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We study the symmetries of the three-heavy-quark system under exchange of the quark fields within the

effective field theory framework of potential nonrelativistic QCD. The symmetries constrain the form of

the matching coefficients in the effective theory. We then focus on the color-singlet sector and determine

the so far unknown leading ultrasoft contribution to the static potential, which is of order �4
s ln�, and

consequently to the static energy, which is of order �4
s ln�s. Finally, in the case of an equilateral geometry,

we solve the renormalization group equations and resum the leading ultrasoft logarithms for the static

potential of three quarks in a color singlet, octet and decuplet representation.
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I. INTRODUCTION

Bound states of a heavy quarkQ and an antiquark �Q have
been the subject of extensive theoretical studies since the
early days of quantum chromodynamics (QCD). Relatively
less attention has been paid to bound states of three heavy
quarks (QQQ), also referred to as triple heavy baryons, as a
consequence of their still missing experimental evidence.
Nevertheless there is an ongoing theoretical activity devoted
to their study mostly driven by lattice computations [1–13],
but also by phenomenological analyses (for a review, see
Ref. [14]) andmore recently by effective field theorymethods
[15–17]. The theoretical interest is mainly triggered by the
geometry of these systems, which allows to address questions
that are inaccessible with two-body systems. Examples are
the minimal energy configuration of three quarks in the
presence of a confining potential or the origin of a three-
body interaction. In this paper we will further explore the
geometrical properties of the three-heavy-quark system.

Systems of heavy quarks are conveniently studied within
an effective field theory (EFT) framework, a treatment
motivated by the observation that these systems are non-
relativistic and, therefore, characterized by, at least, three
separated and hierarchically ordered energy scales: a hard
scale of the order of the heavy-quark mass, m, a soft scale
of the order of the typical relative momenta of the heavy
quarks, which are much smaller than m, and an ultrasoft
(US) scale of the order of the typical binding energy, which
is much smaller than the relative momenta.1 We further

assume that these scales are much larger than the typical
hadronic scale �QCD, in this way justifying a perturbative

treatment for all of them. By integrating out modes asso-
ciated with the different energy scales one goes through a
sequence of EFTs [18]: nonrelativistic QCD (NRQCD),
obtained from integrating out hard modes [19,20] and
potential nonrelativistic QCD (pNRQCD), derived from
integrating out gluons with soft momenta from NRQCD
[21,22]. Potential NRQCD provides a formulation of the
nonrelativistic system in terms of potentials and US inter-
actions; for this reason it has proven a convenient frame-
work for calculating US corrections. Although originally
designed for the study of Q �Q bound states, i.e., quarkonia,
pNRQCD has been subsequently applied also to baryons
with two and three heavy quarks [15,16].
In this paper we study the symmetry properties of three-

heavy-quark systems under exchange of the heavy-quark
fields and their implications for the form of the pNRQCD
Lagrangian. We also calculate the US corrections of order
�4
s ln�s to the singlet static energy and of order �4

s ln� to
the singlet static potential of a triple heavy baryon. Whereas
this has been achieved for the case ofQ �Q systems more than
ten years ago [23], the result for QQQ systems will be new.
The paper is organized as follows. Section II is devoted

to set up pNRQCD for systems made of three static quarks.
The explicit construction and color structure of the heavy-
quark composite fields, pNRQCD is conventionally
formulated in, is outlined in detail. In Sec. III, we discuss
the symmetry under exchange of the heavy-quark fields
and analyze its implications for the various matching
coefficients, i.e., the potentials, of pNRQCD. In Sec. IV,
we determine the correction of order �4

s ln�s to the singlet
static energy. Restricting ourselves to an equilateral
configuration of the heavy quarks, we finally solve in
Sec. V the renormalization group equations for the singlet,
octet and decuplet static potentials at leading logarithmic
accuracy. We conclude in Sec. VI.

1Inathree-bodysystem,wemayingeneralexpecttohavemorethan
onetypicalrelativemomentumandmorethanoneUSenergyscale.To
keep our discussion simple, we assume all relative momenta to be of
the sameorder and so for allUS energy scales. In the dynamical case,
this is realized when the masses of the heavy quarks are of the same
order. In the static limit, which will be our main concern in the
following, this condition is realized by locating the three quarks at
distances of the sameorder.Weemphasize that this conditionmaybe
(also largely) violated in different geometrical configurations.
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II. pNRQCD FOR QQQ

In this section, we shortly review the basic steps that
lead to pNRQCD for systems made of three static quarks.
Finite mass corrections may be systematically added to the
static Lagrangian in the form of irrelevant operators, some
of which have been considered in Ref. [15]. The nonrela-
tivistic nature of the system ensures that, apart from the
kinetic energy, which is of the same order as the static
potential, 1=m corrections are small.

A. NRQCD

Our starting point is NRQCD in the static limit. In the
quark sector the Lagrangian is identical with the heavy-
quark effective theory Lagrangian [24] and reads

LNRQCD ¼ QyiD0QþX
l

�qli 6Dql � 1

4
Fa
��F

a��: (1)

The heavy-quark fields Q (Qy), which annihilate (create) a
heavy quark, are described by Pauli spinors, whereas ql are
the Dirac spinors that describe light (massless) quarks of
flavor l. The quantity iD0 ¼ i@0 � gA0 denotes the time
component of the covariant derivative, where g is the strong
gauge coupling, �s � g2=ð4�Þ, and A0 is the time compo-
nent of the gauge field. The Lagrangian (1) is insensitive to
the flavor assignment of the heavy-quark fields, a property
known as heavy-quark symmetry. We have omitted the
heavy-antiquark sector, as it is irrelevant to our scope.

B. pNRQCD

For the purpose of studying heavy-quark bound states, it
is convenient to employ an EFT where the heavy-quark
potentials are explicit rather than encoded in dynamical
gluons, as it is the case in NRQCD. Such an EFT is
pNRQCD, which is obtained from NRQCD by integrating
out gluons whose momenta are soft. The degrees of free-
dom of pNRQCD are heavy-quark fields, light quarks and
US gluons. As it is unnecessary to resolve the individual
heavy quarks, pNRQCD is often formulated in terms of
heavy-quark composite fields. The matching coefficients
of pNRQCD multiplying operators bilinear in the compos-
ite fields may then be interpreted as the heavy-quark
potentials in the corresponding color configurations.

The derivation of pNRQCD involves identifying the
heavy-quark composite fields in NRQCD, matching them
to pNRQCD, and explicitly ensuring that the resulting
pNRQCDfield content is ultrasoft.We start with the construc-
tion of the heavy-quark composite fields. This is the point
where the specific heavy-quark state that the EFT is meant to
describe has to be specified. In our case, this is a QQQ state.

C. Geometry of a three-quark state

To characterize the geometry of aQQQ state, we call x1,
x2 and x3 the positions of the quarks and define the vectors
riði ¼ 1; 2; 3Þ as follows (cf. Fig. 1):

r1 ¼ x1 � x2; r2 ¼ x1 � x3; r3 ¼ x2 � x3: (2)

Note that the three vectors are not independent, for
r1 þ r3 ¼ r2. Moreover, for three quarks of equal mass
or static, it is useful to define the vectors

� ¼ r1; � ¼ r2 þ r3
2

: (3)

D. Heavy-quark composite fields

Quarks transform under the fundamental representation,
3, of the (color) gauge group SUð3Þc. Hence, a generic
three (heavy) quark field made of fields located at the same
point, QiQjQk (i, j, k ¼ 1, 2, 3 denote color indices),

transforms as a representation of 3 � 3 � 3. The direct
product can be decomposed into a sum of irreducible
representations of SUð3Þc, namely,

3 � 3 � 3 ¼ 1 � 8 � 8 � 10: (4)

In general, however, the three quarks are located at differ-
ent spatial positions x1, x2 and x3. Under an SUð3Þc gauge
transformation, each heavy-quark field Qiðx; tÞ trans-
forms as Qiðx; tÞ ! Uii0 ðx; tÞQi0 ðx; tÞ, where Uðx; tÞ ¼
exp ½i�aðx; tÞTa�, and Ta ¼ �a=2 (a ¼ 1; . . . ; 8) denote
the eight generators of SUð3Þc in the fundamental repre-
sentation; �a are the Gell-Mann matrices. The decompo-
sition (4) requires the fields to be linked to a common point
R. For a multiquark system a natural choice is the system’s
center of mass. A way to link the quark fields to another
point is through an equal-time straight Wilson string,

�ðy;x; tÞ ¼ P exp

�
ig

Z 1

0
dsðy � xÞ �Aðxþ ðy � xÞs; tÞ

�
;

(5)

where A ¼ AaTa is the color gauge field, and P denotes
path ordering of the color matrices. Because of its trans-
formation property under SUð3Þc gauge transformations,
�ðy;x; tÞ ! Uðy; tÞ�ðy;x; tÞUyðx; tÞ, the Wilson string
acts as a gauge transporter, and �ðR;x; tÞQðx; tÞ !
UðR; tÞ�ðR;x; tÞQðx; tÞ indeed transforms like a quark
field located at R. Hence, the following three-quark field,

FIG. 1. Triangle formed by three heavy quarks located at the
positions x1, x2 and x3. The vector � points from the heavy
quark at x3 to the center of mass of the two heavy quarks at
x1 and x2.
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Mijkðx1;x2;x3; tÞ ¼ �ii0 ðR;x1; tÞQi0 ðx1; tÞ�jj0 ðR;x2; tÞQj0 ðx2; tÞ�kk0 ðR;x3; tÞQk0 ðx3; tÞ; (6)

transforms as a 3 � 3 � 3 representation of the SUð3Þc
gauge group, and, following Eq. (4), can be decomposed
into a singlet, two octets and a decuplet field with respect to
gauge transformations in R.

Since the quark fields do not commute, the order of the
quark fields in Eq. (6) matters. This observation will play a
crucial role in Sec. III. For simplicity, we have omitted an
explicit reference to R in the argument of M, which
includes the time coordinate t and the list of position
coordinates ðx1;x2;x3Þ of the heavy-quark fields in the
order (from left to right) of their appearance on the right-
hand side of Eq. (6). The same convention is used for the
color indices ði; j; kÞ.

The composite field Mijk may be decomposed into a

singlet, S, two octets, OA and OS, and a decuplet, �,
according to

Mijkðx1;x2;x3; tÞ

¼ Sðx1;x2;x3; tÞSijk þ
X8
a¼1

OAaðx1;x2;x3; tÞOAa
ijk

þ X8
a¼1

OSaðx1;x2;x3; tÞOSa
ijk þ

X10
�¼1

��ðx1;x2;x3; tÞ��
ijk;

(7)

where Sijk, O
Aa
ijk, O

Sa
ijk and ��

ijk are orthogonal and normal-

ized color tensors that satisfy the relations

SijkSijk ¼ 1; OAa�
ijk O

Ab
ijk ¼ �ab;

OSa�
ijk O

Sb
ijk ¼ �ab; ��

ijk�
�0
ijk ¼ ���0

;

SijkO
Aa
ijk ¼ SijkO

Sa
ijk ¼ Sijk�

�
ijk ¼OAa�

ijk OSb
ijk

¼OAa�
ijk �

�
ijk ¼OSa�

ijk �
�
ijk ¼ 0; (8)

with a, b 2 f1; . . . ; 8g, and �, �0 2 f1; . . . ; 10g [15]. If the
octet tensors OAa

ijk and OSa
ijk have the above properties, the

following linear combinations also do:

O 0Aa
ijk ¼ ei’AðOAa

ijk cos!�OSa
ijk sin!Þ; (9)

O0Sa
ijk ¼ ei’SðOAa

ijk sin!þOSa
ijk cos!Þ; (10)

where ! is an arbitrary angle and ’A, ’S denote generic
phases. The octet tensors O0Aa

ijk and O0Sa
ijk hence form an

alternative basis for the 8 � 8 sector. Requiring

OAaOAa
ijk þOSaOSa

ijk ¼ O0AaO0Aa
ijk þO0SaO0Sa

ijk ; (11)

the associated octet fields are related to the original ones
through the dual relations

O0Aaðx1;x2;x3;tÞ
¼ e�i’A½OAaðx1;x2;x3;tÞcos!�OSaðx1;x2;x3;tÞsin!�;

(12)

O0Saðx1;x2;x3;tÞ
¼ e�i’S½OAaðx1;x2;x3; tÞsin!þOSaðx1;x2;x3; tÞcos!�:

(13)

To work out the pNRQCD Lagrangian explicitly,
we choose a specific (matrix) representation of the color
tensors, namely that given in Ref. [15], Appendix B2. In
order to keep this paper self-contained, we reproduce it
here. Sticking to this particular choice, the color-octet
tensors are given by

OAa
ijk ¼

1

2
	ijl�

a
kl; (14)

and

OSa
ijk ¼

1

2
ffiffiffi
3

p ð	jkl�a
il þ 	ikl�

a
jlÞ: (15)

The choice in Eqs. (13) and (14) is such that OAa
ijk and OSa

ijk

are antisymmetric and symmetric in the first two color
indices, respectively. Consequently, OA and OS will be
referred to as the antisymmetric and symmetric octets.
Moreover, the color-singlet tensor Sijk is chosen to be

totally antisymmetric,

S ijk ¼ 1ffiffiffi
6

p 	ijk; (16)

whereas the color-decuplet tensor��
ijk is totally symmetric

(an alternative decuplet is in Ref. [16]),

�1
111 ¼ �4

222 ¼ �10
333 ¼ 1; �6

f123g ¼
1ffiffiffi
6

p ;

�2
f112g ¼ �3

f122g ¼ �5
f113g ¼ �7

f223g

¼ �8
f133g ¼ �9

f233g ¼
1ffiffiffi
3

p : (17)

The symbol fijkg denotes all permutations of the indices
ijk; all components not listed explicitly in Eq. (17) are
zero. Note that Sijk and ��

ijk are real-valued quantities.

From Eq. (6), it follows that the three-quark field

�ijkðx1;x2;x3; tÞ � Qiðx1; tÞQjðx2; tÞQkðx3; tÞ (18)

can be written as

�ijkðx1;x2;x3; tÞ ¼ �ii0 ðx1;R; tÞ�jj0 ðx2;R; tÞ�kk0 ðx3;R; tÞMi0j0k0 ðx1;x2;x3; tÞ; (19)
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where we have used that ��1ðy;x; tÞ ¼ �yðy;x; tÞ ¼
�ðx; y; tÞ. Finally, plugging Eq. (7) into Eq. (19) we may
express the three-quark field�ijk in terms of the composite
singlet, octet and decuplet fields. The next step will consist
in matching these composite fields to the corresponding
ones in pNRQCD.

E. Matching and multipole expansion

We denote with j�i a generic Fock state containing no
heavy quarks, but an arbitrary number of US gluons and
light quarks: Qiðx; tÞj�i ¼ 0. Therewith we define the
three-heavy-quark Fock state

jQQQi ¼ 1

N

Z
d3x1

Z
d3x2

Z
d3x3�ijkðx1;x2;x3; tÞQy

k ðx3; tÞQy
j ðx2; tÞQy

i ðx1; tÞj�i; (20)

whereN is a normalization factor and the composite field
is now interpreted as independent of the heavy-quark fields.
One can match NRQCD to pNRQCD by equating the
expectation value of the NRQCD Hamiltonian in the state
jQQQi with the pNRQCD Hamiltonian (see Refs. [18,21]
for the matching in the Q �Q case). Thus, the heavy-quark
fields in pNRQCD are cast into singlet, S, octet, OAa and
OSa, and decuplet, ��, fields. The gluons in pNRQCD are
explicitly rendered US by multipole expanding the gluon
fields in the relative coordinates riði ¼ 1; 2; 3Þ with respect
to the center of mass coordinate R. The reason is that the
center of mass coordinate (the ‘‘location’’ of the three-
heavy-quark system) scales like the inverse of the recoiling
total momentum of the three quarks, which is of the order of
the US energy scale, while the relative coordinates of the
three quarks (describing the ‘‘extension’’ of the triple heavy
baryon) scale like the inverse of the typical relative
momenta of the heavy quarks, which are of the order of
the soft scale. As a result, ultrasoft gluons in pNRQCD are
invariant under US gauge transformations, i.e., gauge trans-
formations localized in R. A Legendre transform of the
pNRQCD Hamiltonian finally provides us with the
pNRQCD Lagrangian.

In the same way as NRQCD can be understood as an
expansion of QCD in terms of the inverse of the heavy-
quark masses, pNRQCD can be understood as an expan-
sion of the gluon fields of NRQCD, projected onto the

specific (two or three) heavy-quark Fock space, in powers
of the relative coordinates of the heavy quarks. Quantum
corrections of the order of the soft scale are encoded in the
matching coefficients of pNRQCD in the same way as
quantum corrections of the order of the heavy-quark
masses are encoded in the matching coefficients of
NRQCD. The matching coefficients of pNRQCD are typi-
cally nonanalytic functions of the relative coordinates.

F. The pNRQCD Lagrangian

The pNRQCD Lagrangian is organized as an expansion
in 1=m and in the relative coordinates ri. Up to zeroth order
in the 1=m expansion (static limit) and first order in the
multipole expansion, the pNRQCD Lagrangian for QQQ
systems reads

L pNRQCD ¼ Lð0;0Þ
pNRQCD þLð0;1Þ

pNRQCD: (21)

An explicit derivation of this Lagrangian can be found in

Ref. [15]; here we recall its expression. The termLð0;0Þ
pNRQCD

describes at zeroth order in the multipole expansion the
propagation of light quarks and US gluons as well as the
temporal evolution of the static quarks, which are cast into
singlet, S � Sðx1;x2;x3; tÞ, octet, OA � OAðx1;x2;x3; tÞ
and OS � OSðx1; x2; x3; tÞ, and decuplet, � �
�ðx1; x2; x3; tÞ, fields (cf. Sec. II D),

Lð0;0Þ
pNRQCD ¼

Z
d3
d3�fSy½i@0 � Vs�Sþ�y½iD0 � Vd��þOAy½iD0 � Vo

A�OA

þOSy½iD0 � Vo
S �OS þOAy½�Vo

AS�OS þOSy½�Vo
AS�OAg þX

l

�qli 6Dql � 1

4
Fa
��F

a��: (22)

The matching coefficients Vs, Vo
A, V

o
S and Vd correspond to singlet, (antisymmetric and symmetric) octet and decuplet

potentials. The coefficient Vo
AS is an octet mixing potential. The termLð0;1Þ

pNRQCD accounts for the interactions between static
quarks and US gluons at first order in the multipole expansion,

Lð0;1Þ
pNRQCD ¼

Z
d3
d3�

�
Vð0;1Þ
S��EOS

X8
a¼1

1

2
ffiffiffi
2

p ½Sy� � gEaOSa þOSay� � gEaS�

� Vð0;1Þ
S��EOA

X8
a¼1

1ffiffiffi
6

p ½Sy� � gEaOAa þOAay� � gEaS� � Vð0;1Þ
OA��EOA

X8
a;b;c¼1

�
i
fabc

6
þ dabc

2

�
OAay� � gEbOAc
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þ Vð0;1Þ
OS��EOS

X8
a;b;c¼1

�
i
fabc

6
þ dabc

2

�
OSay� � gEbOSc

� Vð0;1Þ
OA��EOS

X8
a;b;c¼1

�
ifabc þ 3dabc

4
ffiffiffi
3

p
�
½OAay� � gEbOSc þOSay� � gEbOAc�

þ Vð0;1Þ
OA��E�

X8
a;b¼1

X10
�¼1

½ð	ijkTa
ii0T

b
jj0�

�
i0j0kÞOAay� � gEb�� � ð��

ijkT
b
ii0T

a
jj0	i0j0kÞ��y� � gEbOAa�

þ Vð0;1Þ
OS��E�

X8
a;b¼1

X10
�¼1

2ffiffiffi
3

p ½ð	ijkTa
ii0T

b
jj0�

�
i0j0kÞOSay� � gEb�� � ð��

ijkT
b
ii0T

a
jj0	i0j0kÞ��y� � gEbOSa�

�
; (23)

where E ¼ EaTa denotes the chromoelectric field
evaluated at R and the coefficients Vð0;1Þ

... are matching
coefficients associated to chromoelectric dipole interac-
tions between QQQ fields in different color representa-
tions. The covariant derivatives, whose time components
act on the octet and decuplet fields in Eq. (22), are under-
stood to be in the octet and decuplet representations,
respectively. They are given explicitly in Appendix A.

A mixing term, �Vo
ASðOAyOS þOSyOAÞ, has been

included in Lð0;0Þ
pNRQCD. Such a term was not considered

in Ref. [15], but was first recognized in Ref. [16].
The mixing potential will play a crucial role in the
study of the symmetry of pNRQCD under exchange of
the heavy-quark fields (see Sec. III) and in the calculation
of the US corrections to the singlet static energy
(see Sec. IV).

For completeness, we list here the leading-order (LO)
expressions for the various matching coefficients appear-
ing in Eqs. (22) and (23). At order �s the potentials in
Eq. (22) are given by (cf. Refs. [15,16])

Vsðr1; r2; r3Þ ¼ � 2

3
�s

�
1

jr1j þ
1

jr2j þ
1

jr3j
�
; (24)

Vdðr1; r2; r3Þ ¼ 1

3
�s

�
1

jr1j þ
1

jr2j þ
1

jr3j
�
; (25)

Vo
Aðr1; r2; r3Þ ¼ �s

�
� 2

3

1

jr1j þ
1

12

1

jr2j þ
1

12

1

jr3j
�
; (26)

Vo
S ðr1; r2; r3Þ ¼ �s

�
1

3

1

jr1j �
5

12

1

jr2j �
5

12

1

jr3j
�
; (27)

Vo
ASðr1; r2; r3Þ ¼ �

ffiffiffi
3

p
4

�s

�
1

jr2j �
1

jr3j
�
; (28)

whereas all matching coefficients in Eq. (23) are equal to
one at LO. The expressions for Vs up to next-to-next-to-
leading order (NNLO), and for Vd, Vo

A, V
o
S and Vo

AS up to

next-to-leading order (NLO) can be found in Ref. [16] (the
expression for Vs up to NNLO is also in Appendix B).

III. SYMMETRY UNDER EXCHANGE OF THE
HEAVY-QUARK FIELDS

As outlined in detail in Sec. II D, the heavy-quark fields
in the pNRQCD Lagrangian are written in terms of com-
posite fields, which are proportional to Qiðx1;tÞQjðx2;tÞ�
Qkðx3;tÞ. However, as there is no preferred ordering, and
the heavy-quark fields anticommute, different orderings
of the heavy quarks lead to different composite fields. The
orderings are however arbitrary and the pNRQCD
Lagrangian should be invariant under different orderings
of the heavy-quark fields. We call this invariance symme-
try under exchange of the heavy-quark fields or, in short,
exchange symmetry. A special case of exchange symme-
try is the symmetry under permutation of the heavy-quark
fields. A different ordering of the heavy-quark fields can
be realized either (a) by relabeling the heavy-quark coor-
dinates in the pNRQCD Lagrangian or (b) by anticom-
muting the heavy-quark fields in the composite fields.
Since the two procedures lead to the same Lagrangian,
this constrains the form of the heavy-quark potentials. In
fact, the invariance of the Lagrangian under (a) is trivially
realized due to the additional integrations over the quark
locations x1, x2 and x3, and only (b) results in nontrivial
transformations.
(a) We may relabel the coordinates xi and the relative

vectors ri in the pNRQCD Lagrangian according to one of
the following two possibilities (other relabelings follow
from these):

x 1 $ x2; x3:

8<
:
r1 ! �r1
r2 ! r3
r3 ! r2;

(29)

x 1 $ x3; x2:

8<
:
r1 ! �r3
r2 ! �r2
r3 ! �r1:

(30)

The relabelings affect the pNRQCD potentials and the
ordering of the quark fields in the composite fields of
pNRQCD.
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(b) Because the heavy-quark fields QiðxÞ of NRQCD
satisfy equal-time anticommutation relations, fQiðx; tÞ,
Qjðy; tÞg ¼ 0, from Eq. (18) it follows that

�ijkðx1;x2;x3; tÞ ¼ ��jikðx2;x1;x3; tÞ; (31)

�ijkðx1;x2;x3; tÞ ¼ ��kjiðx3;x2;x1; tÞ: (32)

These identities hold also for Mijkðx1;x2;x3; tÞ, which is

related to �ijkðx1;x2;x3; tÞ through Eq. (19):

Mijkðx1;x2;x3; tÞ ¼ �Mjikðx2;x1;x3; tÞ; (33)

Mijkðx1;x2;x3; tÞ ¼ �Mkjiðx3;x2;x1; tÞ: (34)

In turn, the identities for Mijkðx1;x2;x3; tÞ enable us to

derive corresponding identities for the singlet, octet and
decuplet fields just by multiplying Eqs. (33) and (34) with
Sijk, �

�
ijk, O

Aa�
ijk , or OSa�

ijk , respectively, and summing over

i, j, k:

8>>>>>><
>>>>>>:

Sðx1;x2;x3; tÞ ¼ Sðx2;x1;x3; tÞ
��ðx1;x2;x3; tÞ ¼ ���ðx2;x1;x3; tÞ
OAaðx1;x2;x3; tÞ ¼ OAaðx2;x1;x3; tÞ
OSaðx1;x2;x3; tÞ ¼ �OSaðx2;x1;x3; tÞ;

(35)

and

8>>>>>><
>>>>>>:

Sðx1;x2;x3; tÞ ¼ Sðx3;x2;x1; tÞ
��ðx1;x2;x3; tÞ ¼ ���ðx3;x2;x1; tÞ
OAaðx1;x2;x3; tÞ ¼ � 1

2O
Aaðx3;x2;x1; tÞ þ

ffiffi
3

p
2 OSaðx3;x2;x1; tÞ

OSaðx1;x2;x3; tÞ ¼
ffiffi
3

p
2 OAaðx3;x2;x1; tÞ þ 1

2O
Saðx3;x2;x1; tÞ:

(36)

At variance with the relabeling (a), anticommuting the
heavy-quarks in the composite fields only indirectly affects
the pNRQCD potentials. Note that the octet transforma-
tions in (35) and (36) may be interpreted as a special case
of the transformations (12) and (13) for ’S ¼ 0, ’A ¼ �
and ! ¼ �=3.

By relabeling (a) or by anticommuting the heavy-quark
fields (b) we get two versions of the pNRQCD Lagrangian
that must be the same. This requires the pNRQCD
potentials to change in a well defined manner under the

transformations (29) and (30). In particular, if we restrict
ourselves to the potentials in Eq. (22), the singlet and
decuplet potentials remain invariant, whereas the octet
potentials transform as

8><
>:
Vo
Að�r1; r3; r2Þ ¼ Vo

Aðr1; r2; r3Þ
Vo
S ð�r1; r3; r2Þ ¼ Vo

S ðr1; r2; r3Þ
Vo
ASð�r1; r3; r2Þ ¼ �Vo

ASðr1; r2; r3Þ;
(37)

and

8>>><
>>>:
Vo
Að�r3;�r2;�r1Þ ¼ 1

4V
o
Aðr1; r2; r3Þ þ 3

4V
o
S ðr1; r2; r3Þ �

ffiffi
3

p
2 Vo

ASðr1; r2; r3Þ
Vo
S ð�r3;�r2;�r1Þ ¼ 3

4V
o
Aðr1; r2; r3Þ þ 1

4V
o
S ðr1; r2; r3Þ þ

ffiffi
3

p
2 Vo

ASðr1; r2; r3Þ
Vo
ASð�r3;�r2;�r1Þ ¼

ffiffi
3

p
4 ½Vo

S ðr1; r2; r3Þ � Vo
Aðr1; r2; r3Þ� þ 1

2V
o
ASðr1; r2; r3Þ;

(38)

for transformations of type (29) and (30), respectively. We
emphasize that the above transformations are general and do
not rely on any specific geometry of the three quarks. They
also do not rely on any perturbative expansion. Furthermore,
they are valid also beyond the static limit for any order in
1=m.2 As a simple application of the above formulas, let us
consider for instance the LO expression of Vo

ASðr1; r2; r3Þ
given in Eq. (28). Under (38) it transforms into

Vo
ASð�r3;�r2;�r1Þ ¼ �

ffiffiffi
3

p
4

�s

�
1

jr2j �
1

jr1j
�
; (39)

which is the result expected from relabeling the coordinates
according to Eq. (30). Let us emphasize again that the
inclusion of the octet mixing potential Vo

AS in Eq. (22) is
essential for reproducing the correct transformation proper-
ties of the octet potentials.
Finally, it is interesting to apply relations (37) and (38) to

the most simple case of an equilateral geometry. In such a
geometry we have a single length scale r ¼ jr1j ¼ jr2j ¼
jr3j and a single angle r̂1 � r̂2 ¼ �r̂1 � r̂3 ¼ r̂2 � r̂3 ¼
cos ð�=3Þ. Whenever the potentials are invariant under the
transformations (29) and (30), which is surely the case for
two-body interactions but may not hold at higher orders, from
Eq. (37) it follows that Vo

AS ¼ 0 and from Eq. (38) that

Vo
AðrÞ ¼ Vo

S ðrÞ � VoðrÞ: (40)

2Note however that a generalization to finite heavy-quark masses,
m1,m2 andm3, would also require some adjustment in Eqs. (29) and
(30), as—besides the heavy-quark locations—also themasseswould
have to be exchanged, e.g., in Eq. (29),m1 $ m2, etc.
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IV. THE QQQ SINGLET STATIC ENERGY
AT Oð�4

s ln�sÞ
The potentials of pNRQCD depend in general on a

factorization scale � separating soft from US contribu-
tions,3 whereas the singlet static energy Es is an observable
and therewith independent of �. As in the Q �Q case [23],
the QQQ singlet static potential Vs is expected to become
� dependent at next-to-next-to-next-to leading order
(NNNLO), i.e., at order �4

s [15]. The difference between
the singlet static energy and the singlet static potential is
encoded in an ultrasoft contribution denoted �s

US, which

starts contributing at order �4
s . It depends on � in such a

way that Es, given by

Esðr1; r2; r3Þ ¼ Vsðr1; r2; r3;�Þ þ �s
USðr1; r2; r3;�Þ;

(41)

is � independent. The cancelation of the � dependence of
Vs against �s

US at NNNLO leaves in Es a remnant, which is

a contribution of order �4
s ln�s. This is the leading pertur-

bative contribution to Es that is nonanalytic in �s. The
most convenient way to calculate the �4

s ln� term in Vs,
and the �4

s ln�s term in Es, is by looking at the leading
divergence of �s

US. This requires the one-loop calculation

of the color-singlet self energy as opposed to the three-loop
calculation necessary to extract the term �4

s ln� directly
from Vs. We will perform this calculation in the following
section.

A. Determination of �s
US

We aim at calculating �s
US up to order �4

s . For this

purpose we need the singlet and octet propagators, and
the octet mixing potential at leading order [cf. Eq. (22)],

as well as the singlet-to-octet interaction vertices at
order ri in the multipole expansion [cf. Eq. (23), note
that the singlet couples differently to the symmetric and
antisymmetric octets],

The parameter T in Eq. (42) is the propagation time. The
wavy lines in Eq. (43) represent ultrasoft gluons; note that

we have written the vertices with US gluons treating the
gluons as external fields.
The most noteworthy difference with respect to the

calculation of �s
US in the Q �Q case is that here the singlet

couples to two distinct octet fields and that the octet fields
mix. For this reason the calculation in the baryonic case
exhibits some novel features with respect to the analogous
mesonic case. Since the mixing of the octet fields is an
effect of the same order as the energies of the octets, it must
be accounted for to all orders when computing the physical
octet-to-octet propagators. The resummation of the octet
mixing potential gives rise to three different types of
resummed octet propagators:
(1) a resummed octet propagator, Go

S, that describes the

propagation from a symmetric initial state to a sym-
metric final state:

(2) a resummed octet propagator, Go
A, that describes the

propagation from an antisymmetric initial state to an
antisymmetric final state:

(3) a resummed octet propagator, Go
AS, that describes

the propagation from a symmetric initial state to an
antisymmetric final state or vice versa:

The explicit expressions for the resummed octet propaga-
tors are most conveniently computed in momentum space
and read

FIG. 2. Leading-order contributions to �s
US. As there is no

direct coupling between decuplet and singlet fields at first order
in the multipole expansion, we do not have contributions involv-
ing decuplet degrees of freedom.

3This dependence, which will be displayed explicitly in the
following, has been dropped in Eqs. (37) and (38).
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�i½Go
SðEÞ�ab ¼

i�abðE� Vo
AÞ

ðE� Vo
S þ i	ÞðE� Vo

A þ i	Þ � ðVo
ASÞ2

;

(44)

�i½Go
AðEÞ�ab ¼ i�abðE� Vo

S Þ
ðE� Vo

S þ i	ÞðE� Vo
A þ i	Þ � ðVo

ASÞ2
;

(45)

�i½Go
ASðEÞ�ab ¼

i�abV
o
AS

ðE� Vo
S þ i	ÞðE� Vo

A þ i	Þ � ðVo
ASÞ2

;

(46)

with 	 ! 0þ. After performing a Fourier transform from
energy E to time T, we obtain

where

E1;2 ¼ Vo
A þ Vo

S

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Vo
A � Vo

S

2

�
2 þ ðVo

ASÞ2
s

� i	: (48)

The US contribution �s
US is given at LO by the color-

singlet self-energy diagrams shown in Fig. 2. Because the
singlet couples to two distinct octet fields and they mix, we
have four such diagrams [cf. Eq. (47)]. They give

�s
US ¼ �ig2

�
1

2
ffiffiffi
2

p
�
2 Z 1

0
dt

1

E1 � E2

½ðE1 � Vo
AÞe�itðE1�VsÞ � ðE2 � Vo

AÞe�itðE2�VsÞ�h� � EaðtÞ� � Eað0Þi

� ig2
�
1ffiffiffi
6

p
�
2 Z 1

0
dt

1

E1 � E2

½ðE1 � Vo
S Þe�itðE1�VsÞ � ðE2 � Vo

S Þe�itðE2�VsÞ�h� �EaðtÞ� �Eað0Þi

þ 2ig2
1

2
ffiffiffi
2

p 1ffiffiffi
6

p
Z 1

0
dt

Vo
AS

E1 � E2

½e�itðE1�VsÞ � e�itðE2�VsÞ�h� �EaðtÞ� � Eað0Þi; (49)

where h� � �i stands for a vacuum expectation value. In writing the various contributions in Eq. (49), we have kept the same
order as in Fig. 2: the first two terms correspond to the two diagrams shown in the first line of Fig. 2, and the last
contribution is the sum of the two diagrams in the second line of Fig. 2, which are equal.

The vacuum expectation value of two chromoelectric fields reads in dimensional regularization (d ¼ 4� 2" is the
number of dimensions)

ha � EaðtÞb �Eað0Þi ¼ a � b 4ðd� 2Þ
ðd� 1Þ �

4�d
Z dd�1q

ð2�Þd�1
jqje�ijqjt þOð�sÞ; (50)

where a and b are two generic vectors and t > 0. Performing the integrals in (49) we obtain

�s
US ¼

4

3

�s

�

1

E1 � E2

��j�j2
4

ðE1 � Vo
AÞ þ

j�j2
3

ðE1 � Vo
S Þ �

� � �ffiffiffi
3

p Vo
AS

�
ðE1 � VsÞ3

�
1

"
� �E � ln

ðE1 � VsÞ2
��2

þ 5

3

�

�
�j�j2

4
ðE2 � Vo

AÞ þ
j�j2
3

ðE2 � Vo
S Þ �

� � �ffiffiffi
3

p Vo
AS

�
ðE2 � VsÞ3

�
1

"
� �E � ln

ðE2 � VsÞ2
��2

þ 5

3

��
; (51)

where �E is the Euler-Mascheroni constant. Equation (51)
comprises the entire US contribution up to order �4

s .
The explicit expressions may be obtained by replacing
E1 and E2 with the right-hand side of Eq. (48), and Vs,
Vo
A, V

o
S and Vo

AS by the LO expressions given in Eqs. (24)
and (26)–(28), respectively. Equation (51) corrects the
expression derived in Ref. [15] where the mixing of the
octet fields was not taken into account. Hence, the result of
Ref. [15] is retained from Eq. (51) by setting Vo

AS ¼ 0.

B. Invariance of �s
US under exchange symmetry

The US correction, �s
US, calculated in the previous

section is expected to be invariant under the exchange

symmetry discussed in Sec. III. To verify this we observe
that according to Eqs. (37) and (38) the combinations
ðVo

A þ Vo
S Þ and ½ðVo

A � Vo
S Þ2=4þ ðVo

ASÞ2� are each invari-

ant. This implies that both E1 and E2 are invariant accord-
ing to the definition (48). Also the singlet static potential,
Vs, is invariant at LO [see Eq. (24)]. If we rewrite explicitly
the expression j�j2=4þ j�j2=3 in terms of the positions of
the heavy quarks with the help of Eqs. (2) and (3),

j�j2
4

þj�j2
3

¼ 1

3
ðx2

1þx2
2þx2

3�x1 �x2�x1 �x3�x2 �x3Þ;
(52)
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it is evident that this expression is invariant under the
transformations (29) and (30). Finally, we have to show
that the expression

Vo
A

j�j2
4

þ Vo
S

j�j2
3

þ Vo
AS

� � �ffiffiffi
3

p (53)

is also invariant. This is a straightforward, although not
manifest, consequence of the transformations (29), (30),
(37), and (38), which completes the proof that �s

US is

invariant under the exchange symmetry. The invariance
of �s

US is directly inherited by the contribution to Vs at

order �4
s ln� and the singlet static energy Es at order

�4
s ln�s.

C. The QQQ singlet static potential and energy

According to Eq. (41), the divergence and the �4
s ln�

term in �s
US must cancel against a divergence and a term

�4
s ln� in the singlet static potential Vs. Therefore the

�4
s ln� part of the potential may be read off from

Eq. (51). In a minimal subtraction scheme, the singlet static
potential up to order �4

s ln� is then given by

Vsðr1;r2;r3;�Þ¼Vs
NNLOðr1;r2;r3Þ�

�4
s

3�
ln�

��
r21þ

ðr2þr3Þ2
3

��
1

jr1j2
þ 1

jr2j2
þ 1

jr3j2
�1

4

jr1jþjr2jþjr3j
jr1jjr2jjr3j

��
1

jr1jþ
1

jr2jþ
1

jr3j
�

þ
�
r21�

ðr2þr3Þ2
3

��
1

jr1j2
þ 1

jr2j2
þ 1

jr3j2
þ5

4

jr1jþjr2jþjr3j
jr1jjr2jjr3j

��
1

jr1j�
1

2jr2j�
1

2jr3j
�

þr1 �ðr2þr3Þ
�

1

jr1j2
þ 1

jr2j2
þ 1

jr3j2
þ5

4

jr1jþjr2jþjr3j
jr1jjr2jjr3j

��
1

jr2j�
1

jr3j
��

: (54)

The singlet static potential up to order �3
s , which we have denoted by Vs

NNLO, has been calculated in Ref. [16] and is
reproduced in Appendix B. At order�3

s , V
s
NNLO contains the leading three-body potential; also the new term proportional to

�4
s ln� that we have added here is a genuine three-body potential.
Summing up the singlet static potential (54) with the US contribution (51) we obtain the singlet static energy up to order

�4
s ln�s, which reads

Esðr1;r2;r3Þ¼Vs
NNLOðr1;r2;r3Þ�

�4
s

3�
ln�s

��
r21þ

ðr2þr3Þ2
3

��
1

jr1j2
þ 1

jr2j2
þ 1

jr3j2
�1

4

jr1jþjr2jþjr3j
jr1jjr2jjr3j

��
1

jr1jþ
1

jr2jþ
1

jr3j
�

þ
�
r21�

ðr2þr3Þ2
3

��
1

jr1j2
þ 1

jr2j2
þ 1

jr3j2
þ5

4

jr1jþjr2jþjr3j
jr1jjr2jjr3j

��
1

jr1j�
1

2jr2j�
1

2jr3j
�

þr1 � ðr2þr3Þ
�

1

jr1j2
þ 1

jr2j2
þ 1

jr3j2
þ5

4

jr1jþjr2jþjr3j
jr1jjr2jjr3j

��
1

jr2j�
1

jr3j
��

: (55)

The logarithm of �s signals that an ultraviolet divergence
from the US scale has canceled against an infrared diver-
gence from the soft scale.

Finally, it may be useful to express Eqs. (54) and (55) in
a way that makes manifest the invariance under exchange
symmetry proven in Sec. IVB. First, we recall that r1, r2
and r3 are not independent (cf. Sec. II C) and write

Esðr1; r2; r3Þ ¼ Esðr2 � r3; r2; r3Þ � Esðr2; r3Þ; (56)

then we observe that

Esðr2; r3Þ ¼ Esðr3; r2Þ: (57)

Hence an expression of the singlet static energy, which is
manifestly invariant under exchange symmetry, is

Esðr1; r2; r3Þ ¼ Esðr2; r3Þ þ Esðr1;�r3Þ þ Esð�r2;�r1Þ
3

:

(58)

Similarly one can obtain a manifestly invariant expression
of the singlet static potential.

V. RENORMALIZATION GROUP IMPROVEMENT
OF THE SINGLET STATIC POTENTIAL IN AN

EQUILATERAL GEOMETRY

The US logarithms that start appearing in the static
potential at NNNLO may be resummed to all orders by
solving the corresponding renormalization group equa-
tions. These are a set of equations that describe the scale
dependence of the static potentials in the different color
representations. They follow from requiring that the static
energies of theQQQ system and its gluonic excitations are
independent of the renormalization scheme. The potentials
in the different color representations mix under renormal-
ization. This may be easily understood by looking at the
renormalization group equation for the singlet potential
that can be derived from �dVs=d� ¼ ��d�s

US=d� and

Eq. (51),
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�
d

d�
Vs ¼ � 8

3

�s

�

��
Vo
S � Vo

A

2

�j�j2
4

� j�j2
3

�
� Vo

AS

� � �ffiffiffi
3

p
��

3

�
Vo
S þ Vo

A

2
� Vs

�
2 þ ðVo

S � Vo
AÞ2

4
þ ðVo

ASÞ2
�

þ
�
Vo
S þ Vo

A

2
� Vs

��j�j2
4

þ j�j2
3

���
Vo
S þ Vo

A

2
� Vs

�
2 þ 3

ðVo
S � Vo

AÞ2
4

þ 3ðVo
ASÞ2

��
: (59)

It shows the explicit dependence of the running of Vs on
the octet potentials and octet mixing potential.

In the Q �Q case the renormalization group equations
have been solved for the singlet static potential at
next-to-next-to-leading logarithmic (NNLL) accuracy in
Ref. [25] and at next-to-next-to-next-to-leading logarith-
mic (NNNLL) accuracy in Ref. [26].4 In the QQQ case
similar results can be obtained by solving Eq. (59) with the
corresponding renormalization group equations for the
octet and decuplet potentials. There is however a difference
between the Q �Q and the QQQ case that is worth high-
lighting. While in aQ �Q system there is just one length, the
distance between the heavy quark and antiquark, the ge-
neric three-body system is characterized by more than one
length. For a general three-body geometry, therefore, loga-
rithmic corrections in the US scale could be numerically as
important as finite logarithms involving ratios among the
different lengths of the system. The calculation of these
finite logarithms requires the calculation of theQQQ static
Wilson loop. However, these logarithms are unimportant if
the distances between the heavy quarks are similar. In the
following, we will therefore restrict ourselves to the sim-
plest case of three static quarks located at the corners of an
equilateral triangle. In this situation, the three-body system
is characterized, like the two-body one, by just one funda-
mental length, which can be identified with the length of
each side of the triangle: jr1j ¼ jr2j ¼ jr3j ¼ r.

In the equilateral limit at least up to NLO, the different
octet fields do not mix, moreover, as has been shown in
Eq. (40), the two octet potentials Vo

S and Vo
A are equal. The

US contribution for the singlet static energy follows by
specializing the general formula (51) to the equilateral
limit. The US contributions for the octet and decuplet static
energies can be derived along the same lines (cf. also the
calculation of the US corrections for theQ �Q octet potential
in Ref. [22]). In particular, in the equilateral limit one has
to consider only the diagrams shown in Fig. 3, since octet-
to-octet diagrams with an intermediate octet propagator in
the loop are scaleless for Vo

S ¼ Vo
A ¼ Vo, and thus vanish

in dimensional regularization. Moreover, the US leading-
order contribution for the symmetric octet is equal to the
one for the antisymmetric octet; we call it, �o

US. The

divergent parts of the diagrams shown in Fig. 3 give rise
to the following renormalization group equations valid for
the singlet, octet and decuplet static potentials of three

quarks located at the corners of an equilateral triangle of
side length r:8>>>>>><
>>>>>>:

� d
d�V

s ¼� 4
3��sr

2ðVo �VsÞ3 þOð�5
s Þ

� d
d�V

o ¼ 1
12��sr

2½ðVo �VsÞ3 þ 5ðVo �VdÞ3� þOð�5
s Þ

� d
d�V

d ¼� 2
3��sr

2ðVo �VdÞ3 þOð�5
s Þ

� d
d��s ¼ �s�ð�sÞ:

(60)

The first equation is just the equilateral limit of Eq. (59).
The last equation describes the running of the strong
coupling constant, where �ð�sÞ ¼ ��s�0=ð2�Þ þOð�2

s Þ
is the beta function; the first coefficient of the beta function
is �0 ¼ 11� 2=3nl with nl the number of light-quark
flavors. By observing that

Vo � Vs ¼ �ðVo � VdÞ þOð�3
s Þ; (61)

as follows straightforwardly from the results of Ref. [16],
the system of equations (60) can be split into two sets of
decoupled equations:8>>><

>>>:
� d

d�V
s ¼ � 4

3��sr
2ðVo � VsÞ3 þOð�5

s Þ
� d

d�V
o ¼ � 1

3��sr
2ðVo � VsÞ3 þOð�5

s Þ
� d

d��s ¼ �s�ð�sÞ;
(62)

and8>>><
>>>:
� d

d�V
d ¼ � 2

3��sr
2ðVo � VdÞ3 þOð�5

s Þ
� d

d�V
o ¼ 1

3��sr
2ðVo � VdÞ3 þOð�5

s Þ
� d

d��s ¼ �s�ð�sÞ:
(63)

The two sets of equations can be solved as in Ref. [25]
leading to5

Vsðr;�Þ ¼ Vs
NNLOðrÞ � 9

�3
s ð1=rÞ
�0r

ln
�sð1=rÞ
�sð�Þ ; (64)

Voðr;�Þ ¼ Vo
NNLOðrÞ �

9

4

�3
s ð1=rÞ
�0r

ln
�sð1=rÞ
�sð�Þ ; (65)

Vdðr;�Þ ¼ Vd
NNLOðrÞ þ

9

2

�3
s ð1=rÞ
�0r

ln
�sð1=rÞ
�sð�Þ : (66)

4An NNLL accuracy amounts at resumming �3
s ð�s ln�Þn

terms and an NNNLL accuracy amounts at resumming
�4
s ð�s ln�Þn terms, with n 2 N0.

5All coupling constants in Vs
NNLOðrÞ, Vo

NNLOðrÞ and Vd
NNLOðrÞ

are evaluated at the scale 1=r.

NORA BRAMBILLA, FELIX KARBSTEIN, AND ANTONIO VAIRO PHYSICAL REVIEW D 87, 074014 (2013)

074014-10



The singlet static potential is known at NNLO, hence
Eq. (64) provides the complete expression of the singlet
static potential at NNLL accuracy in an equilateral geome-
try. This is the most accurate perturbative determination of
this quantity. Instead neither the octet nor the decuplet
potentials are known beyond NLO (see Ref. [16]).

VI. CONCLUSIONS

In the paper, we have reconsidered the construction of
pNRQCD for systems made of three heavy quarks with
equal masses. We have, in particular, rederived the
pNRQCD Lagrangian in the static limit and put special
attention to the symmetry under exchange of the heavy-
quark fields. Although the symmetry is an obvious property
of these systems, its consequences for the pNRQCD
Lagrangian and in particular for its octet sector have
been explored here for the first time. Three static quarks
may be cast either in a color-singlet, two distinct color-
octets or a color-decuplet configuration. Whereas the
color singlet is completely antisymmetric and the color
decuplet is completely symmetric in the color-indices, the
color-octet transformations depend on the color indices
that are exchanged. The fact that color-octet fields are
specially sensitive to the ordering of the quarks reflects
in the fact that they mix, in general, under exchange of the
heavy-quark fields and dynamically through a one-gluon
exchange. As a consequence, also the octet potentials and
the mixing potential transform nontrivially under exchange
symmetry; we have listed their transformation properties in
Eqs. (37) and (38).

Thereafter, we have computed the leading ultrasoft
contribution to the QQQ singlet static energy, �s

US. Its

expression can be found in (51). Because of the two differ-
ent octet fields and their mixing, the calculation of �s

US

requires the evaluation of four diagrams and the resumma-
tion of the octet mixing potential for all of them. The

calculation is therefore more involved than the analogous
one of the US contribution in the Q �Q case. The expression
for �s

US in theQQQ case offers also a nontrivial test for the

invariance under exchange symmetry; this has been per-
formed in Sec. IVB. A consequence of the calculation of
�s
US at leading order is that we can determine the singlet

static potential at order �4
s ln�, see Eq. (54), and the

singlet static energy at order �4
s ln�s, see Eq. (55). These

results represent the new computational outcome of this
work and so far the most accurate determinations of the
QQQ singlet static potential and energy in perturbative
QCD. The new contribution computed for the potential is
valid for any configuration in space that the three quarks
may take and it is a three-body interaction. Together with
the three-body interaction at two-loop order computed in
Ref. [16] it may provide new insight on the emergence
of a long-range three-body interaction governed by just
one fundamental length that is observed in lattice studies
(see, e.g., Refs. [2,3,10]).
In the last part of the paper, we have focused on the

special situation where the three quarks are located at the
corners of an equilateral triangle of side length r. In this
limit, where the two octet potentials become degenerate,
we have solved the renormalization group equations for the
color singlet, octet and decuplet potentials at NNLL accu-
racy. The corresponding expressions can be found in
Eqs. (64)–(66). Hence, for an equilateral geometry, the
QQQ singlet static potential is now known up to order
�3
s ð�s ln�rÞn for all n 2 N0.
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FIG. 3. Leading-order ultrasoft contributions to the singlet, �s
US, octet, �

o
US, and decuplet, �d

US, energies in an equilateral geometry.
The triple lines represent the decuplet propagator, �ðTÞe�iVdT���0 ; the decuplet can couple to a symmetric octet, with vertex
ig 2ffiffi

3
p ð	ijkTa

ii0T
b
jj0�

�
i0j0kÞ� �Eb, or to an antisymmetric octet, with vertex igð	ijkTa

ii0T
b
jj0�

�
i0j0kÞ� � Eb; the other propagators and vertices

have been introduced in Eqs. (42) and (43).
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APPENDIX A: COVARIANT
DERIVATIVE OPERATORS

In this Appendix, we list the explicit matrix representa-
tions for the covariant derivative operators in the octet and
decuplet representations of SUð3Þc that appear in Eq. (22).
The SUð3Þc covariant derivative is of the general form

D� ¼ @� þ igAa
�T

a
r ; (A1)

where a ¼ 1; . . . ; 8 and Ta
r refers to the SUð3Þc generators

in the representation r. The generators in the octet (r ¼ 8)
and in the decuplet (r ¼ 10) representation are [15]

ðTa
8 Þbc ¼ �ifabc; b; c ¼ 1; . . . ; 8;

ðTa
10Þ��0 ¼ 3

2
��

ijk�
a
ii0�

�0
i0jk; �; �0 ¼ 1; . . . ; 10;

(A2)

where fabc are the structure constants of SUð3Þc. An ex-
plicit representation of the decuplet tensor ��

ijk is in (17).

APPENDIX B: THE SINGLET STATIC
POTENTIAL UP TO ORDER �3

s

We reproduce here for completeness the expression of
the singlet static potential up to order �3

s computed in [16]:

Vs
NNLOðr1; r2; r3Þ

¼ � 2

3

X3
i¼1

�sð1=jrijÞ
jrij

�
1þ ~a1

�sð1=jrijÞ
4�

�

� �s

�
�s

4�

�
2
�
2

3
~a2;s

�
1

jr1j þ
1

jr2j þ
1

jr3j
�

þ vH ðr2; r3Þ þ vH ðr1;�r3Þ þ vH ð�r2;�r1Þ
�
:

(B1)

The one-loop and two-loop coefficients ~a1 and ~a2;s depend
on the number of light (massless) quark flavors, nl, and are
given by

~a1 ¼ 31

3
þ 22�E �

�
10

3
þ 4�E

�
nl
3
; (B2)

~a2;s ¼ 4343

18
þ 3�4

4
þ 121�2

3
þ 66ð3Þ � 484�2

E þ 204�E

�
�
1229

9
þ 44�2

3
þ 52ð3Þ � 176�2

E þ 76�E

�
nl
3

þ
�
100

9
þ 4�2

3
� 16�2

E

��
nl
3

�
2 þ 4�E

�
11� 2

nl
3

�
~a1:

(B3)

At two loop, a genuine three-body potential shows up. It is
encoded in the function vH defined as

vH ðr2;r3Þ

¼16�
Z 1

0
dx

Z 1

0
dy

�
r̂2 � r̂3
jRj

��
1� M2

jRj2
�
arctan

jRj
M

þ M

jRj
�

þðr̂2 �R̂Þðr̂3 �R̂Þ
jRj

��
1þ3

M2

jRj2
�
arctan

jRj
M

�3
M

jRj
��
;

(B4)

withRðr2; r3Þ � xr2 � yr3 andMðr2;r3Þ�jr2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1�xÞp þ

jr3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1�yÞp

. Note that the three-body potential in
(B1) is manifestly invariant under the transformations
(29) and (30).
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