauge formalism [74–77].
Nevertheless, these models do not explicitly incorporate

heavy-quark spin symmetry (HQSS) [78–80], and there-
fore it is unclear whether this symmetry is respected.
HQSS is a QCD symmetry that appears when the quark
masses, such as the charm mass, become larger than the
typical confinement scale. HQSS predicts that all types of
spin interactions involving heavy quarks vanish for infi-
nitely massive quarks. Thus, HQSS connects vector and
pseudoscalar mesons containing charmed quarks. On the
other hand, chiral symmetry fixes the lowest-order inter-
action between Goldstone bosons and other hadrons in a
model-independent way; this is the Weinberg-Tomozawa
(WT) interaction. Thus, it is appealing to have a predictive
model for four flavors including all basic hadrons (pseu-
doscalar and vector mesons, and 1=2þ and 3=2þ baryons),
which reduces to the WT interaction in the sector where
Goldstone bosons are involved and which incorporates
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HQSS in the sector where charm quarks participate. This
model was developed in Refs. [81–83], following the steps
of the SU(6) approach in the light sector of Refs. [84–87].
In these works, several resonances have been analyzed and
compared to experimental states, such as the S-wave states
with charm C ¼ 1, 2, 3 [81,83] together with C ¼ �1
states [82]. Also, this scheme has been recently extended
to incorporate the bottom degree of freedom [88] in order
to study the nature of the newly discovered �bð5912Þ and
��

bð5920Þ resonances [89] as possible molecular states.

In this paper we aim at continuing these studies on
dynamically generated baryon resonances using HQSS
constraints. We will discuss extensively the details of the
model and how heavy-quark spin symmetry is imple-
mented. The model respects spin-flavor symmetry in the
light sector and HQSS in the heavy sector, and it reduces to
SU(3) WT in the light sector respecting chiral symmetry.
Moreover, we will focus on the dynamical generation of
hidden charmed states. The coupled channels in the
hidden-charm sectors are characterized by containing an
equal number of c and �c quarks. As we shall discuss, HQSS
does not mix sectors with different numbers of c or �c
quarks. Thus, this model has the symmetry SUð6Þ �
HQSS, with HQSS ¼ SUcð2Þ � SU�cð2Þ � Ucð1Þ � U�cð1Þ.
We will pay special attention to the charmless (C ¼ 0) and
strangeless (S ¼ 0) sector. Recent works [74–77] predict
the existence of a few nucleon-like states with masses
around 4 GeV, which result from the baryon-meson scat-
tering in this hidden-charm sector. In this paper we will
analyze these results within our model, and predict the
existence of several odd-parity �- and N-like bound states
with various spins. These resonances can be organized in
heavy-quark spin multiplets, which are almost degenerate
in mass and can be subject to experimental detection.

The predicted new resonances might be subject to ex-
perimental detection in the forthcoming PANDA=FAIR
experiment. If confirmed, they definitely cannot be accom-
modated by quark models with three constituent quarks.

The paper is organized as follows. In Sec. II we present
the WT interaction implementing heavy-quark spin sym-
metry, and analyze the different hidden-charm sectors,
classified according to their charmed content. In Sec. III
we introduce the unitarized coupled-channels approach
used throughout this work. Section IV is devoted to
presenting our results, and in Sec. V we summarize the
conclusions. In Appendix A we give details for the con-
struction of the meson and baryon tensors and the compu-
tation of the different matrix elements of the interaction.
The tables of the interaction matrices for the different
baryon-meson channels are collected in Appendix B.

II. THE MODEL

A. Weinberg-Tomozawa interaction

The theoretical model we use has been developed in
previous works for baryon-meson sectors involving light

and/or heavy quarks, but not for those with hidden charm,
so we devote this section to fully specifying the model.
The guiding principle is to blend several well-

established hadronic symmetries in a model as simply as
possible. Specifically, to comply with chiral symmetry—
SUðNFÞL � SUðNFÞR for NF flavors—we require the in-
teraction to reproduce the Weinberg-Tomozawa (WT)
Hamiltonian [90–92], a contact S-wave interaction, when
light pseudoscalar mesons are involved. The low-energy
interaction of soft pseudo-Nambu-Goldstone bosons of the
spontaneously broken chiral symmetry off any (flavored)
target takes the WT universal form1

VWT ¼ KðsÞ
4f2

2JiPJ
i
T; i ¼ 1; . . . ; N2

F � 1; (2.1)

where f is the decay constant of the pseudoscalar meson
(�93 MeV), and JiP, J

i
T are the SUðNFÞ group generators

(with the standard normalization fiklfjkl ¼ NF�ij, where

fijk are the structure constants) for the pseudoscalar meson

and target, respectively. Further, KðsÞ ¼ k0 þ k00 repre-
sents the sum of the incoming and outgoing energies of
the meson. In the center-of mass frame (c.m.),

KðsÞ ¼ s�M2 þm2ffiffiffi
s

p ; (2.2)

where
ffiffiffi
s

p
is the total c.m. energy,M the mass of the target,

and m the mass of the pseudo-Nambu-Goldstone meson.
VWT is the tree-level on-shell interaction. The normal-

ization we use is such that the corresponding T matrix for
elastic scattering is related to the scattering amplitude by

fðsÞ ¼ � 1

8�

2Mffiffiffi
s

p TðsÞ; fðsÞ ¼ e2i� � 1

2ik
; (2.3)

where k is the c.m. momentum.2

For three flavors and baryons in the 1
2

þ
(nucleon)

octet, the Hamiltonian density of the WT interaction
takes the form (we assume exact SU(3) symmetry for
simplicity) [48]

HWTðxÞ ¼ � i

4f2
: trð �B��½½�;@���;B�Þ : ðNF ¼ 3Þ;

(2.4)

where � and B are the meson and baryon matrices in the
adjoint representation of SU(3). On account of the trace
cyclic property, and neglecting the meson momentum, the
WT interaction can be recast as

i

4f2
: trð½�; @0��fBy; BgÞ : : (2.5)

1An extra factor of 1=2 is to be added if the projectile and target
are identical particles.

2T ¼ iM ¼ �T , M and T being the amplitudes defined in
Refs. [93,94], respectively. 2MT equals M in Ref. [95].
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From the symmetry-group point of view, the interaction in
Eq. (2.5) is, schematically,

HWT¼ 1

f2
ððMy�MÞadjoint;antisymmetric�ðBy�BÞadjointÞsinglet;

(2.6)

where adjoint and singlet refers to the adjoint and singlet
representations of the flavor group. This corresponds with
the structure in Eq. (2.1). M, My, B, and By refer to the
matrices of annihilation and creation operators of mesons
and baryons (see below).

It is worth noticing that the eigenvalues of the relevant
operator in Eq. (2.1), 2JiPJ

i
T , can be written using the

quadratic Casimir operator of SUðNFÞ (see, e.g., Ref. [96]),
ð2JiPJiTÞ�¼C2ð�;NFÞ�C2ð�P;NFÞ�C2ð�T ;NFÞ; (2.7)

where �, �P, and �T are, respectively, the SUðNFÞ
irreducible representations (irreps) of the system, the
Nambu-Goldstone boson (i.e., the adjoint representation),
and the target. We use the normalization C2ðadjoint;NÞ ¼
N for SUðNÞ. In our convention a positive eigenvalue
indicates repulsion and a negative one attraction.

B. Spin-flavor extended Weinberg-Tomozawa
interaction

Next we turn to spin-flavor (SF) symmetry, SUð2NFÞ,
[97–99]. This symmetry has been phenomenologically
successful in the classification of lowest-lying hadrons as
well as in uncovering regularities present in the masses and
other hadron properties [100,101]. This is particularly true
for baryons, a fact that can be understood from the
large-NC (number of colors) limit of QCD. In that limit
SF becomes exact for the baryon sector [102]. As for
mesons, the lowest-lying states can also be classified quite
naturally according to SF multiplets, but the symmetry
works worse for the meson spectrum. A prime example
of this is provided by the pion and rho mesons. They
belong to the same multiplet of SU(6) and this would
require these two mesons to be approximately degenerate
in mass. Also, the pion is a collective state identified as the
pseudo-Nambu-Goldstone boson of the spontaneously bro-
ken approximate chiral symmetry, whereas the rho meson
mass fits well with a constituent quark-antiquark pair.
Vector dominance also suggests that the rho meson should
belong to the same chiral representation of the vector
current ð8; 1Þ þ ð1; 8Þ, which is different from the chiral
representation of the pion, ð3; 3�Þ þ ð3�; 3Þ. The apparent
conflict was solved by Caldi and Pagels in two insightful
papers [103,104], where a number of related puzzles are
clarified. These authors noted that chiral and SF symme-
tries are compatible, as they can be regarded as subgroups
of a larger symmetry group, SUð2NFÞL � SUð2NFÞR,
which is actually a realization of the Feynman–Gell-
Mann–Zweig algebra [105]. In their solution, the SF

extended chiral symmetry is spontaneously broken, the
rho meson being a dormant Goldstone boson of this break-
ing. The collective nature of the rho meson has been
confirmed in lattice QCD [106]. As it is well known, exact
SF invariance is not compatible with exact relativistic
invariance [107]. In the Caldi-Pagels scenario, vector me-
sons acquire mass through SF-breaking relativistic correc-
tions, which restore Poincaré invariance.
While not an immediate consequence of the QCD

Lagrangian, SF symmetry emerges in some limits, such
as largeNC for baryons, as already noted, and partially also
in heavy-quark limits. We will turn to this point below. The
lack of exact relativistic invariance is not unusual in other
treatments involving hadron or quark interactions to form
new hadrons, either bound states or resonances. A good
example would be the successful ‘‘relativized quark
model’’ of Isgur and coworkers [108,109]. Similarly, in
our approach the breaking of relativistic invariance is very
mild: the spin is treated as just an internal label (as another
kind of flavor) and our fields are effectively spinless with
regards to the kinematics. So we have fully relativistic
kinematics with SF as a purely internal symmetry. This
entails the following. Because angular momentum can be
transferred between orbital and spin components, and spin
is not conserved under Lorentz transformations, a strict
relativistic treatment requires fields with different spin to
behave differently. In turn, this yields differences in the
off-shell propagators for each spin and this breaks strict SF
symmetry. To the extent that we consider on-shell particles
the various fields behave in the same way, and only the off-
shell baryon-meson propagator (or loop function) would
depend on the spin of the particles involved. We disregard
this effect.3 On the other hand, because we consider pure
S-wave interactions, the spin is separately conserved, and
also, near threshold—the case of interest to us—the spe-
cifically relativistic properties of the spin become irrele-
vant. It should be noted that even approaches with formally
relativistic Lagrangians are in practice subject to simplify-
ing approximations in vertices and propagators that break
exact relativistic invariance without relevant phenomeno-
logical implications. Also, we remark that SF invariance is
just our starting point for modeling the interaction.
Modifications will be introduced below to account for
other established properties of QCD, and more impor-
tantly, we use physical values for hadron masses and
meson decay constants in our kinematics.
The compatibility between SF and chiral symmetries

implies that the WT interaction can be extended to enjoy
SF invariance, and this can be done in a unique way [84].
For the on-shell vertex the extension is simply

3However, any such spin dependence would not be easy to
extract from phenomenology as it will be masked by the intrinsic
ambiguity of the loop function, which has to be renormalized
using some phenomenological prescription.
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Vsf
WT ¼ KðsÞ

4f2
4JiMJ

i
B; i ¼ 1; . . . ; ð2NFÞ2 � 1; (2.8)

where JiM and JiB are the SUð2NFÞ generators onmesons and
baryons. Mesons consist of 0� ðPÞ and 1� ðVÞ lowest-lying
states, while baryons contain 1

2

þ ðBÞ and 3
2

þ ðB�Þ lowest-
lying states. When this interaction is restricted to the sector
PB ! PB it reproduces the standard WT off B targets. Its
SF extension automatically yields the standard WT for
PB� ! PB� (hence the compatibility between the two sym-
metries). Additionally, the extended interaction provides
contact S-wave vertices for VB ! VB, VB� ! VB�,
PB $ VB, PB $ VB�, PB� $ VB, PB� $ VB�, and
VB $ VB�. As we have tried to argue above, these new
vertices arewell-defined predictions of an approximate emer-
gent symmetry of hadrons. So we adopt them as our starting
point to describe interactions involving vector mesons.

The Hamiltonian corresponding to the vertex in Eq. (2.8)
can be written for any number of flavors and colors NC

[85]. For the physical case NC ¼ 3,

H sf
WTðxÞ ¼ � i

4f2
: ½�; @0��ABBy

ACDB
BCD :;

A; B; . . . ¼ 1; . . . ; 2NF:
(2.9)

The indices A;B; . . . , denote spin and flavor, and so
they take 2NF values. �A

BðxÞ is the meson field, a
2NF � 2NF Hermitian matrix which contains the fields
of 0� (pseudoscalar) and 1� (vector) mesons. This matrix
is not traceless; for later convenience it includes the
SUð2NFÞ singlet meson (the mathematical �1). The con-
tribution of �1 to � is proportional to the identity matrix
and so it does not couple in H sf

WT. The normalization of
�ðxÞ is such that a mass term (with a common mass m for
all mesons) would read 1

2m
2trð�2Þ.

BðxÞ is the baryon field.BABC is a completely symmetric
tensor, that is, in the irreducible representation (irrep) [3] of
SUð2NFÞ. It has 56 components for NF ¼ 3 and 120 com-
ponents for NF ¼ 4, and contains the lowest-lying baryons

with JP¼ 1
2

þ
and 3

2

þ
. The normalization of the field B

is such that a mass term (with a common mass M for all

baryons) would take the form M 1
3!B

y
ABCB

ABC. E.g., the

fields B123ðxÞ, B112ðxÞ= ffiffiffi
2

p
, and B111ðxÞ= ffiffiffi

6
p

have the stan-
dard normalization of a fermionic field. We refer to the
Appendix A for the detailed construction of �A

BðxÞ and
BABCðxÞ in terms of the individual meson and baryon fields
for NF ¼ 4.

The HamiltonianH sf
WT has precisely the same structure

displayed in Eq. (2.6), this time for the SF group SUð2NFÞ.4
The predictions of the SF-extended WT model for

NF ¼ 3 have been worked out in Ref. [87] for baryonic
resonances, and in Ref. [110] for the mesonic version.

Applications involving charm have been given in
Refs. [81–83].
Before closing this subsection, we note that the eigenval-

ues of the relevant operator 4JiMJ
i
B in Eq. (2.8) can also be

written using the quadratic Casimir operator of SUð2NFÞ,
ð4JiMJiBÞ�¼2ðC2ð�;2NFÞ�C2ð�M;2NFÞ�C2ð�B;2NFÞÞ:

(2.10)

For baryons in the irrep (with Young tableau) [3] of
SUð2NFÞ (56 or 120 for NF ¼ 3 or 4, respectively) and
mesons in ½2; 12NF�2� [the adjoint representation of
SUð2NFÞ, 35 or 63 for NF ¼ 3 or 4, respectively], the
baryon-meson states lie in the irreps [3], [2, 1], ½5; 12NF�2�
and ½4; 2; 12NF�3�, which correspond to 56, 70, 700, and
1134 for NF ¼ 3, and to 120, 168, 2520, and 4752 for
NF ¼ 4. The corresponding eigenvalues are [85]

�½3� ¼ �4NF; �½2;1� ¼ �4NF � 6;

�½5;12NF�2� ¼ 6; �½4;2;12NF�3� ¼ �2:
(2.11)

The SF-extended WT interaction is attractive in three
multiplets and repulsive in the remaining one. The sum of
all eigenvalues with their multiplicity, i.e., the trace of
4JiMJ

i
B, is zero, as follows, e.g., from trðJiMÞ ¼ 0. The

operator can be written as

4JiMJ
i
B ¼ X

�

��P�; (2.12)

where � are the four baryon-meson irreps of SUð2NFÞ, ��

the eigenvalues, and P� the orthogonal projectors. This

allows one to compute the matrix elements using the
SUð2NFÞ Clebsch-Gordan coefficients [111].

C. Heavy-quark spin symmetry implementation

Whereas the model just described can be used directly for
three flavors, the extension to include charm requires more
care. One reason is that chiral symmetry and SU(4) invari-
ance are less reliable for fixing the interaction in the sectors
involving charm. At the same time, new specific symmetries
of a nonrelativistic type arise when heavy quarks are in-
volved [78–80]. In the heavy-quark limit the number of
charm quarks and the number of charm antiquarks are
separately conserved. This implies a symmetry Ucð1Þ �
U�cð1Þ. Likewise, the terms in the QCD Hamiltonian which
depend on the heavy-quark or -antiquark spin are sup-
pressed, being of order 1=mh, where mh is the mass of the
heavy quark. Therefore, in the heavy-quark limit, arbitrary
rotations of the spin carried by the c quarks and, indepen-
dently, of the spin carried by the �c antiquarks, would leave
unchanged the energy of the hadronic state.5 This implies a

4Note that the singlet part inBy
ACDB

BCD does not couple since
the matrix ½�; @0�� is traceless.

5However, all c quarks present in the state, being identical
particles, are rotated by a common rotation, and similarly for
the �c.
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symmetry SUcð2Þ � SU�cð2Þ in the heavy-quark limit. These
invariances are aspects of heavy-quark spin symmetry. In
what follows we refer to SUcð2Þ � SU�cð2Þ � Ucð1Þ �
U�cð1Þ as the HQSS group.

The approximate HQSS reflects on the hadronic
spectrum and for charm it has a level of accuracy similar
to that of flavor SU(3). Taking HQSS into account implies
that the model described in the previous subsection—the
SF-extendedWTor just SU(8)-WTmodel (for four flavors)—
has to be slightly modified. In order to keep the model
simple, we will impose exact HQSS on it. The alternative
would be to introduce instead 1=mh suppressions in some
amplitudes, but such an improvement is beyond the scope
of the present work.

First, it should be noted that SF by itself already
guarantees HQSS in many sectors. Consider, for instance,
the couplings involving the channels ND and ND�. These
channels are related through HQSS since there should be
invariance under rotations of the c quark spin (leaving the
light quarks unrotated), and this mixes D and D�. But the
same invariance is already implied by SF, which requires
symmetry under independent rotations of spin for each
flavor separately. The only cases where SF does not by
itself guarantee HQSS is when there are simultaneously c
quarks and �c antiquarks: SF implies invariance under equal
rotations for c and �c, but HQSS also requires invariance
when the two spin rotations are different.

To be more specific, let us consider baryon-meson
channels, and let Nc be the number of c quarks and N �c the
number of �c antiquarks. Nc ranges from 0 to 4, and N �c from
0 to 1. SF guarantees HQSS in the sectors ðNc; N �cÞ ¼ ð0; 0Þ,
(0, 1), (1, 0), (2, 0), (3, 0), (4, 0), but not in the sectors (1, 1),
(2, 1), (3, 1), (4, 1). As compared to the former sectors, the
latter ones contain extra c �c pairs. For the present discussion,
we refer collectively to these sectors as sectors with ‘‘hidden
charm,’’ regardless of whether they have net charm or not.
The hidden charm sectors are the main subject of the present
work. We note that, for S-wave interactions (the ones of
interest here), even SU(6) SF, rather than SU(8), is sufficient
to guarantee HQSS in the sectors without hidden charm: a
rotation of the single heavy quark (or antiquark) can be
produced by a light-sector rotation followed by a global
rotation, without changing the energy. In other words, in
those sectors and for S-wave interactions, any SF-invariant
interaction enjoys HQSS automatically.

It is perfectly possible to write down nontrivial models
enjoying simultaneously SU(8) and HQSS invariances
[namely, by requiring SUqð8Þ � SU�qð8Þ], but they would

not reduce toWT in the light sector. Concretely, SU(8)-WT
conserves C¼Nc�N �c but not Nc and N �c separately. Of
course, one could impose this by hand, but it is automati-
cally taken care of by our modified interaction below
[Eq. (2.22)]. Also, the restrictions of SU(8)-WT to the
sectors ðNc;N �cÞ¼ ð1;1Þ, (2, 1), (3, 1), (4, 1) turn out to
violate HQSS.

In order to implement HQSS in the model let us analyze
its content. We extract the trivial kinematic part and work
directly in the space with only spin and flavor as degrees of
freedom. Let

HWT ¼ 4JiMJ
i
B: (2.13)

This operator can be written in terms of meson and baryon
operators [81,85], and it contains two distinct mechanisms
that stem from expanding the meson commutator in
Eq. (2.9),

HWT¼HexþHac; Hex¼ :MA
CM

yC
BB

BDEBy
ADE :;

Hac¼�:MyA
CM

C
BB

BDEBy
ADE :; A; . . . ;E¼1; . . . ;2NF:

(2.14)

Here MA
B and BABC are the annihilation operators of

mesons and baryons, respectively, with MyA
B ¼ ðMB

AÞy,
and By

ABC ¼ ðBABCÞy. BABC is a completely symmetric

tensor. They are normalized as

½MA
B;M

yC
D�¼�A

D�
C
B;

fBABC;By
A0B0C0 g¼�A

A0�B
B0�C

C0 þ���ðsix permutationsÞ:
(2.15)

Note that in the SU(8)-WT model, the �1 [SU(8) singlet
meson] does not couple and could be ignored; however,
this meson has to be present in the corrected interaction
since it mixes with the other mesons under HQSS.
Schematically, representing the quark and antiquark

operators by QA and �QA,

MA
B �QA �QB; MyA

B � �QyAQy
B;

BABC �QAQBQC; By
ABC �Qy

AQ
y
BQ

y
C:

(2.16)

So, an upper index inM orB represents the SF of a quark to
be annihilated, whereas in My it represents that of an
antiquark to be created. Likewise, a lower index in My or
By represents the SF of a quark to be created while inM it
represents that of an antiquark to be annihilated. From this
identification it is immediate to interpret the two mecha-
nisms Hex and Hac in terms of quark and antiquark
propagation.
The two mechanisms involved, Hex and Hac, are dis-

played in Fig. 1. In Hex (exchange) the quark with spin-
flavor A is transferred from the meson to the baryon, as is
the quark with label B from the baryon to the meson. On
the other hand, in Hac (annihilation-creation) an antiquark
with spin-flavor B in the meson annihilates with a similar
quark in the baryon, with the subsequent creation of a
quark and an antiquark with spin-flavor A. In both mecha-
nisms the quarks or antiquarks C, D, and E are spectators
from the point of view of their spin-flavor (the ubiquitous
gluons are not explicit). Also, in both mechanisms a meson
is effectively exchanged. In passing, we note that the
Okubo-Zweig-Iizuka (OZI) rule is automatically fulfilled
with regards to the exchanged meson. OZI-rule-violating
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mechanisms would be of the type depicted in Fig. 2 and are
not present in WT.

It appears that Hac can violate HQSS when the
annihilation or creation of q �q pairs involves heavy quarks,
whereas Hex would not be in conflict with HQSS. This is
indeed correct. To expose this fact more clearly, let us
consider the symmetries of these two interaction mecha-
nisms. Let NF ¼ 4 and let U be a matrix of SF SU(8).
Upper indices transform with Uy and lowers indices
with U,

QA ! UyA
BQ

B; �QyA ! UyA
B
�QyB;

�QA ! UB
A
�QB; Qy

A ! UB
AQ

y
B:

(2.17)

Therefore (with obvious matrix/tensor notation),

M!UyMU; My!UyMyU;

B!ðUy�Uy�UyÞB; By!ByðU�U�UÞ:
(2.18)

The indices are so contracted that Hex and Hac are both
invariant under these SU(8) transformations. However,
HQSS also requires invariance when the charm quark
and the charm antiquark receive different rotations. To
examine this, let us consider the transformation under
U 2 SUqð8Þ and �U 2 SU�qð8Þ, i.e., different transforma-

tions for quarks and antiquarks (previously U ¼ �U). In
this case,

Q ! UyQ; �Qy ! �Uy �Qy;
�Q ! �Q �U; Qy ! QyU;

(2.19)

and therefore

M!UyM �U; My! �UyMyU;

B!ðUy�Uy�UyÞB; By!ByðU�U�UÞ:
(2.20)

Clearly, the mechanism Hex, which depends on the
combination MMy, is still invariant under this larger
group, SUqð8Þ � SU�qð8Þ.6 It certainly preserves SF and

HQSS. On the other hand,Hac depends on the combination
MyM, which transforms with �U, while BBy transforms
with U. Hac is SF invariant (U ¼ �U) but not HQSS invari-
ant. A simple solution to enforce HQSS with minimal
modifications is to remove just the offending contributions
in Hac, which come from the creation or annihilation of
charm quark-antiquark pairs. This implies removing the
interaction when the labels A or B are of the heavy type in
Hac.

7 That is, we adopt the following modified version of
the Hac mechanism:

H0
ac ¼ �: MyÂ

CM
C
B̂
BB̂DEBy

ÂDE
:;

C;D; E ¼ 1; . . . ; 8; Â; B̂ ¼ 1; . . . ; 6:
(2.21)

The indices with hats are restricted to SU(6). By con-
struction Nc and N �c are exactly conserved in H0

ac.
Also, SUcð2Þ � SU�cð2Þ is conserved: when U and �U

act only on the heavy sector, MyÂ
CM

C
B̂
and BB̂DEBy

ÂDE

are unchanged. So HQSS is preserved. On the other hand,
whenU ¼ �U and this matrix acts on the light sector,H0

ac is
unchanged, so it enjoys SU(6) symmetry. Exact SF SU(8)
and flavor SU(4) are no longer present. Presumably, this
breaking of SU(4) is comparable to the breaking through
the kinematics due to the substantially heavier mass of the
charmed quark.
To summarize, our model (in all sectors) is given by

V ¼ KðsÞ
4f2

H0
WT; H0

WT ¼ Hex þH0
ac: (2.22)

This model fulfills some desirable requirements: (i) it has
symmetry SUð6Þ � HQSS, i.e., SF symmetry in the light
sector and HQSS in the heavy sector, the two invariances
being compatible, (ii) it reduces to SU(6)-WT in the light
sector, so it is consistent with chiral symmetry in that
sector, and (iii) it is a minimal modification that preserves
simplicity and does not introduce new adjustable
parameters.

FIG. 2. OZI-rule-violating mechanisms. Gluons are implicit.

B A C A A

C A B C B B
Hex

D E D E

D ED E

C

Hac

FIG. 1. The two mechanisms acting in the spin-flavor
extended WT interaction: Hex (exchange of quarks) and Hac

(annihilation and creation of quark-antiquark pairs). In the
HQSS-corrected version of the interaction, Eq. (2.21), the labels
A and B in Hac only take light-flavor values.

6Note that the commutation relations, Eq. (2.15), are also
preserved by this symmetry.

7Keeping the contributions with A ¼ B of the heavy type
would preserve Ucð1Þ � U�cð1Þ, i.e., conservation of Nc and N �c,
but not SUcð2Þ � SU�cð2Þ.
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D. The model in the various sectors

We can analyze the model in the different ðNc;N �cÞ
sectors, which, as already noted, do not mix due to HQSS.

In all the sectors without hidden charm, namely,
ðNc; N �cÞ ¼ ð0; 1Þ, (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), H0

ac

produces the same amplitudes as Hac when the latter is
restricted to the corresponding sector. Indeed, these inter-
actions vanish unless the state contains a quark-antiquark
pair with a quark and antiquark of the same type. In the
absence of hidden charm, the pair must be light and in this
case the two operators produce the same result. This is
consistent with our previous observation that, when there
are only heavy quarks or heavy antiquarks but not both, SF
already implies HQSS. So in all these sectors, our model
produces the same amplitudes as SU(8)-WTafter removing
channels involving hidden charm. This observation has
been applied in Refs. [81–83,88].

It is noteworthy that, in the sectors ðNc; N �cÞ ¼ ð0; 1Þ and
(4, 0), corresponding to C ¼ �1 and C ¼ 4, H0

ac ¼ Hac ¼
0 as they do not contain light quark-antiquark pairs. Also,
these two sectors cannot couple to any other ðNc;N �cÞ sector
in the baryon-meson case. Therefore for them, our model
coincides directly with SU(8)-WT.

Let us turn now to the sectors with hidden charm. These
are ðNc; N �cÞ ¼ ð1; 1Þ, (2, 1), (3, 1), (4, 1). For all these
sectors H0

ac vanishes. The reason is that in these sectors the
relevant quark-antiquark pair (quark and antiquark with
equal labels) is necessarily of heavy type, and such an
amplitude has been removed from H0

ac. (Note that Hac

does not vanish in these sectors.) So for the hidden-charm
sectors H0

WT reduces to the exchange mechanism Hex.
The interaction is effectively Hex for the four hidden-

charm sectors and also for C ¼ �1 and C ¼ 4. This has
the immediate consequence that the interaction H0

WT has
only two eigenvalues—namely �2 (attractive) and 6
(repulsive)—in those sectors.8 This follows from the fact
thatHex has a large (accidental) symmetry group, SUqð8Þ �
SU�qð8Þ, which produces only two large multiplets of degen-

erated states in the baryon-meson coupled-channels space.
Under SUqð8Þ � SU�qð8Þ the baryons fall in the irrep ð120; 1Þ
(120 being the symmetric representation of three quarks
with eight possible spin-flavor states).9 Likewise, the me-
sons belong to ð8; 8�Þ (being q �q states). Therefore, the
baryon-meson states form two SUqð8Þ � SU�qð8Þmultiplets,

ð120; 1Þ � ð8; 8�Þ ¼ ð330; 8�Þ � ð630; 8�Þ (2.23)

(330 is the symmetric representation [4] of SU(8) while
630 corresponds to the mixed symmetry [3, 1]). The two
corresponding eigenvalues are10

�ð330;8�Þ ¼ 6; �ð630;8�Þ ¼ �2: (2.24)

These two eigenvalues are also present in the original
SU(8)-WT interaction [namely, �2520 ¼ 6 and �4752 ¼ �2
from Eq. (2.11)] since the two interactions coincide for
C ¼ �1 or C ¼ 4. It can also be noted that under SF
SU(8), these multiplets reduce as follows:

ð330; 8�Þ ¼ 120 � 2520;

ð630; 8�Þ ¼ 120 � 168 � 4752:
(2.25)

Of course, these are the same SU(8) irreps obtained
from 120 � 63 (baryon-meson except �1) and 120 � 1
(baryon-�1). Therefore, the interaction can be written using
SU(8) Clebsch-Gordan coefficients by means of11

Hex ¼ 6ðP0
120 þ P2520Þ � 2ðP120 þ P168 þ P4752Þ: (2.26)

We emphasize that the large multiplets ð330; 8�Þ and
ð630; 8�Þ are not realized in our model. First of all, they
contain sectors without hidden charm, for which the inter-
action does not reduce to the exchange mechanism Hex.
And second, the eigenvalues 6 and �2 refer only to the
driving operator 4JiMJ

i
B. The vertex V in Eq. (2.22) depends

also on hadron masses and meson decay constants, for
which we use physical values in V and in the propagators.
The values that we use for these magnitudes are collected
in Table II of Ref. [83].

E. Analysis of the hidden-charm sectors

Here we consider hidden-charm sectors with C ¼ 0, 1,
2, 3, i.e., N �c ¼ 1 and Nc ¼ 1, 2, 3, 4, respectively. We
want to classify the possible states under the symmetry
group SUð6Þ � HQSS, with HQSS ¼ SUcð2Þ � SU�cð2Þ �
Ucð1Þ � U�cð1Þ. Since in the hidden-charm sectors there is
exactly one heavy antiquark, it is not necessary to specify
the irrep of the factor SU�cð2Þ � U�cð1Þ and we can use the
notation R2Jcþ1;C for the irreps of SUð6Þ � HQSS, R being

the SU(6) irrep of the light sector, C the charm quantum
number, and Jc the total spin carried by one or more c
quarks (not including the spin of the �c antiquarks). The
corresponding dimension is dimR�ð2Jcþ1Þ�2 (the last
factor coming from the two possible spin states of the �c).
Subsequently, we study the breaking of light SF down to

SUð3Þ � SUð2Þ keeping HQSS, and enumerate the number
of attractive channels in each ðC; r; JÞ sector, where r is the
SU(3) irrep and J the total spin.
In practice we will assume exact isospin and spin

SUð2ÞI � SUð2ÞJ as well as conservation of each flavor,
but not exact SU(3) and HQSS, for the baryons and mesons
composing the coupled-channels space. Therefore the sec-
tors are labeled by ðC; S; I; JÞ, S being the strangeness

8Remarkably, these two eigenvalues are the onlyNF-independent
ones in Eq. (2.11).

9Fermi-Dirac statistics is taken care of by the antisymmetric
color wave function.
10They can be obtained by applying Hex to two suitable states,
e.g., ðMy1

1B
y
211 	My1

2B
y
111Þj0i.

11One exception comes from the two 120 irreps, which differ
by the type of symmetry of the four quarks. This information is
not contained in the SU(8) Clebsch-Gordan coefficients.
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quantum number and I the isospin. This implies a further
breaking of each ðC; r; JÞ sector into ðC; S; I; JÞ subsectors.

1. C ¼ 0

For C ¼ 0, the quark content is ‘‘‘c �c, with two possi-
bilities of grouping into a baryon-meson: ð‘‘‘Þðc �cÞ and
ð‘‘cÞð‘ �cÞ. (Here ‘ denotes any light-flavor quark, u, d, s.)
The total dimension of the space is 56� 2� 2þ 21�
2� 6� 2 ¼ 728, and contains the following SUð6Þ �
HQSS multiplets:12

H C¼0¼562;0�562;0�702;0 ½SUð6Þ�HQSS�: (2.27)

The eigenvalues turn out to be

�562;0 ¼ �702;0 ¼ �2; �0
562;0

¼ 6: (2.28)

The accidental degeneracy between 702;0 and one

562;0 takes place in our model and it is not a necessary

consequence of SUð6Þ � HQSS. This symmetry does not
fix the three possible eigenvalues and the precise splitting
between the two copies of 562;0. In general, the accidental

degeneracy will be lifted in V and the T matrix even when
an exact SUð6Þ � HQSS invariance is assumed in the
hadron masses and meson decay constants.

Next, we consider the breaking of light SF SU(6)
down to SUð3Þ � SUJ‘ð2Þ, e.g., 56 ¼ 82 � 104. HQSS is

unbroken. After recoupling the spin carried by light and
heavy quarks and antiquarks to yield the total spin J, we
obtain representations of SUð3Þ � SUð2ÞJ labeled as r2Jþ1,
where r is the SU(3) irrep. This yields the following
reductions (the two 562;0 have the same reduction):

562;0¼ð82�104Þ2;0
¼ð82�82�84Þ�ð102�104�104�106Þ;

702;0¼ð12�82�84�102Þ2;0
¼ð12�12�14Þ�ð82�82�84Þ�ð82�84�84�86Þ
�ð102�102�104Þ: (2.29)

In the reduction ð82Þ2;0¼ð82�82�84Þ in 562;0, the three
octets only differ in how the light-sector spin is coupled to
the heavy-sector spin; therefore these three irreps are de-
generate if exact HQSS is assumed. ð82�82�84Þ is a
multiplet of SUð3Þ � HQSS. Similar statements hold in
the other cases: each 562;0 produces two such multiplets

and 702;0 produces four. Consequently, in the hidden-

charm sector with C ¼ 0 we expect to find eight different
eigenvalues after SUð6Þ � HQSS is broken down to

SUð3Þ � HQSS. Let �1, �2 be the eigenvalues of the two
multiplets in the repulsive 562;0, �3, �4 in the attractive

562;0, and �5, �6, �7, �8 those in 702;0. In this case, the

spectra in each ðC; r; JÞ sector is as follows:
12: ð�5; �5Þ; 14: ð�5Þ;
82: ð�1; �1; �3; �3; �6; �6; �7Þ; 84: ð�1; �3; �6; �7; �7Þ;
86: ð�7Þ; 102: ð�2; �4; �8; �8Þ;
104: ð�2; �2; �4; �4; �8Þ; 106: ð�2; �4Þ: (2.30)

In the SU(6) limit, �1 ¼ �2, �3 ¼ �4, �5¼�6¼�7¼�8.
Breaking down the symmetry to SU(3), one expects

�3;4;5;6;7;8 < 0< �1;2: (2.31)

Each negative eigenvalue can give rise to a resonance
or bound state. Each such state is a full multiplet of
SUð3Þ � SUð2ÞJ. This implies the following expected
number of states in each ðC; r; JÞ sector: up to two states
in 12, one in 14, five in 82, four in 84, one in 86, three in 102,
three in 104, and one in 106, all of them with C ¼ 0.

2. C ¼ 1

For C ¼ 1 there are two baryon-meson structures,
namely, ð‘‘cÞðc �cÞ and ð‘ccÞð‘ �cÞ. The total dimension of
the space is 384, with the following reduction under
SUð6Þ � HQSS:

H C¼1¼213;1�213;1�211;1�153;1 ½SUð6Þ�HQSS�;
(2.32)

and eigenvalues

�213;1 ¼ �211;1 ¼ �153;1 ¼ �2; �0
213;1

¼ 6: (2.33)

Once again the accidental degeneracy beyond SUð6Þ �
HQSS is lifted in the T matrix.
After the breaking SUð6Þ 
 SUð3Þ � SUð2ÞJ‘ , and

recoupling to J, one finds

213;1 ¼ ð63 � 3�1Þ3;1
¼ ð62 � 62 � 64 � 64 � 66Þ � ð3�2 � 3�4Þ;

211;1 ¼ ð63 � 3�1Þ1;1 ¼ ð62 � 64Þ � ð3�2Þ;
153;1 ¼ ð61 � 3�3Þ3;1

¼ ð62 � 64Þ � ð3�2 � 3�2 � 3�4 � 3�4 � 3�6Þ: (2.34)

Thus for C ¼ 1, each of the four SU(6) irreps split into two
SUð3Þ � HQSS multiplets.13

In principle there are eight different eigenvalues.
Denoting by �1, �2 the eigenvalues of the two multiplets
in the repulsive 213;1, �3, �4 for the attractive 213;1, �5, �612ð‘‘‘Þðc �cÞ is purely 562;0 from the symmetry of the three light

quarks. The two light quarks in ð‘‘cÞ are symmetric, giving a 21
of SU(6), which coupled to the further light quark in ð‘ �cÞ gives
21 � 6 ¼ 56 � 70. These two 562;0 are not directly those in
Eq. (2.28).

13Note that the two ð62 � 64Þ multiplets above do not mix if
HQSS holds, as they carry different heavy-quark spin labels.
Such a label has been left implicit to avoid clumsiness.
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for 211;1, and �7, �8 for 153;1, the spectra in each ðC; r; JÞ
sector is as follows:

3 �
2: ð�2; �4; �6; �8; �8Þ; 3�4: ð�2; �4; �8; �8Þ;

3�6: ð�8Þ; 62: ð�1; �1; �3; �3; �5; �7Þ;
64: ð�1; �1; �3; �3; �5; �7Þ; 66: ð�1; �3Þ:

(2.35)

In the SU(6) limit, �1 ¼ �2, �3¼�4, �5¼�6, and �7¼�8.
If only SU(3) symmetry is assumed, we expect the follow-
ing number of states: up to four states in 3�2, three in 3

�
4, one

in 3�6, four in 62, four in 64, and one in 66.

3. C ¼ 2

For the hidden-charm sector with C ¼ 2 there are two
baryon-meson quark structures: ð‘ccÞðc �cÞ and ðcccÞð‘ �cÞ.
The space has dimension 120, with the following reduction
and eigenvalues:

H C¼2 ¼ 62;2 � 64;2 � 64;2 ½SUð6Þ � HQSS�
�62;2 ¼ �64;2 ¼ �2; �0

64;2
¼ 6:

(2.36)

The SUð3Þ � HQSS multiplets are as follows:

62;2 ¼ ð32Þ2;2 ¼ ð32 � 32 � 34Þ;
64;2 ¼ ð32Þ4;2 ¼ ð32 � 34 � 34 � 36Þ:

(2.37)

In this case the SUð6Þ � HQSS multiplets are not reduced
further under SUð3Þ � HQSS. Calling �1 the eigenvalue of
the repulsive 64;2, �2 that of the attractive 64;2, and �3 the

one of 62;2, yields the following spectra for the three

ðC; r; JÞ sectors:
32: ð�1;�2;�3;�3Þ; 34: ð�1;�1;�2;�2;�3Þ; 36: ð�1;�2Þ:

(2.38)

This produces the following expected maximum number of
states: three in 32, three in 34, and one in 36.

It can be noted in the present case—C ¼ 2 with hidden
charm—that the assumption of SU(6) invariance does not
add anything (does not reduce the number of parameters)
on top of that of SU(3). The reason is that here HQSS
automatically implies SF: there is just one light quark and
rotations of it can be produced by combining global rota-
tions with heavy-quark rotations.

4. C ¼ 3

For C ¼ 3 there is just one quark structure, ðcccÞc �c.
The dimension is 16. The SUð6Þ � HQSS reduction is

HC¼3 ¼ 13;3 � 15;3 ½SUð6Þ � HQSS�; (2.39)

with eigenvalues

�13;3 ¼ �2; �15;3 ¼ 6: (2.40)

The SUð3Þ � SUð2ÞJ reduction is

13;3 ¼ ð11Þ3;3 ¼ ð12 � 14Þ;
15;3 ¼ ð11Þ5;3 ¼ ð14 � 16Þ:

(2.41)

Once again, the SUð6Þ � HQSS multiplets are not reduced
further under SUð3Þ � HQSS.
The following spectra is obtained for the various ðC; r; JÞ

sectors:

12: ð�2Þ; 14: ð�1; �2Þ; 16: ð�1Þ; (2.42)

where �1 denotes the eigenvalue corresponding to 15;3, and
�2 that of 13;3. So no states will be produced in 16, and up to
one state is expected in 12 and 14.
Some of the results of this subsection are summarized in

Table I.

F. Lagrangian form of the interaction

In the strict heavy-quark limit, the total spin J and
the separate spins of the light- and heavy-quark and
heavy-antiquark subsystems are conserved when only
S-wave interactions are considered. Moreover, the matrix
elements of the QCDHamiltonian depend only on the spin-
flavor quantum numbers of the light degrees of freedom.
Each n-fold degenerated SU(6) or SU(3) multiplet implies
the specification of nðnþ 1Þ=2 parameters, which are cou-
pling constants of the corresponding operators present in
the interaction. From the previous analysis it follows that
the number of independent operators in the hidden-charm
sectors with C ¼ 0, 1, 2, 3 is 4, 5, 4, 2, respectively, for a
generic interaction if SUð6Þ � HQSS invariance is as-
sumed, and 12, 10, 4, 2 if the symmetry is reduced to
SUð3Þ � HQSS.
In what follows we will focus on the sector with hidden

charm and C ¼ 0. For this sector we will write down
the most general (modulo kinematical factors) S-wave
Lagrangian consistent with SUð3Þ � HQSS for the baryon-
meson coupled-channels space. This Lagrangian contains 12

TABLE I. Total number of channels for each J and each SU(3)
irrep, for the various hidden-charm sectors. Here each channel
represents a full SU(3) and spin multiplet ðC; r; JÞ [rather than an
isospin-spin multiplet, ðC; S; I; JÞ]. The expected number of
resonances in each sector is shown between parentheses. The
actual number of resonances will depend on the values of the
physical masses and meson decay constants.

C 0 1 2 3

J SU(3) 1 8 10 3� 6 3 1

1=2 2 7 4 5 6 4 1

(2) (5) (3) (4) (4) (3) (1)

3=2 1 5 5 4 6 5 2

(1) (4) (3) (3) (4) (3) (1)

5=2 0 1 2 1 2 2 1

(0) (1) (1) (1) (1) (1) (0)
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operators and our model gives well-defined values for the
corresponding coupling constants. We should note that we
actually compute the matrix elements of our interaction
directly by using the previous expressions—either in terms
of projectors using Clebsch-Gordan coefficients, or of had-
ron creation and annihilation operators in spin-flavor
space—by taking Wick contractions. Nevertheless, writing
the interaction in field-theoretical Lagrangian form is highly
interesting in order to make contact with alternative ap-
proaches in the literature.

For this purpose it is convenient to organize the
hadrons forming multiplets of HQSS into building
blocks with well-defined HQSS transformation properties
[80,112–114]. Specifically, consider a HQSS doublet com-
posed of a pseudoscalar meson and vector meson with one

heavy quark (e.g., D and D�). Let MðcÞ and MðcÞ
� be the

corresponding fields; then

MðcÞ ¼ QþðMðcÞðþÞ
� �� þMðcÞðþÞ�5Þ;

�MðcÞ ¼ �0M
ðcÞy�0 ¼ ðMðcÞyð�Þ

� �� �MðcÞyð�Þ�5ÞQþ:

(2.43)

As usual, ð	Þ represent the positive- and negative-
frequency part of the fields, corresponding to purely anni-
hilation for ðþÞ and purely creation for ð�Þ. Therefore,
MðcÞ [ �MðcÞ] annihilates [creates] the meson with one heavy
quark but it does not create [annihilate] the corresponding
antimeson with a heavy antiquark. A similar proviso is
applied in all the other fields for hadrons carrying heavy
quarks and/or antiquarks. Besides,

Q	 ¼ 1	 6v
2

; (2.44)

where v� is the heavy-hadron velocity (v2 ¼ 1). We
use Bjorken and Drell [115] conventions for the Dirac
gammas. For the hadron fields we use the conventions of
Ref. [111] and this fixes the relative sign between the
pseudoscalar and vector (see Appendix A).

Likewise, for a HQSS meson doublet with one heavy
antiquark,

Mð �cÞ ¼ ðMð �cÞðþÞ
� �� þMð �cÞðþÞ�5ÞQ�;

�Mð �cÞ ¼ �0M
ð �cÞy�0 ¼ Q�ðMð �cÞyð�Þ

� �� �Mð �cÞyð�Þ�5Þ:
(2.45)

For a HQSS meson doublet with one heavy quark and one
heavy antiquark (e.g., �c and J=c ),

Mðc �cÞ ¼QþðMðc �cÞðþÞ
� ��þMðc �cÞðþÞ�5ÞQ�;

�Mðc �cÞ ¼�0M
ðc �cÞy�0¼Q�ðMðc �cÞyð�Þ

� ���Mðc �cÞyð�Þ�5ÞQþ:

(2.46)

For a HQSS baryon doublet with exactly one heavy
quark (e.g., �c and ��

c),

BðcÞ� ¼ BðcÞ�ðþÞ þ 1ffiffiffi
3

p ð�� þ v�Þ�5B
ðcÞðþÞ;

�BðcÞ� ¼ BðcÞy��0 ¼ �BðcÞ�ð�Þ þ 1ffiffiffi
3

p �BðcÞð�Þð�� � v�Þ�5:

(2.47)

Here BðcÞ is the Dirac spinor of the 1=2þ baryon in the

doublet while �BðcÞ� is the Rarita-Schwinger field for the

3=2þ baryon: v�B
ðcÞ� ¼ ��B

ðcÞ� ¼ 0.

Finally, for a HQSS singlet baryon with exactly one
heavy quark (e.g., �c),

B ðcÞ ¼ BðcÞðþÞ; �BðcÞ ¼ BðcÞy�0 ¼ �BðcÞð�Þ: (2.48)

In addition, the polarization of the baryons carrying heavy

quarks is such that Q�BðcÞðþÞ ¼ Q�BðcÞ�ðþÞ ¼ 0; hence

Q�BðcÞ ¼ Q�BðcÞ� ¼ 0: (2.49)

Under HQSS rotations these fields transform as follows:

ScM
ðcÞ; Mð �cÞS�1

�c ; ScM
ðc �cÞS�1

�c ; ScB
ðcÞ; ScB

ðcÞ�;
�MðcÞS�1

c ; S �c
�Mð �cÞ; S �c

�Mðc �cÞS�1
c ; �BðcÞS�1

c ; �BðcÞ�S�1
c :

(2.50)

Here Sc and S �c are the matrices in Dirac space representing

the c or �c spin rotation and satisfying Syc; �c ¼ �0S
�1
c; �c�0.

All other hadrons without heavy quarks nor antiquarks
are HQSS singlets. They have complete fields (positive-
and negative-frequency parts) and are denoted without
boldface type.
The hadrons are also organized into SU(3) multiplets.

We use fields with labels a; b; c; . . . ¼ 1; 2; 3 (or up, down,
strange) in the fundamental or antifundamental represen-
tations of SU(3), in such a way that

Ta���
b��� ! Uya

a0U
b0
b � � �Ta0���

b0��� ; U 2 SUð3Þ: (2.51)

For C ¼ 0 with hidden charm, the following SU(3)
multiplets are needed:

�D a ¼ �D0 �D� �Ds

� �
: (2.52)

Here �D0 represents the HQSS doublet formed by �D0 and
�D�0, etc.,

��ab
c ¼

ffiffiffi
2

p
��þþ

c ��þ
c ��þ

c

�
�þ
c

ffiffiffi
2

p
�

�0
c �

�0
c

��þ
c ��0

c

ffiffiffi
2

p
��

c

0
BB@

1
CCA: (2.53)

This is a symmetric tensor [irrep 6 of SU(3)]. �
�
c ,�

�
c , and

�
�
c are the HQSS doublets with ð�c;�

�
cÞ, ð�0

c;�
�
cÞ, and

ð�c;�
�
cÞ, respectively,

� ca ¼ ��0
c �þ

c ��c

� �
: (2.54)

In this case the members of the SU(3) multiplet are HQSS
singlets. Furthermore, we define c as the SU(3) singlet
and HQSS doublet containing ð�c; J=c Þ.
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In addition, the following light-baryon multiplets
appear: with JP ¼ 1=2þ,

�a
b ¼

1ffiffi
6

p �� 1ffiffi
2

p �0 �þ �p

��� 1ffiffi
6

p �þ 1ffiffi
2

p �0 �n

��� �0 �
ffiffi
2
3

q
�

0
BBBB@

1
CCCCA; (2.55)

and with JP ¼ 3=2þ, �abc
� , a Rarita-Schwinger field and a

symmetric tensor normalized as

�111
� ¼ ffiffiffi

6
p

�þþ
� ; �112

� ¼ ffiffiffi
2

p
�þ

�; �122
� ¼ ffiffiffi

2
p

�0
�;

�222
� ¼ ffiffiffi

6
p

��
�; �113

� ¼ ffiffiffi
2

p
��þ

� ; �123
� ¼ ��0

� ;

�223
� ¼ ffiffiffi

2
p

���
� ; �133

� ¼ ffiffiffi
2

p
��0

� ; �233
� ¼ ffiffiffi

2
p

���
� ;

�333
� ¼ ffiffiffi

6
p

��: (2.56)

The relative phases of all fields here are standard with
respect to the conventions adopted in Ref. [111] for the
rotation, flavor, and spin-flavor groups. So for instance,
ð�þ

c ;�
0
cÞ is a standard isospin doublet and ð�þ;�0;��Þ is

a standard isovector. For SU(3) [and SU(4)] the convention
in Ref. [116] is used instead of that in Ref. [117].14

Regarding parity, we note that the hadrons with spin
parity 1� or 1=2þ have normal parity, whereas those with
0� or 3=2þ have abnormal parity. So �b

a, c , �ca, and �Da

are true tensors while �abc
� and ��

cab
are pseudotensors.

Also, �b
a, �ca, �

abc
i , and �i

cab
have large upper compo-

nents while c and �Da have large off-diagonal blocks in
Dirac space. The �5 matrices that were introduced to
preserve parity fit in this scheme.

Next, we write down the 12 most general operators
allowed by SUð3Þ � HQSS in the baryon-meson coupled-
channels space, in S-wave and preserving parity. The

operator @
$
v ¼ v�ð ~@� � @Q�Þ acts on the mesons only and

it is introduced in order to produce the correct kinematical
dependence in the amplitudes,

L 1ðxÞ ¼ g1
��a

b�
b
atrð �c i@

$
vc Þ; (2.57)

L 2ðxÞ ¼ g2
1

3!
��
�
abc�

abc
� trð �c i@

$
vc Þ; (2.58)

L 3ðxÞ ¼ g3
��a
cc ð�i@

$
vÞ �Db�

b
a þ H:c:; (2.59)

L4ðxÞ ¼ g4�
bcd ��

�

cab
c ð�i@

$
vÞ �Dc���5�

a
d þ H:c:; (2.60)

L 5ðxÞ ¼ g5
1

2
���

cab
c ð�i@

$
vÞ �Dc�

abc
� þ H:c:; (2.61)

L 6ðxÞ ¼ g6
��a
c�catrð �Dbi@

$
v
�DbÞ; (2.62)

L7ðxÞ ¼ g7
��a
c�cbtrð �Dai@

$
v
�DbÞ; (2.63)

L8ðxÞ ¼ g8�
bcd ��

�

cab
�cdtrð �Dc���5i@

$
v
�DaÞ þ H:c:; (2.64)

L9ðxÞ þL10ðxÞ
¼ 1

2
��
�

cab
�	ab

c trð �Dcðg9g�	 þ g10i
�	Þi@$v
�DcÞ; (2.65)

L11ðxÞ þL12ðxÞ
¼ ���

cac�
	bc
c trð �Dbðg11g�	 þ g12i
�	Þi@$v

�DaÞ: (2.66)

The traces refer to Dirac space.
The reduction of these Lagrangians when no strangeness

is involved is as follows:

L 1ðxÞ ¼ g1 �NNtrð �c i@
$
vc Þ; (2.67)

L 2ðxÞ ¼ g2 ��
���trð �c i@

$
vc Þ; (2.68)

L3ðxÞ ¼ g3 ��cc ð�i@
$
vÞ �DN þ H:c:; (2.69)

L 4ðxÞ ¼ g4
���
cjc ð�i@

$
vÞ �D�j���5N þ H:c:; (2.70)

L 5ðxÞ ¼
ffiffiffi
3

p
g5

��
�
cj
�c ð�i@

$
vÞcTj�� þ H:c:; (2.71)

L 6ðxÞ ¼ g6 ��c�ctrð �Di@
$
v
�DÞ; (2.72)

L 7ðxÞ ¼ 0; (2.73)

L 8ðxÞ ¼ g8
��
�
cj�ctrð �D�j���5i@

$
v
�DÞ þ H:c:; (2.74)

L9ðxÞ þL10ðxÞ þL11ðxÞ þL12ðxÞ
¼ ��

�
cj�

	
cjtrð �DðG9g�	 þG10i
�	Þi@$v

�DÞ
þ ��

�
cj�

	
cktrð �D�j�kðG11g�	 þG12i
�	Þi@$v

�DÞ:
(2.75)

Here j, k are isovector indices, ~� are the Pauli matrices, and

h3=2;Mj ~�� ~Tyj1=2; mi ¼ Cð1=2; 1; 3=2;m;�;MÞ. Further,
G9 ¼ g9 þ 2g11; G10 ¼ g10 þ 2g12;

G11 ¼ �g11; G12 ¼ �g12:
(2.76)

Our WT model with SF and HQSS gives the following
values for the parameters:

14The matrix elements between standard states of the step
operators u $ d, d $ s, and s $ c are required to be non-
negative [116], rather than those of u $ d and u $ s [117].
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ĝ1¼0; ĝ2¼0; ĝ3¼
ffiffiffi
3

2

s
; ĝ4¼

ffiffiffi
1

6

s
;

ĝ5¼�1; ĝ6¼1

2
; ĝ7¼�1

2
; ĝ8¼1

2
;

ĝ9¼0; ĝ10¼0; ĝ11¼�1

2
; ĝ12¼�1

2
;

(2.77)

where we have defined ĝi ¼ 4f2gi.
The vanishing of g1 and g2 follows from the OZI rule,

which is fulfilled by the model.

III. COUPLED-CHANNELS UNITARIZATION AND
SYMMETRY BREAKING

A. Unitarization and renormalization scheme

As previously discussed, the baryon-meson interaction
is mediated by the extended WT interaction of Eq. (2.22)
that fulfills SUð6Þ � HQSS, and it is consistent with chiral
symmetry in the light sector. The final expression for the
potential to be used throughout this work is

VCSIJ
ij ¼ DCSIJ

ij

1

4fifj
ðk0i þ k00j Þ; (3.1)

where k0i and k00j are the center-of-mass (c.m.) energies of

the incoming and outgoing mesons, respectively, and fi
and fj are the decay constants of the meson in the

i-channel and j-channel.15

We use the hadron masses and meson decay constants
compiled in Table II of Ref. [83]. In particular, fJ=� is

taken from the width of the J=� ! e�eþ decay, that is,
fJ=� ¼ 290 MeV, and we set f�c

¼ fJ=�, as predicted by

HQSS and corroborated in the lattice evaluation of
Ref. [118]. The Dij are the matrix elements of H0

WT,

Eq. (2.22), for the various hidden charm CSIJ sectors
previously discussed. Those for the strangeless hidden
charm C ¼ 0 case, for which H0

WT ¼ Hex, and which we
will discuss in what follows, are given in Appendix B.16

In order to calculate the scattering amplitudes, Tij, we

solve the on-shell Bethe-Salpeter equation, using the
matrix VCSIJ as kernel,

TCSIJ ¼ ð1� VCSIJGCSIJÞ�1VCSIJ; (3.2)

where GCSIJ is a diagonal matrix containing the baryon-
meson propagator for each channel. Explicitly,

GCSIJ
ii ðsÞ ¼ ð ffiffiffi

s
p þMiÞ2 �m2

i

2
ffiffiffi
s

p ð �J0ð
ffiffiffi
s

p
;Mi;miÞ

� �J0ð�SI;Mi;miÞÞ: (3.3)

Mi (mi) is the mass of the baryon (meson) in the channel i.
The loop function �J0 can be found in the appendix of
Ref. [48] [Eq. (A9)] for the different possible Riemann
sheets. The baryon-meson propagator is logarithmically
ultraviolet divergent, and thus the loop needs to be renor-
malized. We do this by means of a subtraction-point
regularization such that

GCSIJ
ii ðsÞ ¼ 0 at

ffiffiffi
s

p ¼ �CSI; (3.4)

with �CSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

th þM2
th

q
, where mth and Mth are, respec-

tively, the masses of the meson and baryon producing the
lowest threshold (minimal value of mth þMth) for each
CSI sector, independent of the angular momentum J. This
renormalization scheme was first proposed in Refs. [65,66]
and it was successfully used in Refs. [56,81,83]. A recent
discussion on the regularization method can be found in
Ref. [60].
The dynamically generated baryon resonances appear as

poles of the scattering amplitudes on the complex-energyffiffiffi
s

p
plane. One has to check both the first and second

Riemann sheets. The poles of the scattering amplitude on
the first Riemann sheet that appear on the real axis below
the threshold are interpreted as bound states. The poles that
are found on the second Riemann sheet below the real axis
and above the threshold are identified with resonances.17

The mass and the width of the state can be found from the
position of the pole on the complex-energy plane. Close to
the pole, the scattering amplitude behaves as

TCSIJ
ij ðsÞ � gie

i�igje
i�jffiffiffi

s
p � ffiffiffiffiffi

sR
p : (3.5)

The mass MR and width 	R of the resonance result fromffiffiffiffiffi
sR

p ¼ MR � i	R=2, while gje
i�j (modulus and phase) is

the coupling of the resonance to the j-channel.

B. Symmetry breaking

As was already pointed out in Sec. II E, we classify
states under the symmetry group SUð6Þ � HQSS, and

15As compared to our previous work, Ref. [83], we have done
the following. (a) Approximated ð2 ffiffiffi

s
p �Mi �MjÞ—with Mi

and Mj being the incoming and outgoing baryon masses—by
the sum of the c.m. energies of the incoming and outgoing
mesons. In the present case, the nonrelativistic approximation
tends to increase the binding by up to few tens of MeV. This
nonrelativistic approximation for the baryons is consistent with the
treatment for the baryons adopted in the previous section to imple-
ment the HQSS constraints, and it makes it easier to connect with
the effective HQSS Lagrangians introduced in Eqs. (2.57)–(2.66).

(b) Also for this latter reason, we havemoved the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEþMÞ=ð2MÞp

factors included in the potential used inRef. [83] to thedefinition of
the loop function in Eq. (3.3).
16For the sake of completeness, and to make possible the
determination [see Eq. (2.77)] of the coupling g7 of the HQSS
effective Lagrangian of Eq. (2.63), we also give in Appendix B
the coefficients for the rest of the hidden-charm sectors with
explicit strangeness.

17Often we refer to all poles generically as resonances, regard-
less of their concrete nature, since usually they can decay
through other channels not included in the model space.
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consider the breaking of the light SF SU(6) to SUð3Þ �
SUJlð2Þ. Subsequently, we break the SU(3) light-flavor

group to the SU(2) isospin symmetry group, preserving
the HQSS, and finally we break the HQSS. Thus, we
assume exact isospin, total spin, and flavor conservation.
The symmetry breaking is performed by an adiabatic
change of hadron masses and meson weak-decay con-
stants, as was previously done in Ref. [83]. At each sym-
metric point, the hadron masses and meson decay constants
are averaged over the corresponding group multiplets.
Further, we introduce three parameters, x, x0, and x00, which
are changed from 0 to 1, to gradually break the symmetry
from SUð6Þ � HQSS down to SUð3Þ � HQSS, then to
SUð2Þ � HQSS, and finally down to SU(2) isospin,
respectively,

mðxÞ ¼ ð1� xÞmSUð6Þ�HQSS þ xmSUð3Þ�HQSS;

fðxÞ ¼ ð1� xÞ fSUð6Þ�HQSS þ x fSUð3Þ�HQSS;

mðx0Þ ¼ ð1� x0ÞmSUð3Þ�HQSS þ x0 mSUð2Þ�HQSS;

fðx0Þ ¼ ð1� x0Þ fSUð3Þ�HQSS þ x0 fSUð2Þ�HQSS;

mðx00Þ ¼ ð1� x00ÞmSUð2Þ�HQSS þ x00 mSUð2Þ;

fðx00Þ ¼ ð1� x00Þ fSUð2Þ�HQSS þ x00 fSUð2Þ:

(3.6)

In this way we can assign SU(3) and SU(6) representation
labels to each found resonance, and also identify the HQSS
multiplets. We will show below a diagram (Fig. 3) with the
evolution of the hidden charm N and � pole positions as
the various symmetries are gradually broken.

IV. CHARMLESS AND STRANGELESS HIDDEN-
CHARM SECTOR: THE N AND � STATES

In this work we will only discuss results on hidden
charm baryon resonances with total charm C ¼ 0 and
strangeness S ¼ 0. Other sectors with charm different
from zero will be studied elsewhere.
In this sector, we find several I ¼ 1=2 and I ¼ 3=2

states, which correspond to N-like and �-like states,
respectively (here we use the same notation as in
Refs. [74,75]). All these states have odd parity and dif-
ferent values (J ¼ 1=2, 3=2, and 5=2) of total angular
momentum. The list of coupled channels and the corre-
sponding coefficients DIJ

ij can be found in the first six

tables of Appendix B.
In this hidden-charm sector and in the SUð6Þ � HQSS

limit, we saw [Eqs. (2.27) and (2.28)] that the group
structure of the HQSS-constrained extension of the WT
interaction developed in this work consists of two 562;0 and

N1 2 3918.3

N1 2 3926.0

N3 2 3946.1

N1 2 3974.3

N3 2 3986.6

N3 2 4005.8

N5 2 4027.2

1 2 4005.8

3 2 4032.5

1 2 4050.0

1 2 4306.2
3 2 4306.8

x x ' 1 x '' 2

SU 6 xHQSS

SU 3 xHQSS

SU 3 xHQSS

SU 2 xHQSS
SU 2 xHQSS

SU 2

702,0

562,0

82 2,0

82 2,0

84 2,0

102 2,0

104 2,0

N c

N c

NJ

NJ
c D

c D

c D

c D

c

c J
J

0 1 2 3 4
x x x

4000

4100

4200

4300

M MeV , 104 2,0 562,0, J 3 2, weakly bound

, 104 2,0 562,0, J 1 2, weakly bound

, 102 2,0 702,0, J 3 2

, 102 2,0 702,0, J 1 2

N, 84 2,0 702,0, J 5 2

N, 84 2,0 702,0, J 3 2

N, 82 2,0 702,0, J 3 2

N, 84 2,0 702,0, J 1 2

N, 82 2,0 702,0, J 1 2

Thresholds

104 2,0 562,0 , weakly bound

102 2,0 702,0

82 2,0 562,0, weakly bound

84 2,0 702,0

82 2,0 702,0

FIG. 3 (color online). Evolution of the poles as symmetries, starting from SUð6Þ � HQSS, are sequentially broken to reach the
isospin symmetric final cryptoexotic N and � odd-parity resonances. The meanings of x, x0, and x00 can be found in Eq. (3.6). The
lower index of the final states stands for the spin J of the corresponding resonance. The thresholds (red dashed lines) are marked
together with the respective baryon-meson channel. The SUð6Þ � HQSS labels 702;0 and 562;0, and the SUð3Þ � HQSS labels ð82Þ2;0,
ð84Þ2;0, ð102Þ2;0, ð104Þ2;0 are also shown at the corresponding symmetric points.
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one 702;0 representations. One of the 562;0 multiplets and

the 702;0 one are attractive. Thus, from the decomposition

in Eq. (2.29) (see also Table I), we could expect up to a total
of ten N-like and seven �-like resonances.18 Because of
the breaking of the SUð6Þ � HQSS symmetry, due to the
use of physical hadron masses and meson decay constants,
we only find seven heavy N and five heavy � states in the

physical Riemann sheets. They have masses around 4 GeV
and most of them turn out to be bound. The remaining
missing states show up in unphysical Riemann sheets. The
evolution of all states as we gradually break the symmetry
from SUð6Þ � HQSS down to SUð3Þ � HQSS, then to
SUð2Þ � HQSS, and finally down to SU(2) isospin, is
depicted in Fig. 3. Thanks to this latter study, we could
assign SUð6Þ � HQSS and SUð3Þ � HQSS labels to each
of the predicted resonances—which are all collected in
Tables II and IV—and could also identify two HQSS
multiplets in each isospin sector.

TABLE II. Odd-parity hidden charm N (J ¼ 1=2, J ¼ 3=2 and J ¼ 5=2) resonances found in this work. The first two columns
contain the SUð6Þ � HQSS and SUð3Þ � HQSS quantum numbers of each state, while MR and 	R stand for its mass and width
(in MeV). The largest couplings of each pole, ordered by their threshold energies, are collected in the next column. In boldface, we
highlight the channels which are open for decay. Finally, the spin of the state is given in the last column. Resonances with equal
SUð6Þ � HQSS and SUð3Þ � HQSS labels form HQSS multiplets, and they are collected in consecutive rows.

SUð6Þ�
HQSS
irrep

SUð3Þ�
HQSS
irrep

MR

½MeV�
	R

½MeV� Couplings to main channels J

702;0 ð82Þ2;0 3918.3 0.0 gN�c
¼ 0:5, gNJ=c ¼ 0:6, g�c

�D ¼ 3:1, g�c
�D� ¼ 0:5, g�c

�D ¼ 0:2, g�c
�D� ¼ 2:6, g��

c
�D� ¼ 2:6 1=2

702;0 ð82Þ2;0 3926.0 0.1 gN�c
¼ 0:2, gNJ=c ¼ 0:04, g�c

�D ¼ 0:4, g�c
�D� ¼ 3:0, g�c

�D ¼ 4:2, g�c
�D� ¼ 0:2, g��

c
�D� ¼ 0:7 1=2

702;0 ð82Þ2;0 3946.1 0. gNJ=c ¼ 0:2, g�c
�D� ¼ 3:4, g��

c
�D ¼ 3:6, g�c

�D� ¼ 1:1, g��
c
�D� ¼ 1:5 3=2

702;0 ð84Þ2;0 3974.3 2.8 gN�c
¼ 0:5, gNJ=c � 0:05, g�c

�D ¼ 0:4, g�c
�D� ¼ 2:2, g�c

�D ¼ 2:1, g�c
�D� ¼ 3:4, g��

c
�D� ¼ 3:1 1=2

702;0 ð84Þ2;0 3986.5 0. gNJ=c ¼ 0:2, g�c
�D� ¼ 1:0, g��

c
�D ¼ 2:7, g�c

�D� ¼ 4:3, g��
c
�D� ¼ 1:8 3=2

702;0 ð84Þ2;0 4005.8 0. gNJ=c ¼ 0:3, g�c
�D� ¼ 1:0, g��

c
�D ¼ 1:6, g�c

�D� ¼ 3:2, g��
c
�D� ¼ 4:2 3=2

702;0 ð84Þ2;0 4027.1 0. g��
c
�D� ¼ 5:6 5=2

TABLE III. Comparison of the whole spectrum of hidden-charm nucleons (or cryptoexotic nucleons) with odd parity and angular
momentum L ¼ 0 predicted by our model with some results from previous models. In all cases, masses and couplings (g) to the
dominant channels (when available) are shown in sequential rows. In the hidden-gauge model of Ref. [76] the numerical values of the
couplings are not given. In this case, we indicate with a symbol � the elements of the coupled-channel space used to generate each
resonance. On the other hand, in the case of the predictions of this work, in the column ‘‘Model’’ we give the HQSS multiplet. Besides,
we have also omitted the small couplings to the N�c and NJ=c channels that can be seen in Table II.

Nð1=2�Þ Nð3=2�Þ Nð5=2�Þ
g to main channels g to main channels g

Ref. Model MR [MeV] �c
�D �c

�D� �c
�D �c

�D� ��
c
�D� MR [MeV] �c

�D� ��
c
�D �c

�D� ��
c
�D� MR [MeV] ��

c
�D�

This work: ð82Þ2;0 � 702;0 3918 3.1 0.5 0.2 2.6 2.6

3926 0.4 3.0 4.2 0.2 0.7 3946 3.4 3.6 1.1 1.5

ð84Þ2;0 � 702;0 3974 0.4 2.2 2.1 3.4 3.1 3987 1.0 2.7 4.3 1.8

4006 1.0 1.6 3.2 4.2 4027 5.6

[65,66] zero range 3520 5.3 3430 5.6

vector exchange

[75] hidden gauge 4265 0.1 3.0

4415 0.1 2.8 4415 0.1 2.8

[76] hidden gauge 4315 � �
4454 � � 4454 � �

[119] quark model FS-CM FS-CM FS-CM

uudc �c 3933–4267

4013–4363 4013–4389

4119–4377 4119–4445

4136–4471 4136–4476

4156–4541 4236–4526 4236–4616

18These lie in the SU(3) octets and decuplets irreps, respec-
tively, contained in the attractive 562;0 and 702;0 multiplets.
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A. N states (C ¼ 0, S ¼ 0, I ¼ 1=2)

As mentioned above, the model predicts the existence of
seven heavy nucleon resonances: three states with the spin
parity JP ¼ 1

2

�
, three states with 3

2

�
sectors, and one state

with JP ¼ 5
2

�
. Their masses, widths, and couplings to the

different channels are compiled in Table II.
(a) J ¼ 1=2: In this sector, there are seven coupled chan-

nels, with the following threshold energies (in MeV):

N�c NJ=c �c
�D �c

�D� �c
�D �c

�D� ��
c
�D�

3918.6 4035.8 4153.7 4294.8 4320.8 4461.9 4526.3

(b) J ¼ 3=2: In this sector, there are five coupled chan-
nels, with the following threshold energies:

NJ=c �c
�D� ��

c
�D �c

�D� ��
c
�D�

4035.8 4294.8 4385.2 4461.9 4526.3

(c) J ¼ 5=2: In this sector there is only one channel,
��

c
�D�, with a threshold equal to 4526.3 MeV.

From the group decomposition of the SUð6Þ � HQSS
representations, we could expect up to a maximum of five
states with spin J ¼ 1=2 (see Table I): one state from each
of the two J ¼ 1=2 octets encoded in the attractive 562;0
representation, and three states corresponding to the each
of the 82 octets that appear in the reduction of the 702;0
representation [Eq. (2.29)]. However, the two poles related
to the 562;0 representation appear in an unphysical

Riemann sheet, at the physical point (i.e., at the point of
the evolution when the hadron masses and meson decay
constants attain their physical values). As can be seen from
Fig. 3, these poles disappear from the physical sheet when
we pass from the SUð3Þ � HQSS limit to the SUð2Þ �
HQSS one. Indeed, we could observe how the ð82Þ2;0 �
562;0 pole almost coincides with the threshold value of the

degenerated N�c and NJ=c channels in the first steps of
this evolution until it finally disappears. On the other hand,
the ð82Þ2;0 � 562;0 pole also gives rise to an octet of J ¼
3=2 states [see Eq. (2.29)], which is also lost at the physical
point. Thus, for J ¼ 3=2we are also left only with the three
baryon resonances stemming from the 702;0 representation,
one from ð82Þ2;0, and two from ð84Þ2;0. The J ¼ 5=2 state

also originates from this latter multiplet.
From the above discussion, it is clear that the N-like

resonances found in this work, and collected in Table II,
form two HQSSmultiplets. In the first one the light degrees

of freedom have quantum numbers ð82Þ2;0 � 702;0. This
multiplet is formed by the first three resonances of the table
(two with spin 1=2 and the third one with spin 3=2) that
correspond to the blue lines with labels 702;0 and ð82Þ2;0 in
Fig. 3. They only differ in how the light-sector spin is
coupled to the spin of the c �c pair. The second HQSS
multiplet corresponds to ð84Þ2;0 � 702;0 quantum numbers

for the light sector, and it consists of the four remaining
states in Table II (green lines with labels 702;0 and ð84Þ2;0 in
Fig. 3): one with spin 1=2, two with spin 3=2, and another
one with spin 5=2.
The members of each HQSS multiplet are nearly degen-

erate, but not totally because we also break the HQSS by
the use of physical hadron masses.
A word of caution is needed here. The mass of the

J ¼ 5=2 resonance is around 4027.2 MeV. In this sector
there is only one channel (��

c
�D�, with a threshold equal to

4526.3 MeV), and thus this state has a binding energy of
about 500 MeV bound. We expect our model to work well
close to the threshold, and therefore, in this case, interac-
tion mechanisms neglected here and involving higher par-
tial waves could be relevant for determining the actual
properties of this resonance.
There exist previous works on hidden-charm odd-parity

nucleon states, also named cryptoexotic hadronic states.
These studies can be divided in two types, namely, those
based on a constituent-quark description of the resonances,
and those where they are described as baryon-meson bound
molecules or resonating states. Some of the predictions of
these other models are compiled in Table III.
The baryon-meson coupled-channel calculations by

Hofmann and Lutz for JP ¼ 1=2� in Ref. [65] and for
JP ¼ 3=2� in Ref. [66] rely on a model of zero-range
t-channel exchange of light vector mesons, based on chiral
and large-NC considerations, and supplemented with SU
(4) input in some vertices. This model is used as the driving
interaction of pseudoscalar mesons with the JP ¼ 1=2þ,
3=2þ baryon ground states. After solving the Bethe-
Salpeter equation using a renormalization scheme similar
to that proposed here, some 1=2�, 3=2�—resonances were
dynamically generated. Vector mesons in the coupled-
channel space were omitted in those early studies, and
thus channels like �c

�D� or �c
�D� were not considered.

More recently, baryon-meson calculations using a hidden-
gauge model have been carried out in Refs. [74–76]. These
works consider 1=2þ baryons interacting with pseudoscalar

TABLE IV. As in Table II, for the � (J ¼ 1=2, J ¼ 3=2) resonances with hidden-charm content.

SUð6Þ � HQSS irrep SUð3Þ � HQSS irrep MR 	R Couplings to main channels J

702;0 ð102Þ2;0 4005.8 0. g�J=c ¼ 0:3, g�c
�D ¼ 2:7, g�c

�D� ¼ 4:4, g��
c
�D� ¼ 1:2 1=2

702;0 ð102Þ2;0 4032.5 0. g��c
¼ 0:2, g�J=c ¼ 0:1, g��

c
�D ¼ 2:9, g�c

�D� ¼ 1:8 g��
c
�D� ¼ 4:1 3=2

702;0 ð102Þ2;0 4050.0 0. g�J=c ¼ 0:2, g�c
�D ¼ 0:8, g�c

�D� ¼ 1:9, g��
c
�D� ¼ 5:1 1=2

562;0 ð104Þ2;0 4306.2 0. (cusp) g�J=c ¼ 1:3, g�c
�D ¼ 0:3, g�c

�D� ¼ 0:3, g��
c
�D� ¼ 0:3 1=2

562;0 ð104Þ2;0 4306.8 0. (cusp) g��c
� 0:1, g�J=c ¼ 0:8, g��

c
�D ¼ 0:2, g�c

�D� ¼ 0:2, g��
c
�D� ¼ 0:1 3=2
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mesons and dynamically generate JP ¼ 1=2� hidden-
charm nucleon resonances as poles in the T matrix. Yet,
the interaction of vector mesons with 1=2þ baryons
(VB ! VB) is also taken into account in Refs. [74–76],
which leads to additional and degenerate JP ¼ 1=2� and
3=2� hidden-charm nucleons. However, the J ¼ 3=2þ
baryons are not included at all, and thus some channels
like ��

c
�D� are excluded.

The main difference among our scheme and the hidden-
gauge models is the definition of the coupled-channels
space. We consider simultaneously pseudoscalar-meson–
baryon (PB) and vector-meson–baryon (VB) channels,
with JP ¼ 1=2þ and 3=2þ baryons. However, in the ap-
proaches of Refs. [74–76] all interaction terms of the type
PB ! VB are neglected. Furthermore, channels with
JP ¼ 3=2þ baryons are not considered either. The potential
used in Refs. [74–76] for the PB ! PB transitions, with
JP ¼ 1=2þ baryons, is similar to that derived here.
However, there exist important differences in all transitions
involving vector mesons. When restricting our model to the
PB ! PB sector, we still do not obtain the same results as in
Refs. [74–76]. This is mainly due to (i) the use of a different
renormalization scheme, and (ii) the presence in these latter
works of a suppression factor in those transitions that in-
volve a t-channel exchange of a heavy-charm vector meson.

However, when we use our full space, the inclusion of a
similar suppression factor in our HQSS kernel is not quan-
titatively relevant for the dynamical generation of the
resonances. Note that HQSS does not require the presence
of such a suppression factor. In summary, when we com-
pare our approach with the other molecular-type ones, we
observe in our model a rich structure of resonances due to
the many channels cooperating to create them. Our states
are much lighter that those predicted in Refs. [74–76],
though significantly less bound than the cryptoexotic bary-
ons reported in Refs. [65,66].

Finally, we will pay attention to the recent work of
Ref. [119]. There a constituent-quark model is used to
describe isospin I ¼ 1=2 baryons with uudc �c quark con-
tent. The mass spectra is evaluated with three types of
hyperfine interactions: color-magnetic interaction (CM)
based on one-gluon exchange, chiral interaction (FS) based
on meson exchange, and instanton-induced interaction
(INST) based on the nonperturbative QCD vacuum struc-
ture. The FS (CM) model predicts the lowest (highest)
mass for each state. Results for the FS and CM models
are displayed in Table III. In all cases, the mass predicted
by the INSTmodel (not displayed in the table) lies between
the values predicted by the other two models. Our results
are closer to those predicted by the FS model, especially
for the lowest-lying states.

B. � states (C ¼ 0, S ¼ 0, I ¼ 3=2)

The model predicts in this sector the existence of five
heavy resonances (bound states; all of them appear below
the threshold): three with spin parity JP ¼ 1

2

�
and two

states with JP ¼ 3
2

�
. Their masses, widths, and couplings

to the different channels are compiled in Table IV.
(a) J ¼ 1=2: In this sector, there are four coupled

channels, with the following threshold energies
(in MeV):

�J=c �c
�D �c

�D� ��
c
�D�

4306.9 4320.8 4461.9 4526.3

(b) J ¼ 3=2: In this sector, there are five coupled chan-
nels, with the following threshold energies:

��c �J=c ��
c
�D �c

�D� ��
c
�D�

4189.7 4306.9 4385.2 4461.9 4526.3

(c) J ¼ 5=2: In this sector there are only two channels,
with the following threshold energies:

�J=c ��
c
�D�

4306.9 4526.3

We obtain three �(J ¼ 1=2) states as expected from the
group decomposition of the SUð6Þ � HQSS representa-
tions (see Table I): one state from each of the two J ¼
1=2 decuplets encoded in the attractive 702;0 representa-

tion, and a further state corresponding to the J ¼ 1=2
decuplet that appears in the reduction of the 562;0 repre-

sentation [Eq. (2.29)]. The evolution of the corresponding
poles is shown in Fig. 3.
The pole that corresponds to ð104Þ2;0 � 562;0 (light ma-

genta lines with labels 562;0 and ð104Þ2;0 in Fig. 3) has a

mass quite close to the��c and�J=c degenerated thresh-
olds, between the SUð6Þ � HQSS and the SUð2Þ � HQSS
symmetric points. Later, while moving to the SU(2) isospin
symmetric point, the spin 1=2 � resonance keeps having
a mass close to the �J=c threshold, and ends up with a
final mass of 4306.2 MeV (the �J=c threshold is at
4306.9 MeV). However, the spin-5=2 and the two
spin-3=2 states, that also originate from this ð104Þ2;0 �
562;0 pole, essentially disappear. One of the J ¼ 3=2 states
still shows up as a cusp very close to the �J=c threshold,
and it has been included in the table. The second state with
spin-3=2 (light magenta lines with triangles, disappearing
between the SUð2Þ � HQSS and the SU(2) symmetric
points in Fig. 3) and the spin-5=2 one appear as small
unnoticeable peaks right at the ��c and �J=� thresholds,
respectively.
From the discussion above, the ð104Þ2;0 � 562;0 HQSS

multiplet could be incomplete.
However, the three � states (dark magenta lines with

circles, ending at 4050.0 and 4005.8, for the two JP ¼
1=2� states and dark magenta lines with triangles, ending
at 4032.5, for the JP ¼ 3=2� resonance in Fig. 3) that stem
from the ð102Þ2;0 � 702;0 configuration of the light degrees
of freedom turn out to be quite bound. Indeed, we find
binding energies of at least 250 (150) MeV in the spin-1=2
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(3=2) sector. These three states, which are nearly degener-
ate, form a clear HQSS multiplet.

The models based on vector-meson exchange naturally
predict a suppression factor in the baryon-meson ampli-
tudes involving an exchange of charm from the propagator
of the exchanged heavy vector meson. In the heavy-quark
limit, the suppression factor is of the order of 1=mH.

19

Therefore, in that limit one expects a quenching of order
MV=MD� for the charm-exchanging amplitudes of those
models. (Of course, the true factor for large but finite
physical heavy hadron masses needs not exactly coincide
with this heavy-quark-limit estimate.) Our model is
not directly based on the exchange of vector mesons.
Nevertheless, as commented above, we have verified
that adding such a suppression by hand in the charm-
exchanging amplitudes does not have an impact on our
results. Even a factor ðMV=MD� Þ2, proposed in the litera-
ture [68], has a very small effect on the position of the
resonances we find. Presumably, this is due to the fact that
the relevant channels have a small coupling. An exception
comes from the two very weakly bound� resonances from
the 562;0 irrep, which disappear due to the suppression of

their dominant channel �J=c .

V. CONCLUSIONS

In the present work we have developed a model for the
interaction of the lowest-lying 1=2þ and 3=2þ baryons with
0� and 1� mesons, including light and heavy flavors. The
interaction is of zero range and it is modeled as a suitable
extension of the Weinberg-Tomozawa term to include, be-
sides chiral symmetry, spin-flavor symmetry in the light
sector and heavy-quark spin symmetry. These symmetries
are only broken in our model to the extent that they are
broken at the level of the physical masses and meson decay
constants. The OZI rule is also automatically implemented.
Our extended WT model, Eq. (2.22), contains no adjustable
parameters, although some ambiguity is present through the
choice of a renormalization prescription, as in all other
hadronicmolecular approaches. Themodel has been applied
previously to the light sector and to charm or bottom sectors
with a single heavy quark. Here we show that it admits a
natural realization in sectors with hidden charm in such a
way that HQSS is preserved. In particular, the spin of c
quarks and the spin of �c antiquarks are separately conserved.

We have carried out a detailed analysis of the hidden-
charm sectors (i.e., with c �c pairs) with C ¼ 0, 1, 2, 3 and
their breaking as the symmetry is lifted from SUð6Þ �
HQSS to SUð3Þ � HQSS [and then to SUð2Þ � HQSS
and SU(2) of isospin]. This allows one to count the ex-
pected number of bound states or resonances, and to clas-
sify them into multiplets corresponding to the various

symmetries. Taking the eigenvalues �0s as undetermined
(free) parameters, the results of Eqs. (2.30), (2.35), (2.38),
and (2.42) for the C ¼ 0, C ¼ 1, C ¼ 2 and C ¼ 3 hidden-
charm sectors respectively, are general. Indeed, these equa-
tions fix the most general structure of eigenvalues that can
be deduced from SUð3Þ � HQSS. The rest of the undeter-
mined parameters—not fixed by this latter symmetry—
account for nondiagonal transitions between multiplets
with the same SUð3Þ � SUJ‘ð2Þ SF quantum numbers for

the light degrees of freedom. Further, we have translated
this general discussion of the group structure allowed
by SUð3Þ � HQSS into the Lagrangian form, for the
charmless hidden-charm sector. This makes the HQSS of
the model explicit and it allows one to compare it with
other models in the literature. Finally, we have found
the couplings of the HQSS effective Lagrangians of
Eqs. (2.57)–(2.66) for the particular case of our extended
WT model. This constitutes an additional check of its
compatibility with HQSS.
We have analyzed the charmless and strangeless sector,

where we have dynamically generated several N and �
states. We predict the existence of seven N-like and five
�-like states with masses around 4 GeV, most of them as
bound states. These states form heavy-quark spin multiplets,
which are almost degenerate in mass. TheN states form two
HQSS multiplets. The lowest one has the light-quark flavor-
spin content coupled to 82. Since the c �c pair can couple to
spin Sc �c ¼ 0, 1, this HQSS multiplet consists of three
nucleon states with J ¼ 1=2, 1=2, and 3=2, and masses
around 3930 MeV. On the other hand, the highest HQSS
nucleon-like multiplet contains four resonances with J ¼
1=2, 3=2, 3=2, and 5=2, and masses around 4000 MeV. In
this case, these states originate from the 84 SF light con-
figuration. These two SUð3Þ � HQSS multiplets arise from
the 70-plet of SUð6Þ � HQSS. There are no N physical
states coming from the 56-plet. With regards to � states,
we find two multiples with very different average masses,
because in this case they originate from different SUð6Þ �
HQSS representations. The � multiplet coming from the
ð102Þ2;0 � 702;0 irrep is formed by three states (J ¼ 1=2,
1=2, 3=2) with an average mass of 4035 MeV. Besides, we
find only two (J ¼ 1=2, 3=2) � resonances at the physical
point out of the four states originated from the ð104Þ2;0 �
562;0 in the SU(6) limit. These two states are nearly degen-

erate, with a mass of 4306 MeV.
When we compare our approach with the other

molecular-type ones, we observe in our model a rich
structure of resonances due to the many channels cooper-
ating to create them. Our states are much lighter than those
predicted in the hidden-gauge scheme [74–76], though
significantly less bound than the cryptoexotic baryons
reported in the zero-range vector-meson exchange model
of Refs. [65,66]. Moreover, we have presented the first
prediction for exotic hidden-charm �-like resonances
within a molecular baryon-meson scheme.

19The boson propagator is approximately 1=ð2MHðEH �MHÞÞ,
with MH the mass of the heavy vector meson and EH its energy,
and EH �MH is Oð1Þ in the heavy-quark limit.
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In comparison with the quark model of Ref. [119], we
find that our results are closer to those predicted by the FS
hyperfine interaction discussed in Ref. [119], especially for
the lowest-lying states.

The predicted new resonances definitely cannot be ac-
commodated by quark models with three constituent
quarks and they might be looked for in the forthcoming
PANDA experiment at the future FAIR facility.
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APPENDIX A: SPIN-FLAVOR STATES

In this appendix we give details regarding the construc-
tion of the tensors MA

B and BABC, the SU(3) multiplets
�a

b,
�Da, etc., and the computation of the matrix elements

of the interaction.
The wave functions in spin-flavor space of the basic

mesons and baryons are constructed in terms of bosonic
quark and antiquark operators with spin and flavor labels,

namely, Qy
f",Q

y
f#, Q

y
�f" Q

y
�f#, f ¼ u, d, s, c. The concrete

wave functions are those given in Appendix A of Ref. [81]
with the following modifications: a minus sign is to be
applied to all 1=2þ baryons, to all 0� mesons except �, �0,
and �c, and to�,!, and J=c (denoted c in Ref. [81]). No
change of sign is to be applied to 3=2þ baryons, nor to �,
�0, and �c, nor to 1� mesons (except �, !, and J=c ).

The states just defined are standard with respect to the
flavor- and spin-flavor-group conventions of Ref. [111]. In
particular, they are SUð2ÞJ, SUð2ÞI standard and follow the
convention of Ref. [116] for flavor SU(3) and SU(4). The
only exceptions come from the neutral mesons, for which
we use ideal mixing. In terms of these, the standard states
of Ref. [111] are given by

j�0istan ¼ j�0i ½SUð3Þ�; (A1)

j�0istan ¼
ffiffiffi
3

4

s
j�0i þ 1

2
j�ci ½SUð4Þ�; (A2)

j�cistan ¼ � 1

2
j�0i þ

ffiffiffi
3

4

s
j�ci ½SUð4Þ�; (A3)

j!8i ¼
ffiffiffi
1

3

s
j!i þ

ffiffiffi
2

3

s
j�i ½SUð3Þ and SUð4Þ�; (A4)

j!1i ¼
ffiffiffi
2

3

s
j!i �

ffiffiffi
1

3

s
j�i ½SUð3Þ�; (A5)

j!1i ¼
ffiffiffi
1

2

s
j!i � 1

2
j�i þ 1

2
jJ=c i ½SUð4Þ�; (A6)

jc i ¼ �
ffiffiffi
1

6

s
j!i þ

ffiffiffiffiffiffi
1

12

s
j�i þ

ffiffiffi
3

4

s
jJ=c i ½SUð4Þ�: (A7)

In these formulas, the right-hand sides contain the physical
(or rather ideal mixing) neutral mesons that we use in this
work. Their wave functions are constructed as indicated
above (i.e., from those in Ref. [81]). The left-hand sides
contain the standard or mathematical states used in
Ref. [111]. They have good quantum numbers with respect
to SU(6) or SU(8) (and their corresponding chain of
subgroups).20

In order to construct the tensors MA
B and BABC, MyA

B

and By
ABC, with good transformation properties, the follow-

ing procedure is used. For all flavors f ¼ u, d, s, c, and for

the various creation operators Qy
f", Qy

f#, Qy
�f", and Qy

�f#,
appearing in the wave functions of the hadrons, the follow-
ing replacements are to be applied:

Qy
f" ! þQy

f1; Qy
f# ! þQy

f2;

Qy
�f" ! � �Qyf2; Qy

�f# ! þQy
f1:

(A8)

Note (i) the minus sign inQy
�f", and (ii) for quarks, the labels

1 and 2 correspond to spin up and down, respectively, but
for antiquarks they correspond to spin down and up,
respectively.

After the replacement, there are only the operators Qy
A

and �QyA for creation (and QA and �QA for annihilation)
carrying any of the eight labels A ¼ u1, d1, s1, c1, u2, d2,
s2, c2. These operators transform under SU(8) in the way
indicated in Eq. (2.17).

The meson matrix is then obtained by replacing �QyAQy
B

with MyA
B and expressing it in terms of meson operators

by inverting the wave-function equations. Similarly, for the

baryons, Qy
AQ

y
BQ

y
C is replaced with By

ABC and then ex-

pressed in terms of baryon operators. The fields �A
BðxÞ

and BABCðxÞ of Sec. II B are constructed in the usual way
from these annihilation and creation operators.
The SU(3) multiplets introduced in Sec. II F are obtained

as follows:

20Note that jc i of Ref. [81] corresponds to�jJ=c i here, not to
jc i of Ref. [111] and of Eq. (A7).
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�abc ¼ Bðas1;bs2;cs3Þ3=2 : (A9)

Here A ¼ as1, B ¼ bs2, C ¼ cs3, with a, b, c 2 fu; d; sg,
s1, s2, s3 2 f1; 2g, and the notation ðABCÞ3=2 indicates that
the spin part is coupled to J ¼ 3=2 with 1 ¼" and 2 ¼# .
Besides, we refer here to the (annihilation) operator; the
field �abc

� ðxÞ is constructed out of it.

�a
b ¼

ffiffiffi
1

6

s
�bcdB

ðas1ðcs2;ds3Þ0Þ1=2 ; (A10)

�ab
c ¼ Bððas1;bs2Þ1cs3Þ1=2 ; (A11)

��ab
c ¼ Bððas1;bs2Þ1cs3Þ3=2 ; (A12)

�ca ¼ 1

2
�abcB

ððbs1;cs2Þ0cs3Þ1=2 : (A13)

For the mesons,

�Da ¼ Mðas1
cs2Þ0 ; (A14)

�D �a ¼ �Mðas1
cs2Þ1 ; (A15)

�c ¼ Mðcs1
cs2Þ0 ; (A16)

J=c ¼ �Mðcs1
cs2Þ1 : (A17)

Recalling that �Qf1 ¼ Q �f# and �Qf2 ¼ �Q �f", it follows that
Mðas1

bs2Þ0 ¼ ðMa1
b1 þMa2

b2Þ=
ffiffiffi
2

p
, while Mðas1

bs2Þ1 equals
�Ma1

b2, ðMa1
b1 �Ma2

b2Þ=
ffiffiffi
2

p
andMa2

b1, for J3 ¼ þ1, 0,
�1, respectively.
Finally, we remark that we systematically take the cou-

pling of baryon and meson in the order jbaryoni �
jmesoni, rather than jmesoni � jbaryoni.

APPENDIX B: BARYON-MESON MATRIX
ELEMENTS

The coefficients Dij, appearing in Eq. (3.1) for the

charmless (C ¼ 0) and strangeless (S ¼ 0) sector are com-
piled in this Appendix (Tables V–X). In addition, we also
provide here the corresponding coefficients for the C ¼ 0
and S � 0 sectors (Tables XI–XXII). In these tables the
symbol c refers to the physical (ideal) J=c meson.

TABLE VI. C ¼ 0, S ¼ 0, I ¼ 1=2, J ¼ 3=2.

Nc �c
�D� ��

c
�D �c
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TABLE V. C ¼ 0, S ¼ 0, I ¼ 1=2, J ¼ 1=2.
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TABLE VII. C ¼ 0, S ¼ 0, I ¼ 1=2, J ¼ 5=2.
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TABLE VIII. C ¼ 0, S ¼ 0, I ¼ 3=2, J ¼ 1=2.
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TABLE IX. C ¼ 0, S ¼ 0, I ¼ 3=2, J ¼ 3=2.
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TABLE X. C ¼ 0, S ¼ 0, I ¼ 3=2, J ¼ 5=2.
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TABLE XII. C ¼ 0, S ¼ �1, I ¼ 0, J ¼ 3=2.
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TABLE XIII. C ¼ 0, S ¼ �1, I ¼ 0, J ¼ 5=2.
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TABLE XI. C ¼ 0, S ¼ �1, I ¼ 0, J ¼ 1=2.
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TABLE XIV. C ¼ 0, S ¼ �1, I ¼ 1, J ¼ 1=2.
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TABLE XV. C ¼ 0, S ¼ �1, I ¼ 1, J ¼ 3=2.
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TABLE XVI. C ¼ 0, S ¼ �1, I ¼ 1, J ¼ 5=2.
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TABLE XVII. C ¼ 0, S ¼ �2, I ¼ 1=2, J ¼ 1=2.
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TABLE XVIII. C ¼ 0, S ¼ �2, I ¼ 1=2, J ¼ 3=2.
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