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We compute the magnetic dipole transitions between low-lying heavy quarkonium states in a model-

independent way. We use the weak-coupling version of the effective field theory named potential

nonrelativistic QCD, with the static potential exactly incorporated in the leading order Hamiltonian.

The precision we reach is k3�=m
2 �Oð�2

s ; v
2Þ and k3�=m

2 �Oðv4Þ for the allowed and forbidden

transitions, respectively, where k� is the photon energy. We also resum the large logarithms associated

with the heavy quark mass scale. The specific transitions considered in this paper are the following:

�ð1SÞ ! �bð1SÞ�, J=c ð1SÞ ! �cð1SÞ�, hbð1PÞ!�b0;1ð1PÞ�, �b2ð1PÞ ! hbð1PÞ�, �ð2SÞ ! �bð2SÞ�,
�ð2SÞ ! �bð1SÞ� and �bð2SÞ ! �ð1SÞ�. The effect of the new power counting is found to be large, and

the exact treatment of the soft logarithms of the static potential makes the factorization scale dependence

much smaller. The convergence for the b �b ground state is quite good, and also quite reasonable for the c �c

ground state and the b �b 1P state. For all of them we give solid predictions. For the 2S decays the situation

is less conclusive, yet our results are perfectly consistent with existing data, as the previous disagreement

with experiment for the �ð2SÞ ! �bð1SÞ� decay fades away. We also compute some expectation values

like the electromagnetic radius, hr2i, or hp2i. We find hr2i to be nicely convergent in all cases, whereas the
convergence of hp2i is typically worse.

DOI: 10.1103/PhysRevD.87.074024 PACS numbers: 12.38.�t, 12.39.Hg, 13.20.Gd, 12.38.Cy

I. INTRODUCTION

Heavy quarkonium has always been thought to be the
‘‘hydrogen atom’’ of QCD. The reason for this is that the
heavy quarks in the bound state move at nonrelativistic
velocities: v � 1. This allows us to test the dynamics
associated with the gluonic and light-quark degrees of
freedom in a kinematic regime otherwise unreachable
with only light degrees of freedom. Effective field theories
(EFTs) directly derived from QCD, like nonrelativistic
QCD (NRQCD) [1] or potential nonrelativistic QCD
(pNRQCD) [2] (for some reviews see Refs. [3,4]), disen-
tangle the dynamics of the heavy quarks from the dynamics
of the light degrees of freedom efficiently and in a model-
independent way. They profit from the fact that the dyna-
mics of the bound state system is characterized by, at least,
three widely separated scales: hard (the mass m of the
heavy quarks), soft (the relative momentum j ~pj �mv �
m of the heavy-quark-antiquark pair in the center-of-mass
frame), and ultrasoft (the typical kinetic energy E�mv2

of the heavy quark in the bound state system).
In this paper we use pNRQCD. This EFT takes full

advantage of the hierarchy of scales that appear in the
system,

m � mv � mv2 � � � ; (1)

and makes a systematic and natural connection between
quantum field theory and the Schrödinger equation.
Schematically, the EFT takes the form

ði@0 � ~p2

m � Vð0Þ
s ðrÞÞ�ð ~rÞ ¼ 0

þ corrections to the potential

þinteractions with other low-energy

degrees of freedom

9>>>>=
>>>>;
pNRQCD

where Vð0Þ
s ðrÞ is the static potential and �ð ~rÞ is the Q- �Q

wave function.
The specific construction details of pNRQCD are

slightly different depending on the relative size between
the soft and the �QCD scale. Two main situations are

distinguished, namely, the weak-coupling [2,5] (mv �
�QCD) and the strong-coupling [6] (mv ’ �QCD) versions

of pNRQCD. One major difference between them is that in
the former the potential can be computed in perturbation
theory, unlike in the latter.
It is obvious that the weak-coupling version of pNRQCD

is amenable for a theoretically much cleaner analysis. The
functional dependence on the parameters of QCD (�s and
the heavy quark masses) is fully under control and directly
derived from QCD. The observables can be computed in
well-defined expansion schemes with increasing accuracy,

and nonperturbative effects are �e�1=�s , exponentially
suppressed compared with the expansion in powers of
�s. Therefore, observables that could be computed with
the weak-coupling version of pNRQCD are of the greatest
interest. They may produce stringent tests of QCD in the
weak-coupling regime (but yet with an all-order resumma-
tion of powers of �s included) and, precision permitting,
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are ideal places in which to accurately determine some of
the parameters of QCD. Nowadays, there seems to be a
growing consensus that the weak-coupling regime works
properly for t-�t production near threshold, the bottomo-
nium ground state mass, and bottomonium sum rules. To
reach this conclusion, it is crucial to properly incorporate
renormalon effects, which leads to convergent series, and
the resummation of large logarithms, which significantly
diminish the factorization scale dependence of the observ-
able. Nevertheless, even in those cases, the situation is not
optimal. For some observables, even if getting a conver-
gent expansion, the corrections are large, or in the case of
the bottomonium ground state hyperfine splitting, a two-
sigma-level tension between experiment (see Ref. [7]) and
theory [8,9] exists.

In order to improve the convergence properties of the
theory, the perturbative expansion in pNRQCD was rear-
ranged in Ref. [10]. In this new expansion scheme the static
potential was exactly included in the leading order (LO)
Hamiltonian. The motivation behind this reorganization of
the perturbative series is the observation [11] that, when
comparing the static potential with lattice perturbation
theory, one finds a nicely convergent sequence to the lattice
data (at short distances). Yet, for low orders, the agreement
is not good, and the incorporation of corrections is com-
pulsory to get a good agreement. This effect can be par-
ticularly important in observables that are more sensitive
to the shape of the potential, and it naturally leads us to
consider a double expansion in powers of v and �sðmÞ,
where v has to do with the expectation value of the
kinetic energy (or the static potential) in this new expan-
sion scheme.

In Ref. [10] this new expansion scheme was applied to
the computation of the heavy quarkonium inclusive elec-
tromagnetic decay ratios. An improvement of the conver-
gence of the sequence for the top and bottom cases was
observed. It is particularly remarkable that the exact incor-
poration of the static potential allows one to obtain agree-
ment between theory and experiment for the case of the
charmonium ground state. This leads to the second moti-
vation of the present study: the possible applicability of the
weak-coupling version of pNRQCD to the charmonium
(ground state) and the n ¼ 2 excitation of the bottomo-
nium. For those states the situation is more uncertain.
Whereas Refs. [12–14] claimed that it is not possible to
describe the bottomonium higher excitations in perturba-
tion theory, an opposite stand is taken in Refs. [9,15–17].
We hope that we may shed some light on this issue as well.

The above discussion basically refers to the deter-
mination of the heavy quarkonium mass and inclusive
electromagnetic decay widths. Obviously there are more
observables that can be considered. Some of those are the
radiative transitions HðnÞ ! Hðn0Þ�, where n, n0 stand for
the principal quantum numbers of the heavy quarkonium.
In Ref. [18] the allowed (n ¼ n0) and hindered (n � n0)

magnetic dipole (M1) transitions between low-lying heavy
quarkonium states were studied with pNRQCD in the strict
weak-coupling limit. The authors of that work also per-
formed a detailed comparison of the EFT and potential
model (see Refs. [19,20] for some reviews) results. The
specific transitions considered in that paper were the fol-
lowing: J=c ð1SÞ!�cð1SÞ�,�ð1SÞ ! �bð1SÞ�,�ð2SÞ !
�bð2SÞ�,�ð2SÞ!�bð1SÞ�, �bð2SÞ ! �ð1SÞ�, hbð1PÞ !
�b0;1ð1PÞ� and �b2ð1PÞ ! hbð1PÞ�. Large errors were

assigned to the pure ground state observables, especially
for charmonium, whereas disagreement with experimental
bounds (at that time) was found for the hindered transition
�ð2SÞ ! �bð1SÞ�. In this paper we apply the new
expansion scheme to those observables. The precisions
we reach are k3�=m

2 �Oð�2
s ; v

2Þ and k3�=m
2 �Oðv4Þ for

the allowed and forbidden transitions, respectively, where
k� is the photon energy. Large, hard logarithms (associated

with the heavy quark mass) have also been resummed
when they appear. The effect of the new power counting
is found to be large, and the exact treatment of the soft
logarithms of the static potential makes the factorization
scale dependence much smaller. The convergence for the
b �b ground state is quite good. This allows us to give a solid
prediction for the �ð1SÞ ! �bð1SÞ� transition with small
errors. The convergence is also quite reasonable for the c �c
ground state and the b �b 1P state. For all of them we give
solid predictions. For the J=c ð1SÞ ! �cð1SÞ� transition
our central value is significantly different from the one
obtained in Ref. [18], though perfectly compatible within
errors. For the 2S decays the situation is less conclusive.
Whereas for the �ð2SÞ ! �bð2SÞ� decay we do not find a
convergence, previous disagreement with experiment for
the hindered transition �ð2SÞ ! �bð1SÞ� fades away with
the new expansion scheme.
The above observables depend on the expectation values

of some quantum mechanical operators, like ~p2 or ~r2

(the electromagnetic radius). Studying them in an isolated
way is interesting on its own. First, they provide us with
a very nice check of the renormalon dominance picture.
According to this picture the determination of the heavy
quarkonium mass using the static potential (in the on-shell
scheme) should yield a bad convergent series, as is actually
observed. The reason for this bad behavior is the existence
of an r-independent constant that contributes to the poten-
tial and deteriorates the convergence of the perturbative
series. If this is so, a check of this picture would be the
computation of observables that are not affected by adding
a constant to the potential. For those observables good
convergence is expected. This is actually the case of h ~p2i
or h ~r2i. We see in Sec. III that this picture is confirmed. We
find the electromagnetic radius (somewhat surprisingly) to
be nicely convergent in all cases. This allows us to discuss
the typical (electromagnetic) radius of the bound state in
those cases. The kinetic energy is also (though typically
less than the radius) convergent except for the 2S state.
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Then, we can also define a typical velocity v � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih ~p2i=m2
p

for those states.
This paper is distributed as follows. In Sec. II we discuss

the theoretical background of the computation and display
the formulas we use for the decays. In Sec. III we analyze
h ~p2i and h ~r2i and discuss renormalon dominance.
In Sec. IV we compute the radiative transitions. Finally,
in Sec. V we summarize our main results and give our
conclusions.

II. THEORETICAL SETUP

For the purposes of this paper we can skip most details
of pNRQCD. We will only need the singlet static pote-

ntial Vð0Þ
s ðrÞ ! VðrÞ and the spin-dependent potential

Vð2Þ
S2;s

ðrÞ ! VS2ðrÞ. 1The static potential will be treated ex-

actly by including it in the leading-order Hamiltonian

Hð0Þ � � r2

2mr

þVðrÞ and Hð0Þ�nlð~rÞ ¼ Enl�nlð ~rÞ; (2)

where mr¼m1m2=ðm1þm2Þ (in this paper m1¼m2¼m).
The static potential will be approximated by a polynomial
of order N þ 1 in powers of �s [Cf ¼ ðN2

c � 1Þ=ð2NcÞ,
CA ¼ Nc],

VðNÞðrÞ ¼ �Cf�sð�Þ
r

�
1þ XN

n¼1

�
�sð�Þ
4�

�
n
anð�; rÞ

�
: (3)

In principle, we would like to take N as large as possible
(though we also want to explore the dependence on N). In
practice, we take the static potential, at most, up to N ¼ 3,
i.e., up to Oð�4

s Þ, including also the leading ultrasoft
corrections. This is the order to which the coefficients an
are completely known:

a1ð�; rÞ ¼ a1 þ 2�0 ln ð�e�ErÞ;

a2ð�; rÞ ¼ a2 þ �2

3
�2

0 þ ð4a1�0 þ 2�1Þ ln ð�e�ErÞ þ 4�2
0ln

2ð�e�ErÞ;

a3ð�; rÞ ¼ a3 þ a1�
2
0�

2 þ 5�2

6
�0�1 þ 16	3�

3
0 þ

�
2�2�3

0 þ 6a2�0 þ 4a1�1 þ 2�2 þ 16

3
C3
A�

2

�
ln ð�e�ErÞ

þ ð12a1�2
0 þ 10�0�1Þln 2ð�e�ErÞ þ 8�3

0ln
3ð�e�ErÞ þ 
aus3 ð�; �usÞ: (4)

The Oð�sÞ term was computed in Ref. [21], the Oð�2
s Þ in

Ref. [22], the Oð�3
s Þ logarithmic term in Refs. [23,24], the

light-flavor finite piece in Ref. [25], and the pure gluonic
finite piece in Refs. [26,27]. For the ultrasoft corrections to
the static potential we take


aus3 ð�; �usÞ ¼ 16

3
C3
A�

2 ln

�
�us

�

�
: (5)

We will not use the renormalization group improved ultra-
soft expression in this paper [28–32], as its numerical
impact is small compared with other sources of error.

We will always work with three light (massless) quarks.
For the case of the bottomonium ground state we also
incorporate the leading effect due to the charm mass:


V½2�ðrÞ ¼ � 4

3

�ð3Þ
s ð�Þ
r

�
�ð3Þ
s ð�Þ
3�

�

�
Z 1

1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

x2

�
1þ 1

2x2

�
e�2mcrx; (6)

which can be easily read from the analogous QED compu-
tation (see, for instance, Ref. [33]). Its effect will be quite
tiny. Therefore, we have only incorporated Eq. (6) in our

final (N ¼ 3) evaluations and have not considered any
other subdominant effects in the charm mass.
The spin-dependent potential will be treated as a pertur-

bation. It will contribute to the hindered M1 transitions.
Nowadays, this is known with next-to-leading-log (NLL)
accuracy [34]. Nevertheless, for consistency with our ac-
curacy, we will use its LL expression

VS2ð ~rÞ ¼
4

3
�CfD

ð2Þ
S2;s

ð�Þ
ð3Þð~rÞ; (7)

where Ref. [35] (see also Ref. [36] for the derivation in
velocity NRQCD)

Dð2Þ
S2;s

ð�Þ ¼ �sð�Þc2Fð�Þ �
3

2�Cf

ðdsvð�Þ þ Cfdvvð�ÞÞ (8)

depends on the NRQCD Wilson coefficients. With LL
accuracy they read

cFð�Þ ¼ z�CA;

dsvð�Þ ¼ dsvðmÞ;
dvvð�Þ ¼ dvvðmÞ þ CA

�0 � 2CA

��sðmÞðz�0�2CA � 1Þ;

(9)

where

1For simplicity, we omit the index ‘‘s’’ for singlet and the
upper indices ‘‘(0)’’ and ‘‘(2)’’ throughout the paper.
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z ¼
�
�sð�Þ
�sðmÞ

� 1
�0 ’ 1� 1

2�
�sð�Þ ln

�
�

m

�
;

dsvðmÞ ¼ Cf

�
Cf � CA

2

�
��sðmÞ;

dvvðmÞ ¼ �
�
Cf � CA

2

�
��sðmÞ:

(10)

The theoretical study of the M1 transitions in the strict
weak-coupling limit of pNRQCD has been carried out in
detail in Ref. [18]. A particular relevant result was that
nonperturbative effects, associated with the mixing
with the octet field, were subleading and beyond present
precision. We can use their results in our power counting
scheme with minor modifications (note that the depen-
dence on the ultrasoft scale only enters marginally through
the static potential). The expressions we use for the decays
are the following (see Fig. 1 for the kinematics),2

�ðn3S1 ! n1S0�Þ¼ 4

3
�e2Q

k3�

m2

�
ð1þ�Þ2�5

3

hp2in0
m2

�
; (11)

�ðn3S1 ! n01S0�Þ ¼n�n0 4

3
�e2Q

k3�

m2

�
� k2�
24 n00hr2in0

� 5

6

n00hp2in0
m2

þ 2

m2

n00hVS2ð~rÞin0
En0 �En00

�
2
;

(12)

�ðn1S0 ! n03S1�Þ ¼n�n0
4�e2Q

k3�

m2

�
� k2�
24 n00hr2in0

� 5

6

n00hp2in0
m2

� 2

m2

n00hVS2ð~rÞin0
En0 � En00

�
2
;

(13)

�ðn3PJ!n1P1�Þ¼3�ðn1P1!n3PJ�Þ
2Jþ1

¼4

3
�e2Q

k3�

m2

�
ð1þ�Þ2�dJ

hp2in1
m2

�
; (14)

where in Eq. (14) d0 ¼ 1, d1 ¼ 2, d2 ¼ 8=5,

k� ¼ j ~kj ¼ M2
H �M2

H0

2MH

; (15)

and the anomalous magnetic moment of the heavy quark,
which is renormalization group invariant, reads

� ¼ �ð1Þ�sðmÞ þ �ð2Þ�2
sðmÞ þ � � � (16)

�ð1Þ ¼
�
Cf

2�

�
; (17)

�ð2Þ ¼ Cf

�2

��
� 31

16
þ 5�2

12
� �2 ln 2

2
þ 3	3

4

�
Cf

þ
�
317

144
� �2

8
þ �2 ln 2

4
� 3	3

8

�
CA

þ
�
� 25nf

36
þ 119

36
� �2

3

�
TF

�
: (18)

We take � from Ref. [37] (it was originally computed in
Refs. [38,39], though the first reference suffered from a
factor 4 misprint).
Equations (11)–(14) follow from the expressions ob-

tained in Ref. [18], except for the following changes:
(i) The matrix elements of ~r2, ~p2 and VS2 are computed
using the exact solution of Eq. (2), with the static potential
approximated to the powerN instead of using the Coulomb
potential; (ii) we use the heavy quark anomalous dimen-
sion � to Oð�2

s Þ; (iii) our expression for VS2 , Eq. (7),
incorporates the LL resummation of logarithms (this will
actually be important for the 2S ! 1S decays). Overall,
our expressions are accurate with k3�=m

2 �Oðv2; �2
s Þ and

k3�=m
2 �Oðv4Þ precision for the allowed and hindered

transitions, respectively, and also include the resummation
of large (hard) logarithms.
Equations (11)–(14) have been obtained in the on-shell

scheme. Therefore, they depend on the pole mass m and
the static potential V, both of which suffer from severe
renormalon ambiguities. On the other hand, the decays
themselves are renormalon-free, as they are observables.
Therefore, it is convenient to make the renormalon can-
cellation explicit. One first makes the substitution3

ðm;VðrÞÞ ¼ ðmX þ 
mX; VXðrÞ � 2
mXÞ; (19)

where


mðNÞ
X ð�fÞ ¼ �f

XN
n¼0


mðnÞ
X

�
�f

�

�
�nþ1
s ð�Þ (20)

represents a residual mass that encodes the pole mass renor-
malon contribution, andX stands for the specific renormalon
subtraction scheme. Matrix elements are renormalon-free,
but not the heavy quark mass. Its renormalon ambiguity
cancels with the one coming from the anomalous magnetic
moment of the heavy quark. The renormalon structure of the
chromomagnetic moment of the heavy quark has been
studied in detail in Ref. [40]. If one uses the Abelian-like
limit, one can get the renormalon structure of the anomalous
magneticmoment of the heavy quark. One sees that it suffers
from the very same renormalon as the heavy quark mass.
Therefore, the quantity ð1þ �Þ=m is free of the renormalon
ambiguity (or at least of the leading one).When rewriting the
decay expressions from the on-shell scheme to theX scheme,
the change is absorbed in � so � ! �X, where

2In the following we use the notation hnSj ~p2jnSi ¼ hp2in0,hnPj ~p2jnPi ¼ hp2in1, hn0Sj ~p2jnSi¼n00hp2in0 and so on.

3Note that 
mX and m (or V) have to be expanded to the same
power in �s and at the same scale.
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�X ¼ �ð1Þ
X �sðmÞ þ �ð2Þ

X �2
sðmÞ þ � � � (21)

with

�ð1Þ
X ¼ �ð1Þ � �f

m

mð0Þ

X

�
�f

m

�
; (22)

�ð2Þ
X ¼ �ð2Þ � �f

m

mð1Þ

X

�
�f

m

�
� �ð0Þ �f

m

mð0Þ

X

�
�f

m

�

þ
�
�f

m

mð0Þ

X

�
�f

m

��
2
: (23)

Overall, in Eqs. (11)–(14) we have to make the replacement
ðm;V; �Þ ! ðmX; VX; �XÞ throughout. Note that, once writ-
ten in terms of renormalon-free quantities, one may consider

differentN,N0 forVðNÞ
X ;mðN0Þ

X ; . . . , and the observablewould
still be renormalon-free.

III. APPLICABILITY OF WEAK COUPLING
TO HEAVY QUARKONIUM

The allowed M1 radiative transitions depend on hp2inl
and, at higher orders, on other expectation values such as
hr2inl. Studying them gives us a hint of the applicability of
the weak-coupling version of pNRQCD to those states, and
a very nice check of the renormalon dominance picture.
In this section we compute the bound state energy (Enl),
hp2inl and hr2inl for the charmonium ground state and for
n ¼ 1, 2 bottomonium states. In the cases where we have

good convergence, we will be able to obtain well-defined

values for vnl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihp2inl=m2

p
and hr2inl.

Our reference values for the charm and bottom masses
are mbðmbÞ ¼ 4:19 [41] and mcðmcÞ ¼ 1:25 [42], which
we then transform to renormalon subtracted schemes like
the RS, RS’ [43] or PS [44]. We will mainly use the RS’
scheme and leave the RS and PS schemes for partial
checking (in particular, that the dependence on the renor-
malon subtraction scheme is small). Therefore, we use

[
mð0Þ
RS0 ¼ 0 and dnð�; �fÞ ¼ �n=2

1þ2n ln ð ��f
Þ]


mð1Þ
RS0

�
�f

�

�
¼ Nm

�0

2�
Sð1; bÞ;


mð2Þ
RS0

�
�f

�

�
¼ Nm

�
�0

2�

��
Sð1; bÞ 2d0ð�; �fÞ

�
þ

�
�0

2�

�
Sð2; bÞ

�
;


mð3Þ
RS0

�
�f

�

�
¼ Nm

�
�0

2�

��
Sð1; bÞ 3d

2
0ð�; �fÞ þ 2d1ð�; �fÞ

�2
þ

�
�0

2�

�
Sð2; bÞ 3d0ð�; �fÞ

�
þ

�
�0

2�

�
2
Sð3; bÞ

�
;

(24)

where

Sðn; bÞ ¼ X2
k¼0

ck
�ðnþ 1þ b� kÞ
�ð1þ b� kÞ (25)

with c0 ¼ 1 and

b ¼ �1

2�2
0

; c1 ¼ 1

4b�3
0

�
�2

1

�0

� �2

�
(26)

and

c2 ¼ 1

bðb� 1Þ
�4

1 þ 4�3
0�1�2 � 2�0�

2
1�2 þ �2

0ð�2�3
1 þ �2

2Þ � 2�4
0�3

32�8
0

: (27)

For easy of reference, we give some typical values that we will use in this paper: mb;RS0 ð0:7 GeVÞ ¼
4902 MeV, mb;RS0 ð1GeVÞ¼4859MeV, mc;RS0 ð0:7GeVÞ¼1648MeV, mc;RS0 ð1 GeVÞ ¼ 1536 MeV. Our reference
value for Nm will be Nm ¼ 0:574974 (for three light flavors) from Ref. [43]. To this number we will typically assign a
10% uncertainty. Our reference value for �s will be �

ðnf¼3Þ
s ð1 GeVÞ ¼ 0:479778, which we obtain running down

FIG. 1. Kinematics of the radiative transition H ! H0� in the
rest frame of the initial-state quarkonium H.
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�
ðnf¼5Þ
s ðMZÞ ¼ 0:118. We then run �s with four loop accuracy for the typical scales of the bound state system. Unless

stated otherwise, throughout the paper we will set �us ¼ �f.
The static potential we will consider in the following will be (in the RS’ scheme)

VðNÞ
RS0 ðrÞ ¼

8<
:
ðVðNÞ þ 2
mðNÞ

RS0 Þj�¼� � P
N
n¼0 VRS0;n�

nþ1
s ð�Þ if r > ��1

r

ðVðNÞ þ 2
mðNÞ
RS0 Þj�¼1=r �

P
N
n¼0 VRS0;n�

nþ1
s ð1=rÞ if r < ��1

r :
(28)

This expression encodes all the possible limits:
(a) The case �r ¼ 1, �f ¼ 0 is nothing but the on-shell

static potential at fixed order, i.e., Eq. (3). Note that
the N ¼ 0 case reduces to a standard computation
with a Coulomb potential, for which we can com-
pare with analytic results for the matrix elements.
We will use this fact to check our numerical solu-
tions for the Schrödinger equation. If we also switch
off the hard logs and the Oð�2

s Þ correction to the
anomalous magnetic moment, our computation
would be equal to the one performed in Ref. [18].
We will use this fact to compare with the results in
that reference throughout the paper.

(b) In the case �r ¼ 1 (with finite nonzero �f) we add

an r-independent constant to the static potential
(see the discussion in Ref. [11]). Therefore, the
results for hp2inl and hr2inl do not depend on the
specific value of �f (for a fixed heavy quark mass).

In particular, the value �f ¼ 0 can be taken, which

is equivalent to not considering any renormalon
subtraction at all. On the other hand, the binding
energy Enl is renormalon dependent. This effect
can be seen in full glory in Fig. 2, where we plot
M10 ¼ 2mb;RS0 ð0:7 GeVÞ þ E10 and hr2i10 for the
case of the bottomonium using the static potential

VðNÞ
RS0 at different orders in perturbation theory: N ¼

0, 1, 2, 3. We clearly observe how, for the �r ¼ 1,
�f ¼ 0 case, the bound state energy is not conver-

gent (see dashed lines), whereas hr2i10 is convergent
(see solid lines). On the other hand, for the �r ¼ 1,
�f ¼ 0:7 GeV case, both the bound state energy and

hr2i10 show a nice convergent pattern as we increase
N (see solid lines). Note that hr2i10 is exactly the
same in both cases: �f ¼ 0 or �f ¼ 0:7 [this is

the reason only solid lines show up in Fig. 2(b)].
The same analysis can be done for hp2i10, as one can
see in Fig. 3 for the dashed lines (note, though, that
hp2i10 is less convergent than hr2i10).
A rather similar picture is observed for the char-
monium ground state, though the sequences, as ex-
pected, are less convergent. Again, it is compulsory
to incorporate the renormalon cancellation (finite
�f) to transform the bound state energy in a con-

vergent sequence in N, whereas hr2i and hp2i are
always convergent (see the dashed lines of Fig. 4).
Everything is in full accordance with the renorma-
lon dominance picture.

For the n ¼ 2 bottomonium states the situation is
less conclusive. For both the P- and S-waves hr2i
is convergent—see the dashed lines of Figs. 5(a) and
6(a), respectively. On the other hand, hp2i is only
marginally convergent for P-waves [see the dashed
lines of Fig. 5(b)], or even not convergent for the
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FIG. 2 (color online). Plot of M10 ¼ 2mb;RS0 ð0:7 GeVÞ þ E10

and
ffiffiffiffiffiffiffiffiffiffiffiffihr2i10

p
of the bottomonium ground state using the static

potential VðNÞ
RS0 at different orders in perturbation theory: N ¼ 0,

1, 2, 3. The dashed lines have been computed with �f ¼ 0. The

continuous lines have been computed with �f ¼ 0:7 GeV. In

both cases �r ¼ 1 GeV.
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S-wave [see the dashed lines of Fig. 6(b)], as each
order is typically of the same size.

(c) We now take �r ¼ finite (and, for consistency,
�r 	 �f). We expect this case to improve over the

previous results, as it incorporates the correct (log-
arithmically modulated) short distance behavior of
the potential. Yet, this has to be done with care in
order not to spoil the renormalon cancellation. For
this it is compulsory from now on to keep a finite,
nonvanishing �f; otherwise, the renormalon cancel-

lation is not achieved order by order in N, as was
discussed in detail in Ref. [11]. We have explored
the effect of different values of �f in our analysis.

Large values of �f imply a large infrared cutoff. This

makes our scheme become closer to a MS-like
scheme. Such schemes still achieve renormalon

cancellation, yet they jeopardize the power count-
ing, as the residual mass does not count asmv2. This
comes at the cost of making the consecutive terms of
the perturbative series bigger. Therefore, we prefer
values of �f as low as possible, with the constraint

that one should still obtain the renormalon cancella-
tion, and that it is still possible to perform the
expansion in powers of �s. In our analysis we ob-
serve that we can use a rather low value of �f and yet

obtain the renormalon cancellation. By also taking a
low value of �r we find that the convergence is
accelerated and the scale dependence is significantly
reduced. We illustrate this behavior in Figs. 3–6,
where we can compare the case with �r ¼ finite
(continuous lines) and �r ¼ 1 (dashed lines). This
improvement is observed in all cases except for the
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2S bottomonium hp2i20. Especially relevant for us
is that it accelerates the convergence of hp2i10 for
charmonium and transforms hp2i21 into a convergent
series.

Leaving aside the 2S bottomonium state, it is particu-
larly appealing to compare the N ¼ 0 case for �r ¼ finite
and �r ¼ 1. The latter corresponds to the Coulomb
approximation, and it is the one used in the strict weak-
coupling analysis performed for the radiative transitions
in Ref. [18]. One can see a very strong scale dependence,
almost a vertical line compared with the �r ¼ 0:7 GeV
case (see, for instance, Fig. 3). Therefore, small varia-
tions of the scale produce very large changes in the
theoretical prediction. This makes it difficult to assign
central values (and errors). This is not the case after
resumming the soft logarithms by setting �r � 0. This
produces flatter plots. Note also that, typically, there is

a scale where �r ¼ 1 and �r ¼ 0:7 lines cross. One
can then take this scale as a way to fix the scale � of
the computation with �r ¼ 1 (which corresponds to the
strict weak-coupling expansion).
Overall, we find the electromagnetic radius (somewhat

surprisingly) to be nicely convergent in all cases. This
allows us to discuss the typical (electromagnetic) radius
of these bound states. The kinetic energy is also (though
typically less than the radius) convergent, except for the 2S
state. Then, we can also define a v2

nl � hp2inl=m2 for those

states. We show these numbers in Table I. These numbers
can be taken as estimates of the typical radius of the bound
state system and of the typical velocity of the heavy quarks
inside the bound state. It is comforting that the numbers
we obtain for v2 are similar to those usually assigned either
by potential models or by NRQCD (see, for instance,
Refs. [45,46]). The specific values in the table have been
taken from the N ¼ 3 case at � ¼ 1:5 GeV (and �f ¼
�r ¼ 0:7 GeV). For the b �b ground state the result is very
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lines have been computed with �r ¼ 0:7 GeV. In both cases
�f ¼ 0:7 GeV.
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stable under scale variations; for the charm ground state
and for the bottomonium P-wave the scale dependence is
bigger. We stress that the numbers in the table should be
taken as estimates. We do not attempt here to perform a
specific error analysis of those numbers, as it is not needed
for the decays. Let us just mention that one source of the
error would come from the 1=m subleading potentials. In
principle, these effects would produce Oðv2Þ corrections.
For bottomonium and charmonium this would typically
mean �7% and �20% variations of the central values,
respectively. Especially for bottomonium, such uncertain-
ties would compete with the difference between differentN
evaluations or, in some cases, with the scale variation.
Finally, we remark that for the 2S bottomonium state the
numbers in the table should be taken with more caution, as
there is no convergence in the sequence in N. One might
actually be surprised by the fact that the ðn; lÞ ¼ ð2; 1Þ and
the ðn; lÞ ¼ ð2; 0Þ states show this different behavior, as
far as convergence is concerned, since the typical transfer
momentum is the same. One should note, though, that the
ðn; lÞ ¼ ð2; 0Þ squared wave function has two maxima, and
the most important one is a very low momentum. On the
other hand, this problem only appears for hp2i and not for
hr2i, so we find the situation inconclusive.

The results of this and the following section have been
obtained by solving the Schrödinger equation numerically.
We have performed a series of tests of the numerical
solutions. As we have already mentioned, the case N ¼ 0
with �r ¼ 1 corresponds to the Coulomb case. We have
checked the numerical solution against the known analyti-
cal result in this case. For a general N and �r we have also
computed hp2i either directly (in momentum space) or
through the equality hðE� VðrÞÞi ¼ hp2=mi. Finally, we
have also checked the wave function at the origin, either by
direct computation (taking the smallest point at which the
wave function has been computed and checking for stabil-
ity) or through the equality j�nlð0Þj2 ¼ m=ð4�ÞhV0ðrÞinl
(see Ref. [45]).

IV. M1 TRANSITIONS

In this section we compute the M1 radiative transitions
for the low-lying bottomonium and charmonium states.

A. �ð1SÞ ! �bð1SÞ�
Our central value for ��ð1SÞ!�bð1SÞ� is obtained using

Eq. (11) withN¼3, �¼1:5GeV, and �f ¼ �r ¼ 0:7 GeV.

For k� we take the values of the �ð1SÞ and �bð1SÞ masses

from the PDG [7]. 4In Table II we show the size of the
different contributions to ��ð1SÞ!�bð1SÞ�. The Oð�sÞ and

Oð�2
s Þ corrections are evaluated at the mass scale. The

Oð�sðmÞÞ corrections in the RS’ and on-shell scheme are
equal. Renormalon effects first appear at Oð�2

s ðmÞÞ and
make this expansion more convergent. Yet, as we have
taken a small value of �f, the Oð�2

s ðmÞÞ term is still large.

There are no OðvÞ corrections. The Oðv2Þ correction can
be evaluated at different orders in N, and for different
values of the factorization scale. One can easily deduce
its size by multiplying Fig. 3(b) by -5=3 times the LO
result. The value quoted in Table II for the Oðv2Þ correc-
tion has been obtained for N ¼ 3 and � ¼ 1:5 GeV. An
almost identical value is obtained if one takes � to be the
scale of minimal sensitivity. Actually, one also obtains a
quite similar value if one takes the scale of minimal
sensitivity of the N ¼ 3, �r ¼ 1 computation. The great
advantage of using �r ¼ 0:7 GeV versus �r ¼ 1 is that
the � dependence becomes very mild; thus, it is not a
source of uncertainty, and one can give sensible predictions
for the central values. We note that, depending on the order
N, minimal sensitivity scales may not show up, as we can
see in Fig. 3 for other values of N and/or �r. Therefore, in
some cases such a prescription may not give a meaningful
result, and the series may still be convergent.
If we sum all the contributions of Table II we obtain

15.18 eV, which is quite close to the LO 14.87 eV value.
This is due to the strong cancellation between the �s and v
corrections. The main source of uncertainty comes from
higher order terms. Because of the strong cancellation
between the �s and v terms, we feel that adding a power
of v to the overall correction would underestimate the
error. Instead, we take the v�Oðv2Þ contribution in
Table II as our estimate of the subleading correction, as it
is the biggest possible contribution. Such a term alone
produces an error of order 3%. This error is much bigger
than the error we would obtain if only considering scale
variations (see Fig. 7), or if we were to do the evaluation
with N ¼ 2 instead of N ¼ 3 (see, again, Fig. 7); it is also
bigger than the error associated with variations of �f.

TABLE II. The leading and subleading contributions to
��ð1SÞ!�bð1SÞ�. The last two numbers are error estimates obtained

by multiplying the subleading Oð�2
s Þ contribution by �s and the

subleading Oðv2Þ contribution by v.

LO Oð�sÞ Oð�2
s Þ Oðv2Þ �s �Oð�2

s Þ v�Oðv2Þ

� (eV) 14.87 1.29 0.73 �1:71 0.15 �0:45

TABLE I. Estimates for v � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihp2i=m2
p

and
ffiffiffiffiffiffiffiffihr2ip

for the
heavy quarkonium states. For the b �bð2SÞ state the number we
give for v is quite uncertain.

b �bð1SÞ c �cð1SÞ b �bð1PÞ b �bð2SÞ
v 0.26 0.43 0.25 0.24ffiffiffiffiffiffiffiffihr2ip ðGeV�1Þ 1.2 2.2 2.1 2.9

4We note, though, that there is a recent determination of the
�bð1SÞ mass which is around 10 MeV lower [47] than the PDG
value. If such a value is confirmed k� should be changed
accordingly (as ��ð1SÞ!�bð1SÞ� / k3� the effect is important),
which can be trivially done.
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All these errors are associated with higher order effects.
We do not include those, in order to avoid double counting.
The only other source of theoretical error that we include is
the one due to Nm (for the evaluation of this error we also
take into account the correlation with the bottom mass
value). Besides the theoretical error, we also include the
error associated with the QCD parameters, even though its
size is typically smaller than the theoretical error. For �s

we take the variation �sðMzÞ ¼ 0:118
 0:001 [7]. For the

variation of the MS bottom mass we take mbðmbÞ ¼
4:19
 0:03 GeV. In summary, we obtain the following
result for the different error contributions:

��ð1SÞ!�bð1SÞ� ¼ 15:18
 0:45ðOðv3ÞÞ�0:12
�0:05ðNmÞ

�0:04
þ0:03ð�sÞ�0:20

þ0:20ðmMSÞ eV; (29)

which, after combining the errors in quadrature, reads

��ð1SÞ!�bð1SÞ� ¼ 15:18ð51Þ eV: (30)

This corresponds to a branching fraction of 2:9� 10�4.
Equation (30) is bigger than the result obtained in Ref. [18]
[� ðk�=39Þ3 � 2:5 keV; see Ref. [48]] but compatible

within errors.

B. J=c ð1SÞ ! �cð1SÞ�
Our central value for �J=c ð1SÞ!�cð1SÞ� is obtained using

Eq. (11) with N ¼ 3, � ¼ 1:5 GeV, and �f ¼ �r ¼
0:7 GeV. For k� we take the values of the J=c ð1SÞ and
�cð1SÞ masses from the PDG [7]. In Table III we show
the size of the different contributions to �J=c ð1SÞ!�cð1SÞ�.

TheOð�sÞ andOð�2
s Þ corrections are evaluated at the mass

scale. The Oð�sðmÞÞ corrections in the RS’ and on-shell
schemes are equal. Renormalon effects first appear at
Oð�2

s ðmÞÞ and make this expansion more convergent.
Yet, as we have taken a small value of �f, the Oð�2

s ðmÞÞ
term is still large. There are no OðvÞ corrections. The
Oðv2Þ correction can be evaluated at different orders in
N, and for different values of the factorization scale. One
can easily deduce its size by multiplying Fig. 4(b) by -5=3
times the LO result. The value quoted in Table III for
the Oðv2Þ correction has been obtained for N ¼ 3 and
� ¼ 1:5 GeV. Unlike in Sec. IVA, in this case there are
no scales of minimal sensitivity. The use of a finite �r

significantly diminishes the factorization scale dependence
of the result. Yet, we also observe that a large scale
dependence remains for small scales. Therefore, the value
we quote in Table III for the Oðv2Þ correction corresponds
to N ¼ 3 and � ¼ 1:5 GeV, as we feel that smaller values
of � may yield unrealistic results.
If we sum all the contributions of Table III we obtain

2.12 keV, which is quite close to the LO 2.34 keV value.
This is due to the strong cancellation between the �s and v
corrections. The main source of uncertainty comes from
higher order terms. Because of the strong cancellation
between the �s and v terms, we feel that adding a power
of v to the overall correction would underestimate the
error. Instead, we take the v�Oðv2Þ contribution in
Table III as our estimate of the subleading correction, as
it is the biggest possible individual term. This term alone
produces an error of order 15%. This error is much bigger
than the error we would obtain if only considering scale
variations (see Fig. 8), or if we were to do the evaluation
with N ¼ 2 instead of N ¼ 3 (see, again, Fig. 8). It is also
bigger than the error associated with variations of �f.

All these errors are associated with higher order effects.
We do not include those, in order to avoid double counting.
The only other source of theoretical error that we include
is the one due to Nm (for the evaluation of this error we
also take into account the correlation with the charm
mass value). Besides the theoretical error, we also include
the error associated with the QCD parameters, even
though its size is typically smaller than the theoretical
error. For �s we take the variation �sðMzÞ¼0:118

0:001 [7]. For the variation of the MS charm mass we
take mcðmcÞ ¼ 1:25
 0:04 GeV (see, for instance,
Ref. [42]). In summary, we obtain the following result
for the different error contributions:
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TABLE III. The leading and subleading contributions to
�J=c ð1SÞ!�cð1SÞ�. The last two numbers are error estimates ob-

tained by multiplying the subleading Oð�2
s Þ contribution by �s

and the subleading Oðv2Þ contribution by v.

LO Oð�sÞ Oð�2
s Þ Oðv2Þ �s �Oð�2

s Þ v�Oðv2Þ

� (keV) 2.34 0.33 0.16 �0:71 0.05 �0:30
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�J=c ð1SÞ!�cð1SÞ� ¼ 2:12
 0:30ðOðv3ÞÞþ0:21
�0:23ðNmÞ

�0:02
þ0:02ð�sÞ�0:10

þ0:11ðmMSÞ keV; (31)

which, after combining the errors in quadrature, reads

�J=c ð1SÞ!�cð1SÞ� ¼ 2:12ð40Þ keV: (32)

This corresponds to a branching fraction of 2:28� 10�2.
We can now compare this with previous determinations

of this decay. As in Ref. [49], we summarize the compari-
son in Fig. 9. Unlike in that reference, we do not include
the values obtained in Refs. [19,20] assigned to potential

models. They correspond to the LO computation in our
notation (see Table III). The difference with our value is
(mainly) due to the different value of the charm mass. Note
that in our case the charm mass is not a free parameter;

rather, it is fixed by the value of the MS mass. We could
still vary the RS’mass by changing �f, but this effect would

be compensated by the Oð�s; vÞ effects. We now compare
with the EFT computation of Ref. [18]. It is equivalent to
ours, setting N ¼ 0, �r ¼ 1, and eliminating the Oð�2

s Þ
corrections. When we do so, we can get agreement with
their number if we, as they do, set a very low value for the
factorization scale (there are minor differences coming
from the values of the heavy quark masses used). We see
a very strong scale dependence in this regime. In this paper
we restrict ourselves to values of � where we get stable
results after the resummation of the soft logarithms. This
produces much bigger numbers, which, however, get re-
duced by increasingN. Either way, it should be emphasized
that both results are perfectly compatible within errors. We
also refer to Fig. 9 for comparison with the existing experi-
mental numbers [50–52], and other theoretical predictions
using either dispersion relations/sum rules [53–55] or lat-
tice simulations [49,56]. Our result is basically compatible
with all of themwithin errors.We can discriminate very low
values of the decay and start to have tensions with the
Crystal Ball determination.

C. P-wave decays

We now compute the P-wave decays for n ¼ 2 botto-
monium (though they could end up being of academic
interest because of the very small energy differences).
In this case we have several decays [see Eq. (14)]. The
differences among them are spin factors, which weight the
~p2 matrix element differently (there are also important
differences for k� depending on the decay). From the
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physical point of view the situation is similar to the
two previous sections, as the squared wave function still
has a single maximum, though more weighted at somewhat
smaller scales. Our central values for the decays
�hbð1PÞ!�b0ð1PÞ�, �hbð1PÞ!�b1ð1PÞ�, and ��b2ð1PÞ!hbð1PÞ� are

obtained using Eq. (14) with N¼3, �¼1:5GeV, and �f¼
�r¼0:7GeV. They are compatible with the numbers ob-
tained in Ref. [18] if we account for the different k� and a

trivial misprint (keV ! eV). For k� we take the masses of

the different P-wave states from the PDG [7]. In Table IV
we show the size of the different contributions. The Oð�sÞ
and Oð�2

s Þ corrections are evaluated at the mass scale.
The Oð�sðmÞÞ corrections are equal in the RS’ and
on-shell schemes. Renormalon effects first appear at
Oð�2

s ðmÞÞ and make this expansion more convergent, yet,
as we have taken a small value of �f, theOð�2

s ðmÞÞ term is

still relatively large. There are no OðvÞ corrections. The
Oðv2Þ correction can be evaluated at different orders in N
and for different values of the factorization scale. One can
easily deduce its size by multiplying Fig. 5(b) by -5=3
times the LO result. Unlike in Sec. IVA, in this case there
are no scales of minimal sensitivity. The use of a finite �r

significantly diminishes the factorization scale dependence
of the result. Yet, we observe that a strong scale depen-
dence remains for small scales. Therefore, the value we
quote in Table IV for the Oðv2Þ correction corresponds
to N ¼ 3 and � ¼ 1:5 GeV, as we feel that smaller values
of � may yield unrealistic results. Note that, unlike the
Oð�sÞ corrections, this contribution is weighted differently
for each decay. Therefore, properly weighted differences
of these decays may yield absolute determinations of
the h ~p2i21 matrix element. In any case, the relative sign
between the Oðv2Þ and Oð�sðmÞÞ corrections produces
cancellations between these terms. The magnitude of this
cancellation depends on the specific decay mode, but it is
large in all cases.

In order to estimate the errors we proceed analogously to
the two previous sections. We take the v�Oðv2Þ contri-
bution of Table IV as our estimate of the subleading
correction, as it is the biggest possible individual term.
The only other source of theoretical error that we include is
the one due to Nm (for the evaluation of this error we also
take into account the correlation with the bottom mass
value). Besides the theoretical error, we also include the
error associated with the QCD parameters, even though its

size is typically smaller than the theoretical error. For �s

we take the variation �sðMzÞ ¼ 0:118
 0:001 [7]. For the

variation of the MS bottom mass we take mbðmbÞ ¼
4:19
 0:03 GeV. In summary, we obtain the following
result for the different error contributions for the three
decays:

�hbð1PÞ!�b0ð1PÞ� ¼ 0:962
 0:013ðOðv3ÞÞþ0:029
�0:002ðNmÞ

�0:001
þ0:001ð�sÞ�0:013

þ0:013ðmMSÞ eV; (33)

�hbð1PÞ!�b1ð1PÞ� ¼ 8:99
 0:27ðOðv3ÞÞþ0:46
þ0:07ðNmÞ

�0:04
þ0:04ð�sÞ�0:12

þ0:12ðmMSÞ � 10�3 eV; (34)

��b2ð1PÞ!hbð1PÞ� ¼ 0:118
 0:003ðOðv3ÞÞþ0:005
þ0:000ðNmÞ

�0:000
þ0:000ð�sÞ�0:002

þ0:002ðmMSÞ eV; (35)

which, after combining the errors in quadrature, read

�hbð1PÞ!�b0ð1PÞ� ¼ 0:962ð35Þ eV; (36)

�hbð1PÞ!�b1ð1PÞ� ¼ 8:99ð55Þ � 10�3 eV; (37)

��b2ð1PÞ!hbð1PÞ� ¼ 0:118ð6Þ eV: (38)

The errors are heavily dominated by theory. They are
much bigger than the error we would obtain if only con-
sidering scale variations (see Fig. 10), or if we were to
do the evaluation with N ¼ 2 instead of N ¼ 3 (see, again,
Fig. 10). They are also bigger than the error associated with
variations of �f.

D. �ð2SÞ ! �bð2SÞ�
We now compute the �ð2SÞ ! �bð2SÞ� decay. We use

Eq. (11) with n ¼ 2, which depends on hp2i20. We observe
in Fig. 6 that this object is not convergent in N. Therefore,
the results of this section should be taken with some caution.
Our central value will be obtained by using Eq. (11) with

N ¼ 3, � ¼ 1:5 GeV, and �f ¼ �r ¼ 0:7 GeV. For k� we

take the value of the�ð2SÞmass from the PDG [7]. For the
mass of the �bð2SÞ we take the recent value obtained by
Belle [47] for definiteness. Nevertheless, we should remark
that a different value is obtained by using CLEO data [57]
(thus, our numbers can be trivially rescaled accordingly).
In Table V we show the size of the different contributions

TABLE IV. The leading and subleading contributions to �hbð1PÞ!�b0ð1PÞ�, �hbð1PÞ!�b1ð1PÞ� and
��b2ð1PÞ!hbð1PÞ�, respectively. The last two numbers are error estimates obtained by multiplying

the subleading Oð�2
s Þ contribution by �s and the subleading Oðv2Þ contribution by v.

LO Oð�sÞ Oð�2
s Þ Oðv2Þ �s �Oð�2

s Þ v�Oðv2Þ

�hbð1PÞ!�b0ð1PÞ� (eV) 0.895 0.078 0.044 �0:054 0.009 �0:013


�hbð1PÞ!�b1ð1PÞ� (eV� 10�3) 8.86 0.77 0.43 �1:08 0.09 �0:27


�hb2ð1PÞ!�bð1PÞ� (eV) 0.113 0.010 0.006 �0:011 0.001 �0:003
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to ��ð2SÞ!�bð2SÞ�. The Oð�sÞ and Oð�2
s Þ corrections are

evaluated at the mass scale. The Oð�sðmÞÞ corrections
are equal in the RS’ and on-shell schemes. Renormalon
corrections first appear at Oð�2

s ðmÞÞ and make this expan-
sion more convergent, yet, as we have taken a small value
of �f, the Oð�2

s ðmÞÞ term is still large. There are no OðvÞ
corrections. The Oðv2Þ correction can be evaluated at
different orders in N and for different values of the facto-
rization scale. One can easily deduce its size by multi-
plying Fig. 6(b) by -5=3 times the LO result. The value
quoted in Table V for the Oðv2Þ correction has been
obtained for N ¼ 3 and � ¼ 1:5 GeV. For the 2S botto-
monium state the use of a finite �r, in particular, �r ¼ 0:7,
does not significantly improve the �r ¼ 1 computation.

The factorization scale dependence is still significant and
the convergence bad. Therefore, conservatively we take the
Oðv2Þ term as our estimate of the error associated with
higher order corrections. This term alone produces an error
of order 10%. For the rest of the errors we proceed as in the
previous sections. Overall, we obtain

��ð2SÞ!�bð2SÞ� ¼ 0:668
 0:059ðOðv2ÞÞþ0:004
�0:006ðNmÞ

�0:002
þ0:002ð�sÞ�0:009

þ0:009ðmMSÞ eV; (39)

which, after combining the errors in quadrature, reads

��ð2SÞ!�bð2SÞ� ¼ 0:668ð60Þ eV: (40)
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TABLE V. The leading and subleading contributions to
��ð2SÞ!�bð2SÞ�.

LO Oð�sÞ Oð�2
s Þ Oðv2Þ


� (eV) 0.640 0.056 0.031 �0:059

TABLE VI. The prefactor, the terms inside the brackets of
Eq. (12), and the total decay width ��ð2SÞ!�bð1SÞ�.

Prefactor (keV) Aðr2Þ Að ~p2Þ AðVS2 Þ � (eV)

10.3342 0.022 0.039 �0:042 6.3
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In Fig. 11 we compare this result with the scale variation of
the evaluation of the decay for different values of N. Note
that our error is much bigger than the one from the facto-
rization scale dependence or from the difference between
different N evaluations. We believe an error analysis only
based on any of those would underestimate the error.

E. 2S ! 1S� decays

The experimental situation of the 2S ! 1S radiative
transitions has improved significantly over the last years.
Whereas for the 21S0 ! 13S1� decay there are still no
data available, this is not so for the 23S1 ! 11S0� decay,
for which the PDG [7] quotes the value ½3:9
 1:5� � 10�4

for the decay branching fraction. This translates into the
following value for the decay:

�
ðexp Þ
�ð2SÞ!�bð1SÞ� ¼ 12:5ð4:9Þ eV: (41)

This number comes from Ref. [58] BABAR (branching
fraction ½3:9
1:1ðstatÞþ1:1�0:9ðsystÞ��10�4) and updates the

previous upper bound branching fraction <0:5� 10�3

(or ��ð2SÞ!�bð1SÞ� < 0:016) produced by CLEOIII [59].

On the theoretical side, the 2S ! 1S radiative transitions
are different from the previous transitions considered
before. Now, we only know the leading nonvanishing order
[see Eqs. (12) and (13)], which scales as �ðk3�=m2Þv4.

It depends on the expectation values of ~p2, ~r2 and VS2ð~rÞ
among different states (n ¼ 1 and n ¼ 2), which we have
not studied so far (note that for those matrix elements we
can only fix the relative sign but not the absolute one).
Moreover, the VS2ð ~rÞ=m2 potential is modulated by the

Wilson coefficient Dð2Þ
S2;s

, which resums the large loga-

rithms associated with the heavy quark mass.
The warning qualifications that we made in the previous

section may also apply here, as the decay depends on the
dynamics of the 2S bound state, for which we have obser-
ved problems of convergence in N for hp2i20. Nevertheless,
it is worth repeating that the observables we are sensitive to
now are different and, therefore, worth exploring. In Fig. 12
we show the theoretical predictions for ��ð2SÞ!�bð1SÞ� after

approximating the static potential at different orders in N,
working at �r ¼ 1 and �f ¼ 0:7 GeV (see solid lines). In

other words, we just add an r-independent constant to the
static potential. We actually see a nicely convergent pattern
for the decay, the magnitude of which decreases quite
significantly as we increase N (by around an order of
magnitude) and approaches the experimental value.
In order to understand this result it is convenient to study

the magnitude of the different terms that contribute to
Eq. (12). We display the terms inside the brackets of
Eq. (12) in Fig. 13 with �r ¼ 1 and �f ¼ 0:7 GeV (see

dashed lines). Note that they are Oðv2Þ � 0:06, up to
prefactors. We observe a very nice convergence pattern
for the 10hr2i20 associated term. The convergence of the

10hp2i20 term is not as good, and even less for 10hVS2ð~rÞi20
(for scales below 2.5 GeV). In any case, there is a very
strong cancellation between the different terms in the
decay. This makes the total sum of these terms smaller
than the magnitude of each of them. The bulk of this effect
is independent of the factorization scale and gets strongly
magnified as we increase N (see, again, the solid lines of
Fig. 12). Therefore, it does not seem to be a numerical
accident for a specific N or factorization scale.
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If we switch off the resummation of the hard logarithms
and work at N ¼ 0 with �r ¼ 1, our computation is
equivalent to the analysis performed in Ref. [18]. In that
reference a very large value for the decay was obtained. We
show our equivalent computation as the dashed line in
Fig. 12. If we set �¼1GeV, the value used in Ref. [18],
we obtain ��ð2SÞ!�bð1SÞ� ’ 0:6 keV (’ 0:649 keV if we

use the mass mb ¼ 4730 MeV used in that reference).
Therefore, the introduction of the hard logarithms is crucial
to make the decay transition width smaller for N ¼ 0 at
small scales. As we increase N this effect is less important,
and the decay width gets small irrespective of the resum-
mation of hard logarithms (yet, the final value may change
by a factor 3 or 4, especially at small scales). At this stage
we would like to emphasize that the computation of the
decay shows a nicely convergent pattern inN, as we can see
in Fig. 12, rapidly approaching the experimental number.
As in previous sections we can try to improve the

previous results by exactly incorporating the correct
asymptotic short distance behavior of the static potential
in the solution of the Schrödinger equation. Typically, the
convergence is accelerated and the factorization scale de-
pendence greatly diminishes. We show the behavior of the
different contributions to the decay in Fig. 13 (see solid
lines). There is a strong cancellation between the second
and third terms in Eq. (12) (compare the solid lines of
Figs. 13(b) and 13(c)), whereas the first term is almost
constant (see the solid lines of Fig. 13(a)). We show the
result for the decay in Fig. 14 with �r ¼ 0:7 GeV, where
we also compare with the �r ¼ 1 case, and experiment.
Note how this figure corresponds to a zoom of Fig. 12, as
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the scale dependence is much smaller, as well as the size of
the corrections. For N¼0 we still have some scale depen-
dence, but it basically vanishes for N > 0 and � > 2 GeV.
Actually, the results are very stable against scale variations
(with a nice plateau for � > 2 GeV) and against the value
of N. In order to get these results the resummation of
the hard logs plays a crucial role, especially at low �.
We also emphasize that the final numbers compare quite
favorably with experiment. This is by far nontrivial, as
there has been more than 1 order of magnitude reduction
with respect to the original numbers obtained with a pure
Coulomb potential.

Therefore, we dare to give a value for, and assign errors
to, the decay width. In order to produce our final numbers
we proceed analogously to the previous sections. In
Table VI we give the prefactor, the different matrix ele-
ments for N ¼ 3, � ¼ 1:5 GeV and �r ¼ �f ¼ 0:7 GeV,

as well as the total decay width. In order to estimate the
error associated with subleading effects in v, we multiply
the biggest of the three v2 contributions by v, instead of
multiplying the sum of the three contributions by v, as we
cannot guarantee that the cancellation between different
terms takes place at higher orders. The structure of the
error estimate would then be


�ðvÞ
�ð2SÞ!�bð1SÞ� ¼ B½ðAv2 þ 
v3Þ2 � ðAv2Þ2�

’ BðAv2Þ2� 
v3 ’ 0:005 keV; (42)

where A is a small number and 
v3 � v�Oðv2Þ. We
check the reliability of this error estimate by replacing
the theoretical masses that appear in the third term in
Eq. (12) by the physical ones (as our result is very sensitive
to this term). This effect is subleading in v and prod-
uces a shift with respect to the central value of order

��ð2SÞ!�bð1SÞ� ’ 0:006 keV. We take this number [which

is quite similar to the number obtained in Eq. (42)] as our
estimate of the higher order uncertainties. We do not dwell
further on the analysis of the higher order uncertainties, as
our main error will come from a strong dependence on
Nm.

5 We also compute the error associated with �s andmb.
Summarizing all the errors we obtain

�ðthÞ
�ð2SÞ!�bð1SÞ� ¼ 0:006
 0:006ðOðv5ÞÞþ0:026

�0:006ðNmÞ
�0:001
þ0:001ð�sÞ�0:000

þ0:000ðmMSÞ keV: (43)

If we combine all the errors in quadrature our final number
reads

�ðthÞ
�ð2SÞ!�bð1SÞ� ¼ 6þ26

�06 eV: (44)

The error is completely dominated by theory. It completely
covers the experimental prediction. Note that the same
error is obtained using the scale variation of the N ¼ 3,

�r ¼ 1 result, which does not depend on Nm but is typi-
cally less precise.
Overall, we conclude that ��ð2SÞ!�bð1SÞ� is relatively

suppressed with respect to its natural size by a very large
cancellation between the hp2i and hVS2i terms. This makes
the total matrix element smaller.6 The fact that it enters as
v4 magnifies this effect. A confirmation of this picture
would come from the evaluation (and experimental deter-
mination) of ��bð2SÞ!�ð1SÞ�, which we expect to be much

larger because the relative sign between these two terms
changes. Actually, this is what we find, as one can see in
Fig. 15. On the other hand, for this decay, there is no
convergent pattern in N. Therefore, we do not dare to
make any error analysis, and we only estimate the decay

to be around �ðthÞ
�bð2SÞ!�ð1SÞ� � 80 eV.

We can compare Eq. (44) with the recent lattice simu-
lation of Ref. [60]. As our computation isOðv4Þ we should
compare with their Oðv4Þ result. In matrix element units
this corresponds to the number 0.080(5) in Table II of
Ref. [60] [the experimental number is 0.035(7)]. Our cen-
tral value corresponds to 0:025þ0:031

�0:025. Nevertheless, a

proper comparison would require the incorporation of the

renormalization group improved Wilson coefficient, Dð2Þ
S2;s

,

in the lattice analysis.7 If we switch it off in our analysis
our result gets strongly scale dependent and we can get
agreement with their results for a scale of around 1 GeV. In
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potential VðNÞ
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5We could reduce the dependence on Nm by increasing �f
(and �r). The price one would pay is a stronger dependence on �.

6And an ideal place to measure j10hr2i20j.
7This has not been done so far. We stress that this effect could

be quite important. Actually, one only has to incorporate the very
same logs that we are incorporating here, as the leading logs are
scheme independent.
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this respect we cannot avoid mentioning that we expect
some dependence on the lattice spacing of the NRQCD
matrix elements, as, in general, it is not possible to obtain
the continuum limit for them. In any case, we now face an
interesting situation: In Ref. [60] agreement with experi-
ment was only obtained after the inclusion of the Oðv6Þ
operators (again using tree-level Wilson coefficients). Note
that this implies a complete breakdown of the v expansion
for bottomonium, as the Oðv6Þ correction would be as
important as theOðv4Þ term. On the other hand, our picture
is different, and it is possible to obtain agreement with
experiment with an Oðv4Þ computation (and with the help
of the renormalization group at small scales).

V. CONCLUSIONS

We have computed the magnetic dipole transitions be-
tween low-lying heavy quarkonium states in a model-
independent way. We have used the weak-coupling version
of pNRQCD with the static potential exactly incorporated
in the LO Hamiltonian. The precisions we have reached are
k3�=m

2 �Oð�2
s ; v

2Þ and k3�=m
2 �Oðv4Þ for the allowed

and forbidden transitions, respectively. Large logarithms
associated with the heavy quark mass scale have also
been resummed. The effect of the new power counting
was found to be large, and the exact treatment of the soft
logarithms of the static potential made the factorization
scale dependence much smaller. The convergence for the
b �b ground state was quite good, and also quite reasonable
for the c �c ground state and the b �b 1P state. For all of these
we have given solid predictions, which we summarize here:

��ð1SÞ!�bð1SÞ� ¼ 15:18ð51Þ eV; (45)

�J=c ð1SÞ!�cð1SÞ� ¼ 2:12ð40Þ keV; (46)

�hbð1PÞ!�b0ð1PÞ� ¼ 0:962ð35Þ eV; (47)

�hbð1PÞ!�b1ð1PÞ� ¼ 8:99ð55Þ � 10�3 eV; (48)

��b2ð1PÞ!hbð1PÞ� ¼ 0:118ð6Þ eV: (49)

For the 2S decays the situation is less conclusive. The
Oðv2Þ correction of the �ð2SÞ ! �bð2SÞ� decay suffered
from a bad convergence in N, producing relatively large
errors for our prediction [see Eq. (40)]. Some of the Oðv2Þ
matrix elements of the �bð2SÞ ! �ð1SÞ� decay also suf-
fered from this bad convergence. This made it impossible
to give a reliable error estimate for this transition, as such
terms correspond to the leading (and only known so far)
order expression (moreover, they should be squared in
the decay). The situation is completely different for the
�ð2SÞ ! �bð1SÞ� transition. The reason is that the prob-
lematic Oðv2Þ matrix elements appear in a different com-
bination for this decay so that they cancel, to a large extent.
This led to a nicely convergent sequence in N, where the

resummation of the hard logarithms played an important
role. Our final result is

�ðthÞ
�ð2SÞ!�bð1SÞ� ¼ 6þ26

�06 eV: (50)

This number is perfectly consistent with existing data,
so the previous disagreement with experiment for the
�ð2SÞ ! �bð1SÞ� decay fades away.
The error of the above figures is dominated by theory,

in most cases by the lack of knowledge of higher order
effects. The determination of the origin and nature of those
effects may significantly diminish the errors. Typically,
they may come from loop effects, so it may happen that
they effectively count asOð�sv

2Þ, implying smaller errors.
In any case, let us note that the static potential becomes
steeper as we increase N. Therefore, the transfer energy
between the heavy quarks is bigger and the effective alpha
and radius of the bound state become smaller than what
one would deduce from a pure LO Coulomb evaluation.
This means that the weak-coupling approximation works
better than one would expect a priori for those systems.
This is good news for a weak-coupling analysis of the pro-
perties of the lowest-lying heavy quarkonium resonances.
We have not incorporated the error associated with k� in

our final numbers. Therefore, strictly speaking, our figures
are theoretical predictions of �=k3�. In some cases the asso-

ciated error would be small. Yet, we have chosen to work in
this way since, for some decays, the experimental value of
k� is still uncertain. It is trivial for the reader to introduce

such an error.
We have also computed some expectation values like the

electromagnetic radius, hr2i, or hp2i. We find hr2i to be
nicely convergent in all cases, whereas the convergence
of hp2i is typically worse. We have found that hp2i is more

or less constant with n, and
ffiffiffiffiffiffiffiffihr2ip

is more or less linear
with n. This is the same behavior one finds with a loga-
rithmic potential. Since the early days of heavy quark-
onium it has been well known from potential models that
such a potential effectively describes the spectrum of the
bottomonium and charmonium systems [45]. We find it
rewarding that the QCD potential can simulate such be-
havior after the inclusion of the running of �s.
The computation of hr2i and hp2i (and the binding

energies) also yields a very nice confirmation of the re-
normalon dominance picture. In the on-shell scheme this
predicts that, on the one hand, the binding energy should
diverge with N but, on the other, hr2i and hp2i should
produce convergent sequences in N. We have observed
this effect in full glory in our analysis.
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