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Nagy-Soper subtraction scheme for multiparton final states
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In this work, we present the extension of an alternative subtraction scheme for next-to-leading order

QCD calculations to the case of an arbitrary number of massless final state partons. The scheme is based

on the splitting kernels of an improved parton shower and comes with a reduced number of final state
momentum mappings. While a previous publication including the setup of the scheme has been restricted
to cases with maximally two massless partons in the final state, we here provide the final state real
emission and integrated subtraction terms for processes with any number of massless partons. We apply

our scheme to three jet production at lepton colliders at next-to-leading order and present results for the

differential C parameter distribution.
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L. INTRODUCTION

With the start of data taking at the LHC in 2009 and its
more than successful physics program since then, particle
physics has entered an exciting era. Major tasks of the LHC
experiments are the accurate measurement of the parame-
ters of the Standard Model (SM) of particle physics, as well
as the search for physics beyond the SM. For both, a
precise understanding of the SM signals and background
processes in an hadronic environment are crucial. These
processes are mainly governed by strong interactions,
where leading order (LO) calculations can exhibit uncer-
tainties up to 100% (cf. Ref. [1] for a recent review);
therefore, for a correct theoretical prediction of these pro-
cesses at least next-to-leading order (NLO) corrections
need to be taken into account. Furthermore, it is generally
not sufficient to apply an overall NLO rescaling K factor to
the leading order predictions, as NLO corrections can vary
widely for different regions of phase space. More accurate
predictions therefore call for the inclusion of these NLO
calculations in Monte Carlo event generators, which pro-
vide predictions for fully differential corrections to the LO
process. Many such generators exist at parton level [2—18],
and in recent years a lot of progress has equally been
made to automatize the matching of these processes with
parton showers in the Powheg [19—40] and (a)MC@NLO
[22,41-49] frameworks."

In this paper, we present the generic extension of an
improved subtraction scheme [52-54], which facilitates
the inclusion of infrared (IR) NLO divergences originating
from different phase space contributions in Monte Carlo
event generators. These divergences arise whenever inter-
nal loop momenta approach zero or particles become col-
linear and are known to cancel in any fixed order in

'Recent reviews on this can be found in Refs. [50,51].
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perturbation theory [55,56]. However, these cancellations
occur in the combined sum of virtual and real emission
contributions, and therefore originate from phase spaces
with a different number of particles in the final state. In
analytic or seminumerical calculations, the singularities can
be parametrized by an infinitesimal regulator; in the sum of
real and virtual contributions, these regulators can then be
set to zero to obtain a completely finite prediction. In
numerical implementations, however, the inclusion of in-
finitesimal regulators can easily lead to numerical instabil-
ities. Subtraction methods [57-66] circumvent this problem
by introducing local counterterms that mimic the behavior
of the real emission matrix elements in the singular limits.
The integrated counterparts of these terms are then added to
the virtual contributions, where again an infinitesimal regu-
lator is used to parametrize the singularities. Then, the
higher order contributions in both phase space integrations
are finite, and the regulator can be set to zero. In recent
years, many of these schemes have been made available on a
(semi)automated level [26,65,67-70].

While the behavior of the subtraction terms in the sin-
gular limit is determined by factorization [71-73], the
finite parts of the local counterterms as well as the mapping
prescription between real emission and leading order phase
space kinematics in the subtraction terms can differ.
Unfortunately, standard schemes [59,64] suffer from a
rapidly rising number of momentum mappings, which
scales like N3 for a leading order 2 — N process.
Therefore, increasing the number of final state particles
leads to a rapidly rising number of reevaluations of the
Born matrix element. In Refs. [52-54], we therefore pro-
posed a new subtraction scheme with a modified momen-
tum mapping [74-76], where the number of momentum
mappings scales as ~N2. The momentum mappings are
constructed such that they take the whole remaining event
as a spectator, and the subtraction terms are derived from
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Soft/collinear factorization: when the partons € and j become collinear and/or parton j becomes soft, the (m + 1)-parton

matrix element factorizes into a sum over m-parton matrix elements times a singular factor v,.

the splitting functions in an improved parton shower
[74-76]. In Refs. [52-54], we presented the scheme for
the simplest cases with maximally two partons in the final
state.” In the present work, we extend the scheme to cases
with an arbitrary number of massless particles in the final
state. We also provide the helicity dependent squared
splitting functions for splittings where the mother parton
is a gluon. We validate our scheme by applying it to three-
jet production at NLO at lepton colliders, obtaining com-
plete agreement with the Catani Seymour scheme.

This paper is organized as follows. In Sec. II, we briefly
review the generic setup for subtraction schemes. In
Sec. III, we review the ingredients of the new scheme
and present the generalized results for the integrated sub-
traction terms for an arbitrary number of final state mass-
less partons. We discuss the application of our scheme to
three-jet production at lepton colliders in Sec. IV.
Conclusion and outlook are presented in Sec. V. The
Appendix contains a summary of the final state splitting
functions [74] used as subtraction terms, a generic parame-
trization of four-parton phase space, and the collinear
subtraction terms for processes with incoming hadrons.

II. GENERAL STRUCTURE OF NLO CROSS
SECTIONS AND SUBTRACTION SCHEMES

In this section, we briefly review the general subtraction
procedure for calculating NLO cross sections at lepton and
hadron colliders. We start with a generic cross section at NLO

0'=j da’B+[ da'R+[ doV, 2.1
m - \m+1 g m ,

oN LO

where o should be specified by the respective jet function as
discussed below, and do®, do®, and doV are the Born, real
emission, and virtual contributions, respectively. We here
consider processes with m particles in the Born contribution
and m + 1 partons in the real emission terms. After UV
renormalization, the virtual and real-emission cross sections
each contain infrared and collinear singularities. These can-
cel in the sum of virtual and real contributions [55,56], but the
individual pieces are divergent and can therefore not be
integrated numerically in four dimensions.

2Some results for the generic scheme were already presented
in Ref. [52].

Subtraction schemes consist of local counterterms that
match the behavior of the real-emission matrix element in
the soft and collinear regions and their integrated counter-
parts. Subtracting these counterterms from the real-emission
matrix elements and adding back the integrated counterparts
to the virtual contribution results in finite integrands for both
the virtual correction (m-particle phase space) and the real
contribution [(m + 1)-particle phase space]:

do™NO = [doR — do*] + [do? + doV]. (2.2)

The construction of the local counterterms, collectively
denoted by do?, relies on the factorization of the real-
emission matrix element in the singular (i.e., soft and col-
linear) limits (Fig. 1) [71-73], and we symbolically write

|-7Vlm+l(ﬁ)|2 - D€ ® |~7Vlm(p)|2: (23)

where D, are the dipoles containing the respective singu-
larity structure, and the symbol ® denotes a correct con-
volution in color, spin, and flavor space. p/p represent
momenta in (m + 1)/m-parton phase space, respectively.
As |M,,+11? and |2M,,|? live in different phase spaces, a
mapping of their momenta needs to be introduced, which is
defined by a mapping function F\,,, according to

P = Fuap(P)- (2.4)

D, and its one-parton integrated counterpart V, are
related by

V= f dé, Dy, (2.5)
where d¢, is an unresolved one parton integration measure.

In summary, any subtraction scheme needs to fulfill the
following requirements:

(i) The dipole subtraction terms 2D, must match the
behavior of the real emission matrix element in
each soft and collinear region and lead to correct
IR poles when carrying out the analytical integration
over the one parton phase space in a suitable regu-
larization scheme that is necessary to cancel the soft
singularities in the virtual (one-loop) matrix element.

(i) The mapping function F\,,, guarantees total energy
momentum conservation as well as the on-shell
condition for all external particles before and after
the mapping.
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Integrating Eq. (2.2) over phase space using dimensional
regularization [77,78], where D = 4 — 2g, then yields

oNLO = f [do® — do?] + do? + [ do’
m+1 m+1 m
| | J
h'd h'd
finite finite

= [uuildolg—doi_g]+ fml:fl do’ + da-V] =0

(2.6)

Both integrands are now finite: the integration in (m + 1)
particle phase space can safely be performed in D =4
dimensions, as the singular regions are regularized by the
respective counterterms. In the m parton phase space, the
sum of the integrated dipole contribution and the virtual
correction does not contain any further poles, so that we can
set ¢ = 0. Then, all integrations can be performed numeri-
cally. The explicit expressions of the cross section o for m
and (m + 1) particle phase space contributions at NLO are

/[da’B+da'V+[d0'A]
m 1

= fdPSm[|M,n|2 + |‘7Vlm|(2)ne-100p + ZV€® |Mm|2:|’
¢

[ [do® — do?]
m+1

= [aps, Mol - FD0IME] @)
¢
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where in this symbolic notation [dPS includes all flux
and symmetry factors, and with |2M,,|?, |M,,+|?, and
IM,, |2 being the squared LO matrix element, the

one-loop
squared real emission matrix element, and the interfer-
ence term, respectively. In Eq. (2.7), the sum runs over all
local counterterms needed to match the complete singu-
larity structure of the real emission contribution, and
convolution with jet functions then ensures the collinear
and infrared safety of the Born-level contribution. The
insertion operator /(&) is then defined on a cross section
level according to

fmﬁda =[md0'3®1(8),

where the symbol ® again denotes a proper convolution in
spin, color, and phase space. The generalization of this for
processes with initial state hadrons has already been
presented in Ref. [53]; for completeness, we repeat the
argument in Appendix B.

A. Observable-dependent formulation of
the subtraction method

The jet observables should be well defined such that the
leading order cross sections are infrared and collinear safe.
The jet cross sections are defined as

o0 = /dPSm(pl’---rpm)lj\/lm(pl’--wpm)leSm)(plr~~-’Pm)r

O_I}ILO = fdPSmH(P]y---, P )M (P - - -, Pm+1)|2F§m+l)(P1,---ypm+1)

+ fdPSm(m, e PN M (P P Pt P (1 -

-2 Pr)- (2.8)

In general, the jet function may contain # functions (which define cuts and corresponding cross sections) and 6 functions
(which define differential cross sections). For an infrared finite jet function, we require that

m+1
F§"+ )(pl,...,pj = Agq, ..

m+1
F; + )(pl,...,p,-,...,pj,..
Fgm)(Pl, R pm)_)o’

. pm+1) - Fgm)(ply ) pm+l),
o Pmit) ™ F(Jm)(Pb .

if A—0

o Preeos Pmy1) Af pp—zp, pj— (1 = 2)p,

(2.9)

The last condition of Eq. (2.9) corresponds to an infrared safe definition of the Born-level observable, while the first two
conditions guarantee infrared and collinear safety of the observables and can be summarized to

F‘(]m+ 1) N F(jm)

in the singular limits.
We then have

(2.10)
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[ [daB +doV + [1 do-A] - jdpsm[me M Py + SV ® |mm|2]pgm)(p),
m €
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@2.11)

[ 40" —do'1= [aps, [ 1M, PEY U G) - 3D 01, P () |
m+1 ¢

where in the integrated subtraction term the momenta p are
derived from p using the respective momentum mapping.

III. ALTERNATIVE SUBTRACTION
SCHEME: SETUP

In this section, we will first review the setup of our
scheme as well as the mapping and respective integration
measures that have already been presented in Refs. [53,74].
In our scheme, the NLO subtraction terms are derived from
the splitting functions introduced in a parton shower con-
text [74-76], and the m + 1 to m phase space mappings
needed correspond to the inverse of the respective shower
m to m + 1 mappings. In the following, we will denote the
m + 1 phase space four-vectors by py, p,, . .. and m phase
space four-vectors by py, p,, ....Inm + 1 phase space, the
four-momenta of the emitter, emitted particle, and specta-
tor are denoted py, p;, and py, respectively. Note that here
the spectator needs to be specified only if p; denotes a
gluon, as we use the whole remaining event as a spectator
in the sense of momentum redistribution for both initial
and final state mappings. We here restrict our expressions
to subtractions on the parton level and to massless partons.

A. Splitting functions

We start with a description of the matrix element
factorization in the soft and collinear limits, following
the notation in Ref. [74], where the QCD scattering am-
plitude for m + 1 partons is given as a vector in (color ®
spin) space,

| MEp, Flr1))- 3.1

In the singular limits, the amplitude | M (({p, f},-1)) can
be factorized into a splitting operator times the m-parton
matrix element

| Mo({p, )
=ti(fe—=Fe+ FIVIED, Fur ) MU, f1),

where the index € labels the emitter or mother parton in the
(m + 1)/m particle phase space. Vg (p, flms1) is an op-
erator acting on the spin part of the (color ® spin) space,
while t} (fe— fo+ fj) is an operator acting on the color
part of the (color ® spin) space. The Born amplitude for
producing m partons is evaluated at momenta and flavors
{p. f},, determined from {p, f},,+; according to the respec-
tive momentum mappings. The spin-dependent splitting
operator can be described in the spin space | {s},,):

(3.2)

bt | VEAD, Flwer) Hsh):

If we take Eq. (3.3) to be diagonal, we can define the
splitting functions v, according to

bt | VEED, s | {5t
= < n 5§n,s,,)v{’({ﬁ’ Frwsrs 8 8050 (3:4)

nE{l, j=m+1}

(3.3)

Explicit forms for the splitting functions v, have been
presented in Ref. [74]. For the construction of the subtrac-
tion terms, we consider the approximation for the squared
matrix element in the singular limits

Z(M{’({ﬁ’ f}n1+l |M€’({ﬁ’ f}in+1>

24

~ D vl MUpe, fE)IMEpe, 1)

R4

For the direct splitting function, where € = ¢/, we obtain

= 4,2
WH/—U€

= ve({p, et $jr S SOVEAD, Fhmsr 8 56 s0),
3.5

which, after summing over the daughter parton spins and
averaging over the mother parton spins, leads to the spin-
averaged splitting functions W, as subtraction terms. If
the mother parton is a gluon, the Born-type matrix element
might have an explicit dependence on the gluons polariza-
tion; in this case, we need to use

@IWeel') (3.6)

in the real-emission subtraction terms, where v, v/, are the
polarization indices of the m-parton phase space gluon. If
the spin correlation tensor defined by Eq. (3.6) is perpen-
dicular to py, the angular correlations vanish after the
integration over the unresolved particles phase space and
the integral over W, still provides the correct integrated
counterterm [59]. For the collinear terms, the color factors
can easily be obtained [74]:

Cr (Fo.f) =1(a.9. (39,
C(fb fj) =1Cy (f{f’ fj) = (8 8)
Ty (f(b f,) = (g, 9)

For soft gluon emissions, we also have to consider terms
for which € # €', which we will describe below.

074032-4
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1. Eikonal factor

When a gluon with four-vector p; becomes soft, or soft
and collinear with p,, the splitting amplitude v, defined
in Eq. (3.4) can be replaced by the eikonal approximation
for p i 0,

s A b8 oy P55 0V b

U?k({prf}m+l’sj’ S Sg) = 477'(155&3,3( / A] ~ ’
Pj - Pe

3.7

where e(p i S Q) denotes the polarization vector of the
emitted gluon with spin s;. O denotes the total momentum
of the (m + 1) phase space event and is used as a gauge
vector. The eikonal approximation of the spin-averaged
splitting functions W, is then

pe-D(pj 0) - by
(ﬁj : 136)2

Wek = 47a , (3.8)

where flavor-dependent averaging factors are already
taken into account. The transverse projection tensor D*”
is given by

I
Q#l/

. prOY + O* pY 4y
D¥(p;, Q) = —g*” + P ¢ ? Pi_ p’f)’.
ﬁj Q0 (15.,‘ . Q)2
It will be convenient to define a dimensionless function F*:
F = pe’ pj Wg@.
4ma

We then have
P =ﬁe'ﬁjWeik_ﬁe'D(ﬁp 0)-pe_2p-Q Q°pe-p;
= = P == _ .
“ dma t PePj Pj'Q (Pj'Q)2
The eikonal factor, in combination with the interference
terms, is then used to construct dipole partitioning functions.

2. Soft splitting functions

For soft gluon emission, we also need to take interfer-
ence diagrams between different emitters into account.
This means the emitted parton j can be emitted from
emitter € in the amplitude and parton j can also be emitted
from a different emitter k in the complex-conjugate
amplitude (Fig. 2). The interference splitting function is
then given by

W(k ~ Ue({ﬁ’ f}m+1’ §j’ §€’ S{)‘Uk({ﬁ, f}m+lr §]r §k’ Sk)*
X 85,0 850, (3.9)

Se, 8¢

The splitting function Eq. (3.9) contains a singularity
when the emitted gluon j is soft; however, when gluon j is
collinear with parton € or k, it does not contribute to a
leading singularity. In the special case that p; is soft, or
possibly soft and collinear with p,, we can use

PHYSICAL REVIEW D 87, 074032 (2013)

’ Mf({]i f}erl» | 1 <Mk({ﬁ f}m+1> ’

Im+1
[

FIG. 2. Soft diagram: parton j is emitted from parton € in the
scattering amplitude and parton j is emitted from parton k in the
complex-conjugate scattering amplitude.

W(k ~ v?k({ﬁ,f}mﬂ, §j’ S¢ Se)viik({f?, f}m+1’ ij St Sk)*

X ;5,6

Se,5¢ Y8k, sk0

Note that this term contributes only if particle j is a gluon.
In this prescription, there is an ambiguity in the allocation of
the singularities, which can be distributed with the help of
dipole partitioning functions; for completeness, we here
repeat the argument in Refs. [74,75]. The complete sum
over all singular terms will contain a term

Were = Wekl} ® 1t + Wkgt,‘: ® ty.

For each of the two contributions, we can now introduce
weight factors that redistribute the splitting functions to the
corresponding mappings

¢ k
W — AaW + AW, (3.10)
where
Afk + Akf =1
for any fixed momenta. W) denotes that for the mapping
of this part of the interference term, p, is considered to be
the emitter; for W®, particle p, acts as the emitter, such

that the roles of € and k are interchanged. We then have for
the total sum of the two distributions

¢ 4
Weere = AalWith @ i + Wil @ 1]
K K
+ A WPt @ 1, + Wi ® 1],

We now combine this with the pure squared splitting
function W, with the color factor t} ® ty. Invariance of the

matrix element under color rotations implies [75]
1
l‘}- Rty = _ZE[Z‘Z ®1t + l‘}- ®tk:|,
k€
and the complete contribution obeying one mapping is then

given by

1 _ _
— E[t}: ® 1+ 11 @1 ][Wee — Wei (3.11)
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with the spin-averaged interference contribution

ﬁg'D(ﬁj’Q)ﬁk

pj- ﬁeﬁj * P

ng = 47TaS2Aek (3]2)
We now split the collinear and soft parts of the respec-
tive spin-averaged splitting functions according to

W =Wy = Wy — WEE) + (WS =Wy, (3.13)

The second part of Eq. (3.13) can be expressed in terms
of dipole partitioning functions A}, [76]:

R —P?
Wk — Wy = dma, Ay ———4——,
“ “pj - pebj - Pi)*
where Py, = (pj - Po)Px — (Dj - Pr)Pe- Several choices
for A}, have been proposed in Ref. [76]; all results given
here have been obtained using Eq. (7.12) therein:
A P Pibe- Q
Apptmi) = ———" -
Pj-bibe Q+ Dy pebr- Q

The partitioning weight function Aj, also obeys the
relation A}, ({p}n+1) + Ae({P}m+1) = 1. The general
form of the interference spin-averaged splitting function
is then given by
Ang = W?é( - ng

2p¢ - pipe- Q
Pe Pi(Pj Pxbe Q+ Pe Pibr- Q)
(3.14)

=4ma;

The corresponding color factor is defined by Eq. (3.11) as

1
Co = — 5[;,{ ® 1+ 1} ® 1] (3.15)

The only singularity in Eq. (3.14) arises from the factor
Pe * pj in the denominator; the interference term is con-
structed such that it vanishes for the collinear singularity
from p; - p — 0. We also assume that the variables con-
sidered are such that they are finite for p, - p, — 0; i.e.,
singularities arising in this limit should be taken care of by
the definition of the jet function as described in Sec. II. The
interference term needs to be considered only if the emitted
parton j is a gluon. If parton j is a quark or antiquark, this
term vanishes.

B. Final state momentum mapping

In this section, we will describe the momentum mapping
that is used in the shower prescription [74-76] as well as
the subtraction scheme. As before, hatted momenta {p,}
are used to describe (m + 1)-parton phase space and un-
hatted momenta {p, } m-parton phase space particles; emit-
ter, emitted parton, and spectator are labeled p¢, p;, and
P respectively. The four-vectors p,, p;, refer to initial
state partons.

PHYSICAL REVIEW D 87, 074032 (2013)
For a parton splitting
pe— Pet P
on-shellness of all momenta in both m and (m + 1) phase
space requires a momentum mapping that reduces to

Pe = Pe T+ D
in the singular limits; away from these kinematic regions,
an additional spectator momentum needs to be modified to
guarantee p? = p? = 0 for all particles. In our scheme, we
use the whole remaining event as a spectator, which leads
to a scaling behavior ~N?/2 for the number of required

mappings, where N is the number of final state partons in
the process.’

1. Mapping in the parton shower
For a final state splitting, we leave the momenta of the
initial state partons unchanged:
Pa = ﬁ a Pr = ﬁ b

Let Q be the total momentum of the final state partons

0= p,=pi+ ps (3.16)
n=1

Here the momenta of the incoming partons remain the
same; hence Q = Q = p, + p;,. We define
Q2
2pe- Q
where a, = 1. The momenta of the daughter partons p,
and p; are then mapped according to
I1—A+y
261{

The parameters A and y follow from energy momentum
conservation as

A=+ —day, y=DC00
pe: 0

y is a measure for the virtuality of the splitting, with

Ymax = (\/Zl—{;_ Vdae¢ — 1)2 = 2[1@ - 1= 2Va€(a€ - 1)

(3.20)

ag ; (3.17)

(3.19)

and A(Ymax) = 0.

The mapping prescription used in our scheme now de-
fines the whole remaining event as a spectator, i.e., the
momenta of all corresponding final state particles are
mapped as

pr=AK K", pr, nE{j=m+1} (321)

3In the Catani Seymour scheme, each additional parton in the
process subsequently serves as a spectator, leading to an overall
scaling behavior ~N3/2 for the number of required mappings.
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with the Lorentz transformation

2(K, + Kp)*(K; + Ky)”

AP (K, Ky) = gt —

(K, + K,)?
2KV KY
+=—12 (3.22)
K3
K and K are given by
K=Q0-p, K=0-pP, (3.23)

and correspond to the total momentum of the final state
spectators before and after the splitting, respectively, with

K* = A(K, K)* K"
For a, = 1, this simplifies to
K=(1-yK,
and we therefore have

AR, K)*"(ap = 1) = (1 — y)gh". (3.24)

The flavors of the spectator partons remain unchanged
fn:fil’ nE{‘e,]sz’_l},
while the flavor of the mother parton f, obeys
fe+f i=fe
e.g., if the mother parton € is a quark/antiquark, then
we have (fy, f;) = (¢/g, g).1f the mother parton € is a gluon,
then (f, f ;) can be a pair of gluons (g, g), which corresponds

to g — gg splitting, or any choice of quark/antiquark flavors
(g, g), which corresponds to g — ¢g splitting.

2. Mapping in the subtraction scheme

There is an inverse of the above mapping prescription,
which maps the (m + 1)-parton momenta to the m-parton
momenta needed for the evaluation of the real-emission
subtraction terms. We start with {p},., and determine
{p},,- The momentum p, of the mother parton follows
directly from Eq. (3.18),

1 I—A+y
=—(pet+tp)——0. 3.25
Pe=7 (e + pj) hay o (3.25)
The parameters y and a, read
P? 0?
=—" > d =———— (326
YT apo—p M 4T g G20

with Py = p¢+ p;. The parameter A then follows from
Eq. (3.19).

Now we need the inverse Lorentz transformation to
Eq. (3.21), which is used to map all nonemitting final state
spectators. We have

pi = AK K", pr,  nE{Lj=m+1} (3.27)

PHYSICAL REVIEW D 87, 074032 (2013)

where A(K, K)*, is given by Eq. (3.22). For a, = 1, the
mapping reduces to

A

1 P
Pe=1—5 (P¢ —y0), P ="
y 1

(3.28)

The flavor transformation is similar to the case of parton
splitting. The flavor of the mother parton f, is given by

fe="Fe+ 7

with the rule of adding flavors, g + g = gand g + § = g.
The flavors of the spectators remain unchanged:

fo=Ffum nE{l j=m+ 1.

3. Phase space factorization

In the integration of the subtraction terms over the
one-parton unresolved phase space, we use the generic
phase-space factorization

[{p, Phm1 18U, Fhmer) = [, flnldé,8(p, frmsr),
(3.29)

where g({p, f}u+1) is an arbitrary function. In this
work, we chose to regularize the infrared and collinear
singularities that appear in the splitting functions using
dimensional regularization; i.e., we work in D = 4 — 2¢
dimensions so that the singularities appear as 1/&? (soft
and collinear) and 1/& (soft or collinear) poles. We then
have for the unresolved one-parton integration measure

. dDﬁ
dé, = dyb(yp, <y < a3 P @ d7pe
&) = dyO(min <Y < Ymax) p G2
dPp;
A2 J A2
X 2mw8*(p7) 2mD 278" (p3)
1— A+
X @m0 e+ by~ Ao~ Q)
A ar

(3.30)

Here y,;;, = 0 for massless partons and y,,,, is given by
Eq. (3.20). The reduction of this measure for the simple
case ay = 1 has been presented in Ref. [53]. In this work,
we have used the parametrization4

_ (Zpe * Q)178 7T7%+8 Ymax
16 I‘(% —-2g)Jo

1 e 1 . _%
X/;)dz[z(l—z)] fodv[uu )i

dyy—s/\l—2s

d¢,

In the center-of-mass system of p¢, p;, where p; defines
the x — z plane, z and v parametrize the polar and azimu-
thal angles of p;, respectively.

*We thank Z. Nagy and D. Soper for useful discussions
concerning the parametrization of the integration measure.
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C. Generalized final state subtraction terms

In this section we present results for the subtraction
terms 2, and their integrated counterparts V, for final
state emitters, where a, # 1. Results for the simpler case
of maximally two final state partons as well as initial state
emitters have been presented in Ref. [53]. The integrated
subtraction terms V, contain integrals that depend on
maximally two additional variables and need to be inte-
grated numerically. In the expressions below, we leave out
a common factor 477« in the expressions for the squares
v% of the splitting amplitudes; the (integrated) subtraction
terms (V) D, contain all factors. We will summarize the
scheme in Sec. I[IID. We used the Mathematica package
HYPEXP [79,80] in some of our calculations.

1. Parameters
In this paper, we use the labeling Df[ o, and erfe 7, for

a process with the splitting p¢ — p¢ + p;. For final state
splittings, the subtraction terms can be expressed through
the variables

=% and Z:f;ﬁ'-';i’ (331)
with
Pe=pethj ne=30=5P. pyQ=Pi 0~ pe b
(3.32)
where we additionally introduced
I+A+y I—A+y
Y = 5 Xg = m

2. Collinear subtractions

We first consider the collinear part of the subtraction
terms, which are given by the first term in Eq. (3.13). These
terms do not contain any soft or combined soft/collinear
singularities; i.e., they contain only single poles ~&~! and
do not depend on a specific spectator k.

qq8, G qg.—The squared splitting amplitude for
final state ggg couplings in the case of massless quarks
is given by

) 2 {[1 (A—1+y)2+4y]F
Vyge = 7T A\ ei
“ " y(pe- Q) 42 K
D-2
+ dl+y+ /\]}, (3.33)
where
1 +X() X0 )
Fa=2(—1+ - . (334
5 ( xot+z(1—xp)  (xo+2z(1—xp))? 34

Thus we have

PHYSICAL REVIEW D 87, 074032 (2013)

drrag
;(t)llgz T CF(Uéqg — v
drra {(A —1+y)?+4y
= F Feix
y(pe - Q) 42
D—-2
+ Adl+y+ A]}, (3.35)
and the integrated subtraction term is
1 2au\e[ 1
Vel = & ¢ —(—) {—— + 41
498 4q FT - g) pe- O P> 3(a0)
1
+ 5[(9 — Tag)ae — 1)log(a; — 1)
+ a€(7a€ - 16) 10g (a€) - 710g (ymax)
~ s +7) = i — 41} (3.36)
with
/max /\ - l + 2 1 + 1
I(ap) = _[> dy[( y) n 1]( y) nXo
0 4y A
(3.37)

2949, 84q-—The gqgq splitting function for massless
quarks, keeping the gluon helicity for the mother parton,
is given by

1 ki ki
<V|v§qqul> == ~ [_gvy’ - 2;7/\’]!
Pe¢ - Pj Pe - Dj

where k| can easily be obtained from a Sudakov parame-
trization as

1
ki=pe— X[P”(l —z(1+x)) +y0Q2z—-1] (3.38)

with k| - p, =k, - n, = 0. If there is no explicit helicity
dependence in the Born-type matrix element, we have

2
v: o= (1—e—2z(1—2)). (3.39)
899 yp, - 0
We obtain for the subtraction terms
_ 2
<V|ngqul> - 47TaSTR<V|quq|V/>) (340)
" 4oy 5
Vo= —— Thrv~7 .
299 2(1 — &) R%gqq

Integrating this over the unresolved one-parton phase space
yields

T « 2au®\e[ 1 8
Voo TGy LS
sa(@0) 7w I'1—¢e)\pe- O 32 9
1
+3lla = Dinta, — 1)~ a, lnag]]. 341)
ggg.—The total (unaveraged) splitting amplitude

squared, in the helicity basis of the mother parton py, is
given by
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1 /
WlvgeolVy = ————<5{—8""(p¢ "D p¢+ pj- De- p;)
888 2(17@']91-)2 ¢ Hj Pt j P rj
+ Kk, k" T[D, - D;1}, (3.42)
with

. . 2ype-Q [ Xo ]
‘D pp=——"—"—"—|1—z(1 —xp) ————— |,
pe b xo+z(1—xp) ( ) xo+z(1—xp)
. . 2ype-Q [ Xo ]
Do pi=———| xgt+z(1—x9) —————|,

Pj ¢ Dj 1_Z(1 _xo) X0 Z( Xo) I_Z(l _x())

Ti[D¢-D;]=D—2—-2A+A?,
_ QQ(ﬁf‘ﬁj)
(Pe-O)p;-0)
_ 2X0
(xo +2(1 = x0))(1 — z(1 — xp))’

and k, again given by Eq. (3.38); if the Born matrix
element is helicity independent, we have

1
Viee = 575720 = 2pe - Dy pe+ b D+ byl
s88 2(p€'pj)2 RN ¢ RGN

- kzl Tt D, - Dj]},

(3.43)

with
K& = —2yz(1 = 2)p, - Q.

Instead of using this as a subtraction term, however, we
proceed in a different way and define a subtraction term
that only contains soft singularities from particle j [75]:
We introduce

(3.44)

(W, V) = (vlv3 = v31V))
vy

8 ~ ~ ~ ~
——————p¢"D; p¢—D; D¢ pjl
2(pe - pj)* ! ! !

(3.45)

where v, 3 are defined corresponding to Eqgs. (2.40)—(2.42)
in Ref. [75]. This leads to

<V|ﬁc‘2388|1//> = <V|U§gg + Ui'gg,sublyl>
1 /
= ——31—28""Pe-Dj- pe
2(pe - Pj)2 !
+ k' k% Tr{D, - D;1},
which is the subtraction term for each gluon emission. The

first part is the unaveraged eikonal splitting function; if we
combine this with the interference term, we have

KR

J

<V|ﬁ§gg —vglv) =
(3.46)

The collinear subtraction term reads

PHYSICAL REVIEW D 87, 074032 (2013)

v v
kJ_k_L

(Pe - ﬁj)z

27a,
<V|Dcoll | V/> — T, CA
1—¢

coll [D—2-A2—-A)]

(3.47)

If there is no angular correlation in the Born-type matrix
element, we can replace kiki’ — —k2l in the above ex-
pressions, and equally need to multiply by 1/2(1 — &).

Note that the above reshuffling of singular terms re-
quires that for a final state with g(p;)g(p,), both combi-
nations (i, j) = (1, 2), (2,1) need to be taken into account;
the factor % which is included in Eq. (3.42) and all sub-
sequent expressions, guarantees a correct mapping of the
singularity structure.

Integrating and taking all averaging factors into account
gives

4o -
‘Vfg%lé' = p* —2(1 o) Ca fdfp(vg’gg — vgy)

<27m2)s 1 a, [ 1 4
= _ S -——=
pe-0) Tl —¢)2m 6s 9
1
+ 6[(06 —DlIn(ae —1) —aslna,] + Iﬁn(ae)]

(3.48)

with

ag#1 a¢+1 a
In(ag) = a€{1 ~agln (\/\/a_i——l) ~ln <a1» f 1)

Ymax ylnx, 5 }
+ 8 dy———— -1+
ac=1 3 > 7
= —-7r+-. 4
877' > (3.49)

3. Soft and soft/collinear subtractions

We now discuss the integration of the interference term,
which is given by the second contribution in Eq. (3.13).
This term does not depend on the specific nature of the
splitting; i.e., it is universal. It contains all soft and soft/
collinear singularities and equally depends on a spectator
parton k. Parton j needs to be a gluon; otherwise this
contribution vanishes.

We start from the definition of the interference term in
Eq. (3.14):

1 W — 2(pe- pi)(pe- O)
k — 1 N N N ~ A ~ ~ ~ A
dra (Pe- PP Pi)pe- Q)+ (Do pj)pr- Q)

and the subtraction term

D (pe, by i) = CoAWes, (3.50)
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where Cy, is given by Eq. (3.15). Note that the above expression holds also for cases where the mother parton is a gluon, as
the interference terms are diagonal in helicity space.’
We obtain for the integrated subtraction term

= M28C€k[d§p(AW€k)

2pla\e 1 Ll
( i 77) % )cg{ [1+§1 (a(ek)+a€)]—?+3—21n21n(a(€k)+ag)
E

pe-Q) a I'd—- H2e?
1 a® 1 1

+— 1§f;>< ) + 1 (ay, ™) + 1§fn)(a€)] +1n a€[21n2 — 4 Inac + 5 In(ag Gy + ap) + 1]} (3.51)
L ay

with

®

i (P) = fod:{zln“m [(1+2bu+\(/11;b2b(Tb)u2]}
+21n21n(1+b)+71n2(1+b)+ le( b ) 1Liz[(L)z]],

b+1 b+1
a((k)
d B ldu 1dx 1—x+xOg[)l( +2]
Il(:in)(ag, althy = 77-[ ,[0 . — a(“‘ - = - -1
J[A (1 + x0,¢ = ) + x0,0(A¢ & 1)] ~ [BWP( + x0.0 — x)

+x —

1
uzd(f,k) d([’k) ’
\/1 + 41+ =]
© x 5€ae
I (ap) = dx (3.52)

We have introduced

pe P - - -
A (p, pe) = wre’s ~P]; + (1 — z,)34P, B (p,, py) = 2\/Z€Z(€k)(1 — 2)(1 — 50y,
k

and
xX—Xx Pr - 1
o=t s e G = PRI
1= xo¢ Ye Pr Py
S0 _ (k) Pk " Mg ag —yfai —a (ljtr);)2 ’
ay” =a""y,=0=——, Se(x) = (1+x?%—-1,
Pr " Pe 2x
where y, in all the above expressions is defined by®
ye i= 8¢(x)u.
We here made the dependence on the momenta py, p, explicit in the labeling of the variables A, v, x, ..., which are all

defined according to Secs. III B and III C 1, respectively.
In terms of the Born-type kinematics, P, can easily be recovered from Eq. (3.18); p; needs to be reconstructed in the
Born-type integrations according to

>That is, for helicity dependent Born- type matrix elements M, where a spin correlation tensor 7 “” is defined such that — g WT” =
| M|, the interference subtraction term is given by

_ glLVDifT;LV — Diflle.

®We thank Z. Nagy for providing us with this variable transformation for the interference terms.
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pr=AK K)py, (3.53)

with the Lorentz transformation defined according to
Eq. (3.22) and with

5 YeXo,¢
K=0-pn  K=0(1-72) p,
ayg
Finally, note that
ap + a N(e 0 _ PeQ ‘
Pk Pe

D. Final expressions

In this section, we describe how the expressions in the
last subsections should be combined to provide the sub-
traction terms do, and their integrated counterparts

[, do,.
1404

The complete parton level contribution is given by the
sum of o9 and N0, with

LO = f do b(pa: pb)
ZI}I;O = ] da—gb(ﬁa’ pb) + [ dO’Xh(Pa’ pb)
m+1 m

+f do-fb(pw Pb» M%)
m
The NLO contribution can be split into

N0 — [ Lot (P i) = Aty )]

+ fmUdUXh(pw Py) +ﬁd03b(ﬁa: Ps)

+ do-gb(pa’ pb’ I"L%)] ’

g=0

where [, do?, + do€, can be written as

/[[ldfrﬁb(ﬁmﬁb)erfrgb(pmpb, sz)]
=[ dab,(pa py) ® 1(8)
1
+ [ [ dot,xpo i) ®LK (xho) + P 1)

1
4 ﬁ) dx [ 0P, (p o xpy) ® K" (xpy) + P(x, p2)]

where the insertion terms K, P only appear in the case of
initial state partons; cf. Appendix B. All observables, as
well as infrared safety of the Born level contributions, need
to be introduced in terms of jet functions as discussed in
Sec. II; cf. Eq. (2.11). For an incoming lepton, the collinear
counterterm is set to zero and the PDF is replaced by a
structure function f7); = 8(1 — m;).

In the followmg, we discuss the specific form of
do?, (pa, py), which corresponds to the subtraction
term in the real emission contribution of the process, as
well as the integrated D-dimensional counterterm

PHYSICAL REVIEW D 87, 074032 (2013)

Ik d(rfa‘b(pa, pp). In general, the subtraction term can be
split into contributions originating from all possible
emitters p,’:

doly (P Do) = D doy (o Ps),  (3.54)
€

where p, can denote an initial or final state particle. We
have for each contribution

dfff:}f(f?w ﬁb)
m+1
[nﬂg ridef,(Po D)OIMPI.,.  (3.55)

m+1

where Iﬂ\/llfn; £, denotes the squared Born matrix element
with a flavor f, of the mother parton; the extension for
cases where there is an angular dependence of the Born-
type matrix element is straightforward. The momenta {p,,}
are determined from {p,,} through the respective mapping.
N,,+1 incorporates all symmetry factors of the m + 1
process, and @, = 2§ is the respective flux factor. For
splittings where the mother parton is a gluon, we use the
following conventions: for g — ¢4 final state splittings, we
always choose (f, fj) = (g, q); for g — gg, i.e., a final
state that contains g(p,)g(p,), we need to consider both
combinations (p¢, p;) = (P, P2), (P2, P1); we compensate
this by introducing an additional factor % in the respective
(integrated) subtraction terms. This factor has already been
accounted for in all expressions in Sec. [II C.

The subtraction terms can be split into collinear and
interference terms:

th,f(fj(ﬁ@ ﬁ]) - D;Of f (p€’ pj)

+ 5,f'/,g Z Dif(ﬁf» ﬁ]» ﬁk)»
k#(¢.j)

(3.56)

where D (py, p ;» D) now denotes an interference contri-
bution where p; acts as a spectator as discussed in
Sec. III A 2. Note that there is a unique momentum mapping
for each combination (py, p;) that is the same for all
interference terms appearing in D, 7 7, (Pe» Py)-

The integrated counterterms are given by the integrated
form of Eq. (3.54):

[ dothu i) = [ Sk o i
€

The collection of the integrated counterterms is then
straightforward: for each dipole that has been subtracted
in the real emission part, the respective integrated contri-
bution to I, K, P needs to be added to the virtual contri-
bution as in Eq. (B3). Finally, our expressions have been
derived on a matrix element level:

"In the following, we omit the jet functions for notational
reasons; however, full expressions should always be read accord-
ing to Eq. (2.11) where all jet functions are included.
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[15.— [ Delmi =V o1
1

on the cross section level, we additionally have to take the
flux as well as combinatorial factors into account®

[ donlion )
N,
’"“ fI)@Ilelz =1V e | ME,
A

[fdmmb

_Nm+l

AV@ M2, = Non1 V@j do,,
m28 N,
where the factors N,, and N, ;; account for possible
symmetry factors of the specific process, and where here
x, = s/5§ is the ratio of the partonic center-of-mass ener-
gies before and after the splitting; x; = 1 for final state
emitters. We then obtain the relation

1 N,
Sv-Ld

Xs Nm+1

(I+K+P) (3.57)
between the integrated splitting functions V given in the
next sections and the insertion operators I, K, P.

IV. EXAMPLE: e*e” — 3 JETS

In this section we consider the simplest nontrivial pro-
cess with more than two partons in the final state: three-jet
production in e* ¢ annihilation. The next-to-leading order
contributions to this process are well known [57,81-83].
We compare the results obtained from the implementation
|

PHYSICAL REVIEW D 87, 074032 (2013)

of our scheme and from a private implementation of the
Catani Seymour scheme as well as [83].° We find complete
agreement for the differential C parameter [57], with in-

tegration errors on the percent level.
The leading order process we consider is given by
ete” = q(p1)a(p2)g(ps). 4.1

At next-to-leading order, two different real-radiation sub-
processes contribute:

(A) eTem — y(Q) = q(p1)a(p2)g(p3)g(pa),
(B) e"e” — y*(Q) — q(p1)q(p2)a(p3)q(pa).

For a complete next-to-leading order calculation, the vir-
tual corrections need to be added to the leading order
contribution. In the following, we use the notation

X =2pi-Q/Q% yiy=si/0Q% Si=siit St

with s;; = (p; + p;)*. Energy-momentum conservation

leads to
Zyij =1

ij>i i

We equally follow the notation for matrix elements in
Sec. IIT A:

dpitlip:h = M5({p:HIM;({p:})) = |M3({Pi})|2,
Apip) = (MuPDIM4{p:D) = M

The total next-to-leading order contribution for process
(4.1) is then given by

o310 = [arsIMMpIPFI oD — T a1 D pdla. r)Farris) |
4

+ [aps 3 [IGDPF G - S taer sl D (oDl g s>]

4

+ [aps i or +%[Zu2£ [ ae231D50m1.2.3) |

ﬂavors

where €, j sum over all possible pairs in the real emission
phase space, where p; and p; denote momenta belonging
to Born and real emission kinematics, and where

8Correct counting of symmetry factors needs to be done
explicitly in this expression; if all splitting multiplicities and
symmetry factors are taken into account, we obtain a generic
combinatoric factor % for ggg splittings; cf. Section 7.2 in
Ref. [59].

We thank M. Seymour for help with the original code
available from Ref. [84].

+ 3 (S fae0.23Duaphn2.9)] 1o

(4.3)

q, r, s € {1, 2,3} denote the mapped momenta in the real
emission subtraction terms for the Born-type matrix ele-
ments. The factors 2 Z in the integrated subtraction terms
correspond to the process-dependent symmetry factors in
the real emission contributions. In the symbolic notation
above, [dPS, contains all symmetry and flux factors for
the respective phase space.'®

'Note that [ dPS; and [ dPS, are defined slightly differently
in Refs. [59,83].
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A. Tree level result

In the following, we follow the procedure of Ref. [57];
i.e., we normalize our observables according to

1
—do1O,
4]

where o, denotes the total cross section for the process

ete” —qgq 4.4)

given by [57]

2
da 5

Oy = TCAQJ”

for a quark with flavor f and charge ¢;. We normalize the
matrix elements according to

1
ol = 5:S f dr, | M, 2F,

4 .
where dI', = ni[é:)l 5(1712 - m%)]5(4)(2inpin - Zipi)’ s
denotes the center-of-mass energy, and
S_{1/2! for y* — qggg
1/2! X 1/2! for yv* — qqqq

is the symmetry factor of the respective process. We obtain
the well-known relations between the matrix elements of
the processes (4.4) and (4.1) [57]:

8ma X3+ x5 1

a1 g a1

1
M, =
4I 5

where | M, |? has been averaged over the emission angles,
as well as

O3 =;—7;CFde1dx2Hi[@(1 —x)0x)10(x; +x,— 1)

2 2
X7+ x5

(3)
G W R i
(1 _Xl)(l _x2) ool (xl xZ)

for jet observables. The gluon-helicity dependent squared
matrix element for the leading order process (4.1) is given
by [83]

| M5(p1, pa. p3)IPTH,

4.5)

T 2 (py, po p3) = =
(1, P2 P3) x% +x§

where

PHYSICAL REVIEW D 87, 074032 (2013)

. 2 4 Moy
- b1 P P> Pi 1 —x pipy 1 —x
rur = 422102 L o PaPL_ 5 TN PIPL 5 T
0 0 l=—x 0 1 —x
sz“pi_l—xl—Xz+X%[p7p§+p§p1”]
0’ 1 —x 0’ 0*
_l—xz—x1+x%[p§p§+p§p5]
1 =x 0° 0?
1 1
+ <1 + Ex% + Ex% - x - xz)g’”. (4.6)

T .., obeys g"' T, = —|M;|%

1. The virtual one-loop matrix element

The virtual contribution to the process (4.1) in the MS
renormalization scheme is [57,59]

|MV(P1» P2 P3)|2

aS
= |M3(P1rP2,P3)|2—2 (
a

dru*\e 1
0? ) I'(1—¢)

1 — —_ —
X {_?[(ZCF —Ca)y’ +Calyis +25°)]
1 11 2 2

+§—S[F(y12,y13,y23) + O(e)], 4.7)
T

where F(y12, Y13, ¥23) is defined in Eq. (2.21) of Ref. [57].

B. Subtraction terms

In general, the subtraction terms are given by Eq. (3.56) as
D‘O’f = Df{fffj(ﬁ€’ ﬁf)

= ch(;%w?j(ﬁ(r ﬁ]) + 6f,-,g Z ‘ le(ﬁ{/’ ﬁj’ ﬁk)r
k#(£.))

where the first part is the collinear subtraction term, and the
second the sum over all interference terms. For the processes
considered here, the interference terms only contribute to
(A), while (B) only contains collinear divergences. In the
following sections we will construct the subtraction terms for
subprocesses (A) and (B), respectively.

1. Momentum mapping

For all subtraction terms, the m-parton phase space
momenta are mapped as described in Sec. III B 2; i.e., for
a splitting

Pe— Pet P
we have
1 1—A+y

-0 pr=AK,K)py. [k# (¢ ))]
ayg

Pez)l

where A is defined according to Eq. (3.22), and where
K=0-P. K=0-p
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2. The subprocess: v* — q(p1)§(P2)g(P3)g(pa)

For this process, ggg, gqg collinear as well as interference terms need to be taken into account; these are given by
Egs. (3.47), (3.35), and (3.50), respectively. We have for the collinear subtraction terms

coll

eell
9984 y(py - Q)

€J|V/>TVV = —27a,C,

_ Amag {()t —1+y)?>+4y

1
a0 Feik+_z[1 +y+)l:|},

(Vl Dcoll

8885

( '1,\ )2[2 A(z A)] 2+ 2|M3(p1’ p2’p3)|

<l (2t potos - -

2 2
+k2l(1 +x—21+%2—x1 —xz)]},

with k| and A given by Egs. (3.38) and (3.43). In total, we need to consider the following combinations:
Dcoll co oll Dcoll Dcoll Dcoll Dcoll

qqg:13 P aqg1d aqe23 Faqe2a “ggedb gggia3

1_—2(h 'Pz)z)
X1

note especially that both combinations (3,4) and (4,3) need to be taken into account in the contributions from ggg
splittings.
The interference terms are given by
25, 3.5 O
DI, = AWy (k) = dmar,Coy — P Pipe Q - (4.8)
Perpip; pube O+ pe pipi Q)

where we have the following contributions:
if if if if if if if if if if if
D132’ Dy Diso Diss Disp Dasw Dyt Dyss Disys Dsyo Dy Do

We want to emphasize again that there is only one mapping required for each (€, j) pairing; i.e., we only have 5 independent
mappings for the 12 subtraction terms listed above.'' The subtracted cross section is then given by

ot 4 = [Laa* = do1 = [aPSAMpr, po b3 DOPFiir, o P )
—(L,23|Dy3 + Diy + Dy + Dy + Diy + Dysll, 2, 3)F5(py, pa, p)} (4.9)
with the spin-averaged matrix element
M b2 b b = o(52) CHATIA+ B+ O+ (12D + B+ (123 4) @10)
The quantities A, B, C are given in Appendix B of Ref. [57].

3. The subprocess: yv* — q(p1)4(p2)4(P3)q(p4)

This process does not contain any soft/interference singularities, and all subtraction terms are given by Eq. (3.40). We
need to keep track of the mother parton’s helicity in the subtraction term and obtain

)2

2 1 2
Doyt VVT " =4ma,T, M;(p1, o 2{ 5 [ (2 k k -
<V| gqq,€J|V> TA, Rp( pJI (pl P2 p3)| X +X% ﬁg [3] Q2 ( 1° pl)( 1° p2)

2 2
)-i—kﬁ_(l-i—%-i—%—xl—xz)]},

with k| and k2l given by Egs. (3.38) and (3.44), respectively.

1_X2
1_

"The Catani Seymour prescription [59] requires 10 different mappings for this contribution.
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We have to consider the following combinations: 1 N
1 | My(p1, P2 P3» Pa)l

D 44412 Dyggrar Dygg32r Dygqa 41D = 0'0<2 ) Craddm)P{D+E)+ (12 +(3<4)
and get +(1e23<4)} (4.13)
The quantities D and E are given in Appendix B of Ref. [57].
R-A — R _ g.A
T L[d(f do’] C. Integrated subtraction terms
A oA A A A A A 1. Collinear integrals
= [dPS4{|_’M4(p1,p2, D3 DAPF4(py, Po, P, Pa) . . . & _ o
The collinear integrals involve the gqg, qqg/G G g, and
—(1,2,3| D3 + Dy + Dy, ggg splittings:
+ Dayll, 2,3)F5(py, pas p3)} (4.12) Leon = Ieon(897) + Leon(qqg) + Lon(ggg)- (4.14)
After summing over all contributions, we obtain from
with the spin-averaged matrix element given by Egs. (3.41), (3.36), and (3.48)
|
A7 u?
(1,2, 3L.on(gqd)1, 2, 3)g = |M3(py, pa, P3)| ( 0 )

1 [_ 2 16

“Ta=o™ 3 9 2[(“3_1)111(03_1)—(613 l)lna3]:|,

ag A p®\e 1
(1,2, 3.on(qqe)I1, 2, 3)4 = IMs(py, pa, p3)|2_CF< 5 ) F(l —

X = Z {__ +4I3(ap) —Inag + [(9 —Taga¢ = Dln(a, = 1)
€ 1,2

+ a€(7a€ - 16) 10g (Cl{g) - 710g (ymax (Cl()) - a€(2ymax (a€) + 7) - 7ymax (at’) - 4]}’

(12,3081, 2300 = 1M1 2 2P (T (s =+ gllas = Dty = 1)
- (a3 + 1) In 613] + Iﬁn(a3)}, (415)

where all symmetry factors have already been taken into account. Here, I, and /5 are given by Egs. (3.49) and (3.37),
respectively, and need to be evaluated numerically.

2. Soft integrals

For a specific emitter/spectator pair (p,, pi), we obtain from Eq. (3.51)

47ra
Isoft,fk = : 2 fdgpAW€k
o 4 1 1 1
= ECe ( K ) F(l — 8) {—2 e [1 +—1In [(a(ek) + ag)a(/]jl
2 1 ( k) 700 4
S I:Ign)( ) + Igln)(&(ék), ap) + Iée[f(ag)] —In 2[(a(€k) + ag)ag] —In21n (u) +2In ag},
6 T ae ae
(4.16)
where

fin

I
I9b) = 10)(b) - W[ln2ln(1 +b)+ (1 + b)].
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The additional factor % in the integrated subtraction terms stems from Eq. (3.57) and accounts for the different symmetry
factors and combinatorics of process (A). Soft interference terms only appear for this process, where the following emitter/
spectator pairs need to be taken into account

2(L2)+(L,3)) + 21+ (2,3)+3,1)+(3,2)]; 4.17)

the factor 2 arises as e.g., (P¢,Pj Px) =L(P1P3 P2),(P1P4, P2)] are mapped to the same Born-type kinematics
(pe» Pe) = (p1, p,), and similar relations hold for the other contributions.

3. Finite parts

Combining the one-loop matrix element Eq. (4.7) with the integrated subtraction terms, all poles in & cancel. The
leftover finite parts are

4 1
(1,2, 3Ll L, 2, 3)pinite = |M;5(p1, pas P3)|2 {(4nfTR + CA)I: —[(03 —DlIn(az — 1) — (a3 + 1)lna3]:|

+ Calpalar) + 3 415600~ nac + 5 210 = Tag(a, = Dina, = 1)
(=12

+ a€(7a€ - 16) IOg (Cl() - 710g (ymax (Clg)) - a€(2ymax (aé) + 7) - 7ymax (aé) - 4]]} (4.18)
and

m? |
(1,2, 3 Iotl1, 2, 3)ginite = | M3(p1, P P3)|2 {(ZCF + CA)[_ 3 + 6] +2 C [ Igm)(cw) +2In W:I
=123

~(1 ~(1 2) 1. d((i 3)
—2(Cy — 2CF)|: zgg(_) 1n21n( + 1)] +2C, Y [ I(ff’n)( 0 )
a a T

1 =12 ae
5(613)
— 1n21n( 0 )] chk[ 1930, ap) + = 1n2[(a<“> + a€)a€]]}, (4.19)
ag

(€.k)

where the sum in the last line goes over all possible combinations as given in Eq. (4.17) (the factor 2 is already accounted
for), and where we made use of several symmetries.'? Further simplifications for the interference term finally render

2 1
(1,2, 3 Iot|1, 2, 3)pinite = | M3(p1, P P2)|2 (ZCF + Cy)| — T 16|+2 C; Iilen)(a() + 2Ina,
3 T
=123

1
+ ECA{ZI:IH ap In a, — In as In (M)] + ln2y13 + ln2y23 —1In zylz}
as

+ q{hﬁ(ﬂ) + ln2y12] + 21n2[2CF In (yaa,a,) — C4 In
a

2l T () - e - 2eni
Ye3aeds

=12

y13y23a§]

+ Y P atn, ag)]}. (4.20)
Y1za1flz) (%) fin

4. Final expressions

The finite parts of a one-loop matrix element are given by

a '77'2
IMy(p1, pa, P32 e = IM3(p1, P Ps)|2 { [(Ca — 2C)In?y15 — Ca(ln?y;5 + In2yy3)] + 7(2CF + Cy) — 8CF}

+ 2—S[F(Y12y Vi3 ¥23) T O(e)] (4.21)
a

12 . .
One useful relation is e.g.,
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C - distribution: (C/0y)) do / dC, single contributions
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FIG. 3 (color online). From top to bottom: Comparison of the contribution proportional to NeCpn Ty, NCp, NcCi for our

scheme (NS) and Catani Seymour dipoles (CS). Shown is the differential distribution

C dogNLO
dac

a9

in units of (;‘—;)2, with C defined by

Eq. (4.24). Left: Results for the implementation of our scheme and Catani Seymour subtraction terms from our private code as well as
event2_3.f [84]. Right: Relative difference between our implementation of the CS and NS subtraction terms. The results agree on the
percent level and are consistent with zero within the integration errors. Large errors arise in regions where the absolute values of the
differential distribution become small.

If we combine the one-loop matrix element with the integrated subtraction terms, poles in & exactly cancel, leading to finite

results:

oVt = L[da’v + /1 do-A] = fdPS3{(1, 2, 3|Loel1, 2, 3) + (1, 2, 3L eonl 1, 2, 3) + | My (p1, pa, p3)IP}F5(p1s P2y p3)

= fdPS3{<1» 2, 3|Isoft|1’ 2, 3)n + (1,2, 3|Icou|1» 2, 3)gin + |-7V1V(Pb P2, P3)|EH}F3(P1y P2, P3),

where
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C - distribution: (C/0o()) do/dC
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FIG. 4 (color online). Total result for differential distribution

JQO"“’JNCLO using both NS (red) and CS (green) dipoles. The

standard literature result obtained using the CS scheme is
completely reproduced with the NS dipoles.
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Companson real and virtual differences

500
real emission ———

400 + virtual contribution

. sum oo
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c

FIG. 5 (color online). Differences Acg_ng for real emission

(red, upper) and virtual (green, lower) virtual contributions,

showing that especially for low C values the contributions in

the two schemes significantly differ. Adding up Areal 4 Avirt

gives 0 as expected.

<1’ 2} 3|Isoft| 1: 2’ 3>fin + <1’ 2) 3|Icollll) 2’ 3>fin + |MV(pl: P2 p3)|%in

50

= |M;(p1, P2, P3)|2 {(ZCF + CA) + 2Cp + 9

CA_

7 23 2
nfTR + ECFIH (alaz) + (KCA - gnFTR) 111(13

16
9

+ (4n, Ty + CA)I:E[(a3 —1lIn(az = 1) —azln 03]] + Cylgin(az) + % Z [413(615)

=12
1
+ 5[(9 —Tag)(ag — 1)In(ag — 1) + ag(7ae — 16)1og (a¢) — 7108 (Ymax (@¢)) — @¢2ymax (@) +7) = Tymax (ae)]:l
1 aa, [ a1
+ _CA 2 lna1 11’1612 - lna3 In[—= + CFIII —]+2In2 2CFln (ylzalaz) - CA lniz
2 as a Y13Y2343
2 . 1 .
S crgan+ 2o S () - - 20 ) ¢ Sewra o)
7T€ 123 (=12 \Ve3deds Yaidy) 3
aS
+ 2—F(y12, Y13, ¥23)- (4.23)
a

D. Results

We compared the implementation of our scheme with
the results from Refs. [59,83] as well as our own imple-
mentation of the Catani Seymour scheme. The subtraction
terms for the latter are well known and will not be repeated
here. To fulfill the jet-function requirements in Eq. (2.10),
we chose the variable [57]

) — 3{1 _ (4.24)

n 2
ij
i,j;,Kj 2pi - 0)(2p; - Q)}’

We numerically
NeCE,

which is infrared finite as required.13
compared all different color contributions

BA closer inspection of this variable shows that it contains
singular regions that, however, are integrable [85]; we thank B.
Webber for pointing this out.

|

N.Cpn;T, N2Cp separately, as well as the combined
contributions. We set ny =35 in our calculations.
Figures 3-5 show that we agree with results obtained using
the Catani Seymour subtraction scheme on the percent
level, which are consistent with 0, within the error bars,
and thereby successfully validated our real emission sub-
traction terms as well as all integrated counterterms pro-
posed in this paper. Results for integration as well as
differential distributions have been obtained using routines
from the Cuba library [86].

V. CONCLUSION AND OUTLOOK

In this work, we have extended the alternative subtraction
scheme for NLO QCD calculations proposed in
Refs. [52-54] to the case of an arbitrary number of massless
partons in the final state. The scheme employs a momentum
mapping that reduces the number of reevaluations of the
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underlying Born matrix element with respect to standard
schemes [59,64].'"* Furthermore, the use of subtraction
terms based on the shower splitting functions promises to
facilitate the matching of parton-level NLO corrections with
the improved parton shower.'> We provide formulas for the
corresponding final state subtraction terms and their inte-
grated counterparts. We validate our expressions by repro-
ducing the literature results for the differential distribution
of the C parameter at NLO for three jet production at lepton
colliders, where we find numerical agreement between re-
sults from the implementation of our scheme and two
independent implementations of the Catani Seymour
scheme on the (sub)percent level. Combining the results in
this work with the discussion in Refs. [52-54] provides all
the formulas needed for a generic application of our scheme
for massless emitters, and therefore concludes the discus-
sion of the subtraction scheme in the massless case.

As argued in the Introduction, subtraction schemes can
generically differ in the nonsingular structure of the dipole
subtraction terms as well as the mapping between real emis-
sion and Born-type kinematics, which guarantees on-
shellness and energy momentum conservation in both phase
spaces. The scheme adopted here uses the whole remaining
event as a spectator for the mapping, thereby leading to a
scaling behavior of Born reevaluations ~N 2 /2, where N is
the number of final state partons. However, this simplified
mapping equally induces integrated subtraction terms with
finite parts that exhibit a nontrivial dependence on the inte-
gration parameters of the unresolved one-parton phase space.
In this work, we chose to evaluate these finite terms numeri-
cally, which leads to an increase of integration variables by
two in the numerical implementation of the scheme.
However, recently it was proposed [1] to approximate similar
finite terms by polynomial functions in the context of a next-
to-next-to-leading order subtraction scheme [88-91]. We
therefore plan to make the finite remainders that appear in
the integrated subtraction terms available either in the form
of approximating functions or a librarized grid interpolating
between different input parameters for a,. Further plans for
future work include the extension to the massive scheme as
well as the matching with the improved parton shower.'®

“We want to note that the Frixione-Kunszt-Signer (FKS)
subtraction scheme [58] exhibits a scaling behavior similar to
our scheme. However, the two prescriptions differ in the treat-
ment of phase space setup; in addition, no parton shower
proposal exists using FKS splitting functions. We thank R.
Frederix for helpful discussions regarding this point.

SFor an explicit discussion on this, see e.g., Refs. [50,87],
where the authors additionally emphasize that in case of pro-
cesses with subleading color divergences, this choice naturally
allows one to sustain NLO accuracy of total and differential
distributions after matching with the shower. We thank S. Hoche
for valuable comments regarding this.

'®We note that work is underway [92] to implement the scheme
presented here into the Helac NLO Event Generator framework
[15]. We thank the authors for bringing this to our attention.
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APPENDIX A: SPLITTING AMPLITUDES

In Table I, we list the splitting amplitudes for final state
qqg splittings as given in Ref. [74]. For triple gluon split-
tings, we have for the final state

v, frmsr 850 86 50)

VadTa, n a Avs A Avs A

ZA—AYSa(Pj: Sj;Q) SB(P& 8150)"€"(pe, ¢: Q)
2p; - Pe

X v BY(p;, pe, —p; — Pe)Dy(Pe + Pjing). (Al

We use standard notation where U(p, s), U(p, s), V(p, s),
V(p,s) denote spinors of the fermions with a four-
momentum p and spin s, and &,(p, s; Q) are the gluon
polarization vectors. The ggg vertex has the form

v (o, P Pe) = 8*F(pa — Pp)Y + 8P (py — po)*
+87(p. — pa)P. (A2)

The transverse projection tensor D, (p¢ — pjing) is
defined according to Eq. (3.9). The lightlike vector n, is
given by

Q2

- Ce{l,...,m}
Q- pe+NQ-pe)

ne=Q =Pe

(A3)
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TABLE I. Splitting amplitudes v, ({p, f}j, 8, 8¢, s¢) involving a ggg splitting. We have re-
moved a common factor v/47as. The label € denotes final state indices F = {1, ..., m}. The
lightlike vector n, is defined in Eq. (A3). Taken from Ref. [74].

PHYSICAL REVIEW D 87, 074032 (2013)

¢ fe fe fi vy X = Color
o Ay DS )y Lot Bike Ulpese)
F q q g 2u(P) 80 = TG ta
_ A ~ ~ U(pe,50)y"V(p.5:)
F 8 q q =8k (pe s 0D (Pet pjone) =25 5 t“

APPENDIX B: INCOMING HADRONS

In case of processes with two initial-state hadrons A and
B carrying momenta p4 and pp, respectively, the calcula-
tion of the QCD cross sections must be convoluted with
parton distribution functions f;/,(n;, u%), which depends
on the factorization scale wup:

1
U(pA; pB) = Z,[O dnafa/A(na’ M%)
a,b

X [1 dnyfo/8(Mp w0 (pa, Py)
0 » MR ab \Pa>» Pb

+ oNO(po Po 3], (B1)

where p, = n,p4 and p, = m,pp are parton momenta,
while 1, and 7, are the momentum fractions of the
partons. In this case, additional collinear counterterms
need to be added to the integrated subtraction terms,17
and the parton level NLO contribution becomes

NP P 1F)

= [ da’fb(pw pb)
m+1

+ f dal,(pa pp) + [ do$,(pa Py w7).  (B2)

We then have

oNO(pa Py 17

=[+1[dff§b(pa, pp) — dot (pa, py)]

+ /m[[dffl{b(pa, P»)

+ -/‘1 da’gb(pw ph) + da-gb(pa’ Pb Iu“%")] 0:

e=

(B3)

with

See e.g., Ref. [93].

f [ /1 dal,(pa pp) + dol,(par Pbs M%)]
:f dal,(pe, py) ® 1(¢)
1
+ ,/0 dx[ doB, (xpa, pp) ® [K*(xp,) + P(x, u%)]

+ /1 dx[ doB,(p,, xpy) ® [Kb(xp,) + P(x, u%)]
0 m
(B4)

This equation defines the insertion operators I(g), K(x),
P(x; u%) on an integrated cross section level. Equation
(B4) can be divided into two parts: the first part is the
universal insertion operator /(g), which contains the com-
plete singularity structure of the virtual contribution and
has L.O kinematics. The second part consists of the finite
pieces that are left over after absorbing the initial-state
collinear singularities into a redefinition of the parton
distribution functions at NLO. It involves an additional
one-dimensional integration over the momentum fraction
x of an incoming parton with the LO cross sections and the
x-dependent structure functions.

In the MS scheme, the collinear counterterms are
given by

[ do-gb(pw Pb /"L%)

_ 1 ! B
= T 8)§f0 dx [n do®,(xp, pp)

2 &
X 1(47772‘ ) Pac(x)
EN MF

A

1 1
4+ =5 B
2T F(l — 8);,/(') dx .[m do—ac(pa) -pr)

2
% 1(477—';‘)8Pb0(x). (B5)
e\ MF

Here the P?(x) are the Altarelli-Parisi kernels in four
dimensions [71], which are evolution kernels of the
DGLAP equation [71,94-96], and describe the behavior
of parton splittings by giving the probability of finding a
parton of type b with momentum fraction x in a parton of
type a in the collinear limit:
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a(p)—bxp+k; +Ok3)) +c((1—2)p—ky +OK)).

(B6)
At leading order, the splitting functions are given by
1+ x? 3
Pl(x) = Cp|l ———+=06(1 —x) |,
W =il =g 7500 -]
1
Pe(e) = Tl + (1 = xP) Te=3,
1+ (1 — x)?
P2 (x) = CFI:(ix)],
X
1 —
P88 (x) =2CA[ al + x—i—x(l —x)]
(1= X
11C4 — 4n,T
+8(1 — x)A—nfR (B7)

6 ’
where n; is the number of quark flavors in the theory. The
+ distribution is defined in the standard way

[ P ()dx = j ' eW(F() — f(1))dx
0 0

- [ () fdx — (1) f ' g(0dx
0 0
(B8)

for the convolution with a test function f(x).

APPENDIX C: FOUR-PARTICLE PHASE SPACE

In this section, we derive the parametrization that was
used for the real emission phase space in Sec. IV. We use
the standard notation for an n-parton phase space in four
dimensions:

dr, = nl:(f:f)l 5(1712 - m%)]5(4)<pin - ;Pi)

i

We build our parametrization from a successive chain with

Pin— P12 T P3s Pij— pit P

where in the first step the on-shell condition for p;; needs to
be replaced by a distribution of s;; = (p; + p;)*.

1. Generic massive two parton phase space,
center-of-mass system

For a generic massive two parton phase space, we use
the following parametrization in the center-of-mass
system:

1 yA(s, m3, m3)
32772

dr, = dQ,0(/s = (m; + my)),

where
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0_ S + m% - m% \/A(S, m%, m%)
0 = L

P2 = Pin — P1-

4

The © function arises from the conditions (| p, )@ (| p|).
A is defined as

A(X], X2, )C3) = lez - 2Z‘xi'x.i'

i>j

2. Generic massless two parton phase space,
non-center-of-mass system

If we consider two partons in a non-center-of-mass
system, with

Ein
. 0
Pin = 0 ,
|p inl
i.e., where the three vector of p;, determines the z axis, we
obtain for a two parton massless phase space

T, dp(l)d¢1r

16772|Zin|

where we have

1 2
cos 0, = T(E - m";)) (C1)
|pin| 2]71
and
W m,
— — 1 — —
2(Ein + |pin|) 2(Ein - |pm|)

from the requirement that | cos #,| = 1. In this derivation,
— 0 0
Pi1; = P COS0;.

If the z component of p;, goes into the negative z direction,
cos § — —cos # in Eq. (C1), and all other above relations
still hold.

3. Generic four parton phase space
with massless final states

We use the generic expression

an(X -y pn)

B dm% dm3,
= dFX_,Y_FZ? Fdrx_,z PodFY_’z ph

where Y p, +> p/, =3 p, is the sum over all n out-
going particles. Using the expressions above as well as
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x,~=2pi.Q,
s

S; j
Yij = ?’
we obtain for the four-parton phase space in the center-of-

mass system of p;, = 0

52

dr4 =
(Am)SA, y12, y34)

with the four-vectors

dypdyssdx dx;d s,

Ex Ey
0 0
P12 = oI P34 = 0 ,
Px —Px
1 1
s| sin@ s | sin 65 cos
P1=X1£ ! , P3=X3\/—_ AR ?3
2 0 2 | sinf;sin ¢3
cos 0, cos 05
P2 = P12 — P P4 = P34 — P3s
and where
s VAL, Y1, ¥34)
EX:£(1 + Y12 — y3a), pyx = IR I
2 2
NG
Ey = /s — Ex :7(1 + Y34 = Y1)
1 m>
cosf, = —(E - X )
: Px X x1\/E
1 2y
= 4(1 T Y2~ V34— J)
VAL y12, y34) X

1 m3
0, = ——(Ey ——=
o= (5 )

1 2y34
= _7(1 T Y4 =Y~ —)
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The integration boundaries are given by
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x;nin/max _ my
VS(Ey = px)
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APPENDIX D: NOTE ON FURTHER POSSIBLE
SCALING IMPROVEMENT

As argued in Sec. IIID, the scheme discussed here
exhibits a scaling behavior for the reevaluation of the
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underlying Born matrix element proportional to N2, with
N being the number of final state particles in the corre-
sponding real emission process. The same scaling behavior
is implicit in the FKS scheme [58], where the mapping of
the Born-type matrix element is transferred to the explicit
parametrization of phase space for each emitter/emitted
parton pair. In Ref. [69], it was shown that within this
scheme the scaling behavior can be reduced to a constant
for processes containing symmetric final states. In the
following, we want to argue that exactly the same scaling
behavior can be achieved in the scheme discussed here and
is indeed implicit in the setup of our scheme, especially the
choice of soft interference terms proposed in Sec. I1IT A 2.
The implementation of this prescription in a numerical
code is in line of future work.

The improved scaling behavior proposed in Ref. [69]
relies on the fact that any m + 1 phase space can be
decomposed into disjoint partitions of phase space that
are specified by their behavior for one of the partons p;
becoming soft or collinear to at most one additional parton
pj: these adjoint pairs are then denoted FKS pairs, where
the sum of all subspace partitions reproduces the whole

phase space'®:

(i, /)€ Prxs

[Eq. (4.16) in Ref. [69]], where Ppkg denotes the set of
FKS partitions. Furthermore, the authors observe that for
processes displaying symmetries in the final state, which
are subsequently reflected in the matrix element and phase
space, several partitions S;; render exactly the same con-
tribution to the final observable, and that therefore the
evaluation of at most one of these is sufficient, the others
being related by symmetry:

> &5 0o o),

(i,/)E Prks

da"D(r) = (DD

[Eq. (6.7) in Ref. [69]], where &""(r) denotes the
process-dependent symmetry factor that relates the total
cross section to the one evaluated in the partition denoted
by S;;, and Prks now denotes the set of all nonredundant
partitions. Note that an important argument here is that all
other contributions that stem from p; becoming soft, but
collinear to a different parton p,, belong to a different
partition S;;, and are therefore suppressed via the structure
of §;;. Especially for purely gluonic final states, Prks
contains only one element.

In the scheme discussed here, the subtraction term that
reflects the divergences of S;; is given by Eq. (3.56):

8Note that the notation between [69] and this work differs in
the fact that in Ref. [69], p; labels the emitted parton that
becomes soft or collinear, while in our case this parton is denoted
by p;. For sake of consistency, we here stick to the notation
proposed in Ref. [69].

074032-22



NAGY-SOPER SUBTRACTION SCHEME FOR MULTIPARTON ...

:D(ﬁjr pi) = Dcou(ﬁj, i)+ Sfj'gkz(: ):Dif(f?j» Pi» Pr)s
#(i,j

as discussed in Sec. III A2, all contributions from the
soft/collinear divergence of p;, p, are transferred to the
interference term D (p,, p;, p ;), corresponding to the sin-
gularity structure of a different partition, namely S;;,. All
terms in Eq. (3.56) come with the same mapping, and, as in
the FKS prescription in Ref. [69], only the set of non-
redundant contributions needs to be evaluated, all others
being related by symmetry. Increasing the number of final

state gluons then leads to a change in the constant & f;” 1)(r)

but does not call for the evaluation of a larger number of
nonredundant contributions, as the number of elements in
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Prxs remains constant. Therefore, following this prescrip-
tion, our scheme equally exhibits a constant scaling behav-
ior, when the number of gluons in the real emission final
state is increased.

We finally want to comment that, although the
above prescription can naturally lead to a significant
improvement in the treatment of real-emission subtrac-
tions for multiparton final states, it is not straightfor-
ward to implement in standard Monte Carlo generators
that do not internally make use of the symmetries
exhibited in Eq. (D1). The implementation of this
prescription therefore equally calls for a modification
of the NLO tools used for calculating the correspond-
ing process.
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