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We evaluate the second and fourth order quark number susceptibilities in hot QCD using two variations

of resummed perturbation theory. On one hand, we carry out a one-loop calculation within hard-thermal-

loop perturbation theory, and on the other hand perform a resummation of the four-loop finite density

equation of state derived using a dimensionally reduced effective theory. Our results are subsequently

compared with recent high precision lattice data, and their agreement thoroughly analyzed.
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I. INTRODUCTION

One of the most pressing challenges in the equilibrium
thermodynamics of QCD is to develop nonperturbative
tools to access the region of nonzero quark densities,
addressing questions such as the existence and location
of a critical point in the phase diagram. Barring a solution
to the sign problem of lattice QCD, the leading method to
determine the finite density equation of state (EoS), i.e., the
behavior of the pressure as a function of quark chemical
potentials �, is through the evaluation of quark number
susceptibilities,

�ijk...ðTÞ �
@npðT; f�fgÞ

@�i@�j@�k . . .

���������f¼0
; (1)

where the indices i; j; k; . . . refer to different quark flavors.
These functions carry information about the response of
the system to nonzero density, yet can be determined on the
lattice without problems; for examples of recent studies,
see e.g., Refs. [1,2] and references therein. The applicabil-
ity of these results to the determination of the EoS at� � 0
is ultimately restricted only by the convergence of the
expansion of the pressure in powers of �=T.

While a quantitative description of the quark gluon
plasma near its transition temperature Tc clearly necessi-
tates the use of nonperturbative techniques, it is also inter-
esting to study, to what extent the behavior of the quark
number susceptibilities can be understood using analytic
weak coupling methods. First, unlike lattice calculations,
perturbation theory works optimally at very high tempera-
tures and thus offers a way to connect the results obtained
around Tc to arbitrarily high energies. More importantly,
perturbative calculations are easily generalizable to finite
density, and are not constrained to the region of small�=T.
Finally, due to the absence of the purely gluonic contribu-
tions to quark number susceptibilities, these quantities are
expected to display improved convergence properties in
comparison with the pressure itself.

Indeed, extensive analytic work on susceptibilities,
and more generally the chemical potential dependence of
the pressure, has been carried out within unresummed

perturbation theory [3,4], the hard-thermal-loop (HTL)
approximation [5–9], the analytically tractable large-Nf

limit of QCD [10,11], and even the gauge/gravity duality
[12]. In addition to this, the applicability of dimensional
reduction (DR) to finite densities has been investigated in
Ref. [13], and the behavior of the susceptibilities deter-
mined through a nonperturbative DR study in Ref. [14].
While many of the perturbative calculations listed above

showed reasonably good agreement with lattice results
existing at the time of their publication, the numerically
significant corrections present in recent high precision
lattice data [1,2] clearly call for a reexamination of the
issue. On top of this, the past years have witnessed impor-
tant progress in the resummation of high-temperature per-
turbation theory on multiple fronts. In HTL perturbation
theory (HTLpt) [15], a recent evaluation of the partition
function of hot QCD up to three-loop order has demon-
strated dramatically improved convergence properties
[16,17], and the agreement between the HTLpt and lattice
results has subsequently been observed to be very good
down to 2–3Tc (for the relevant lattice data, see
e.g., Refs. [18–20]). In addition, the same framework has
been applied to the case of finite density and zero tempera-
ture, albeit at lower orders [21,22]. At the same time, it was
shown in Refs. [23,24] that a simple resummation of the
soft, three-dimensional contributions to the four-loop EoS
of hot QCD [25] is enough to considerably decrease its
renormalization scale dependence, resulting in excellent
agreement with lattice data. It should be interesting to see
what kind of an effect these new techniques have when
applied to the evaluation of quark number susceptibilities.
In the present paper, our objective is simple: We want to

apply state-of-the-art resummation techniques to the deter-
mination of the second and fourth order quark number
susceptibilities, and compare the results to the most recent
lattice data available. To this end, we address two separate
calculations: First, we employ HTLpt to determine the
susceptibilities at one-loop order, aka leading order
(LO), and after this apply the resummation scheme of
Refs. [23,24] to the four-loop finite density EoS of
Ref. [3] to obtain Oðg6 ln gÞ results for the same quantities
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(dubbed ‘‘DR’’ in the following). Both calculations

are performed within the MS renormalization scheme,

denoting the scale parameter by ��. When discussing the
results, we will specialize to the phenomenologically most
relevant case of three dynamical quark flavors, which for
simplicity are all taken to be massless. We have, however,
explicitly verified that keeping the leading order strange
quark mass dependence in the results only affects them in
any noticeable way at the very lowest temperatures.

II. HTL PERTURBATION THEORY

Hard-thermal-loop perturbation theory is a reorganiza-
tion of the usual perturbative expansion of thermal QCD.
The Lagrangian density of the theory is written in the form

LHTLpt ¼ ðLQCD þLHTLÞjg! ffiffiffi
�

p
g þ�LHTL; (2)

where LQCD is the undeformed Lagrangian of the theory,

LHTL an HTL improvement term, and � a formal expan-
sion parameter introduced for bookkeeping purposes. The
last part of the above expression,�LHTL, on the other hand
contains counterterms, which are necessary to cancel
the ultraviolet divergences introduced by the HTLpt
reorganization.

For full QCD with dynamical quarks, the (gauge
invariant) HTL improvement term reads

LHTL ¼ � 1

2
ð1� �Þm2

D Tr

�
F��

�
y�y�

ðy �DÞ2
�
y
F�
�

�

þ ð1� �ÞiX
Nf

f

m2
q;f

�c f�
�

�
y�
y �D

�
y
c f; (3)

where D� ¼ @� � igA� denotes a covariant derivative
(in the appropriate representation), y ¼ ð1; ŷÞ is a lightlike
four-vector, h iy represents an average over the direction of
ŷ, and mD and mq;f are the Debye mass and fermion

thermal mass parameters. Note that mq;f carries a depen-

dence on the flavor index f, running from 1 to Nf ¼ 3.

HTLpt is formally defined as an expansion of physical
quantities in powers of � around � ¼ 0, implying that
already at its leading order one is dealing with dressed
propagators that incorporate important plasma effects,
such as Debye screening and Landau damping. The start-
ing point of HTLpt is thus an ideal gas of massive quasi-
particles, which can be identified as one of the main
reasons for its success. At higher orders, the expansion in
� generates dressed vertices as well as higher order terms
that ensure that there is no overcounting of Feynman
diagrams.

In practice, physical observables are calculated within
HTLpt by truncating the � expansions at some specified
order, and then setting � ¼ 1. If it were possible to carry
out the expansion to all orders, the final result would be
independent of the parameters mD and mq;f. At any finite

order in �, some residual dependence on them however
remains, and a prescription for choosing their values is
required. Optimally, the parameters should be determined
via a variational condition for the thermodynamic poten-
tial, which is however only well defined beyond the leading
order due to the absence of the coupling constant in the
LO thermodynamic potential [26]. In our calculation, we
therefore identify the Debye and fermion masses with their
weak coupling values,

m2
D ¼ g2

3

��
Nc þ

Nf

2

�
T2 þ 3

2�2

X
f

�2
f

�
; (4)

m2
q;f ¼

g2

4

N2
c � 1

4Nc

�
T2 þ�2

f

�2

�
; (5)

where we have kept the number of colors Nc arbitrary.
After the definitions above, the one-loop HTLpt deter-

mination of the EoS follows to a large extent the � ¼ 0
calculation of Ref. [15], including an analytic expansion of
the result in powers of mD=T and mq;f=T up to order g5.

This results in

pHTLpt¼dA�
2T4

45
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;

(6)

where we have denoted dA � N2
c � 1 as well as introduced

the dimensionless parameters m̂ � m
2�T , etc. Results for the

quark number susceptibilities are finally obtained by taking
derivatives of this expression with respect to the chemical
potentials, and setting � ¼ 0 in the end.

III. DIMENSIONAL REDUCTION

To date, the unresummed weak coupling expansion
of the QCD pressure has been determined up to and par-
tially including its four-loop order, both at zero density
[25,27,28] and at � � 0 [4]. A useful tool in these calcu-
lations has turned out to be the three-dimensional effective
theory electrostatic QCD (EQCD), the partition function of
which very conveniently encompasses the contributions of
the soft and ultrasoft momentum scales (gT and g2T,
respectively) to the corresponding quantity in the full
theory [29,30]. In practice, one writes the pressure of the
four-dimensional theory in the form
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pQCD ¼ pHARD þ TpEQCD; (7)

where pHARD is defined as the strict loop expansion of the
pressure in the full theory, obtained by letting dimensional
regularization regulate both the UV and IR divergences.
At the same time, pEQCD corresponds to the partition

function of EQCD, which one can evaluate using a
combination of perturbative [27,28] and nonperturbative
[31,32] tools.

Formally, EQCD is a three-dimensional SUðNcÞ
Yang-Mills theory coupled to an adjoint Higgs field A0,
originating from the zero Matsubara mode of the four-
dimensional temporal gauge field. The theory is defined
by the Lagrangian density

LEQCD ¼ g�2
3

	
1

2
Tr½Fij�2 þ Tr½ðDiA0Þ2� þm2

E Tr½A2
0�

þ i� Tr½A3
0� þ 	E Tr½A4

0�


þ �LE; (8)

where we have assumed Nc ¼ 3 (for larger Nc we would
have two independent quartic terms for the A0 field), and
where the last term �LE stands for a series of higher order
nonrenormalizable operators that start to contribute to the
pressure only beyond Oðg6Þ. The theory is parametrized
by four constants: The three-dimensional gauge coupling
g3, the electric screening mass mE, the cubic coupling
� �P

f�f (see Ref. [33] for details), as well as the quartic

coupling 	E. All of these parameters have expansions in
powers of the four-dimensional gauge coupling g, and their
values have been determined to the accuracy required by
the four-loop evaluation of the EoS, some even beyond
(see e.g., Ref. [34]).

As discussed in Ref. [24], the above way of writing the
QCD pressure suggests a highly natural resummation
scheme: While the unresummed weak coupling expansion
is obtained by expanding the (perturbatively determined)
EQCD partition function in powers of the four-dimensional
gauge coupling g, one may simply skip the last step. This
amounts to keeping pEQCD an unexpanded function of the

effective theory parameters and writing

TpEQCD ¼ pM þ pG; (9)

where the functions pM and pG can be read off from
Eqs. (3.9) and (3.12) of Ref. [4]. In Ref. [24], this procedure
was observed to lead to a considerable improvement in the
convergence and scale dependence properties of the full
theory pressure at zero chemical potential. It can, however,
be applied to the case of the finite density pressure and the
quark number susceptibilities with equal ease, which is
what we have implemented in our calculations. An impor-
tant step in this in principle straightforward exercise is to
use the effective theory parameters in a form, where they
have been analytically expanded in powers of �=T;
cf. Appendix D of Ref. [4] and Appendix B of Ref. [35].

We refrain from writing the resulting, very long expres-
sions here, but rather give them in the MATHEMATICA file
DREoS.nb [36]. It is important to note that unlike in
Ref. [24], in our calculation the unknown part of the
Oðg6Þ term in the expansion of the pressure has not been
fitted to lattice results, but simply been set to 0.

IV. CHOICE OF PARAMETERS

Before proceeding to a quantitative comparison of our
results with lattice data, let us briefly discuss how we have
chosen the values of the parameters appearing in our

calculations. These include the renormalization scale ��
as well as the QCD scale �MS, in addition to which a

prescription for determining the value (and running) of
the gauge coupling must be specified. In all of these cases,
we follow standard choices used widely in the literature.
In perturbative calculations of bulk thermodynamic

observables, the renormalization scale �� is typically first
given a value of roughly 2�T, around which it is then
varied by a factor of 2 in order to test the sensitivity of the
result with respect to the choice. Within DR, a commonly
used prescription is to choose the central value by applying
the fastest apparent convergence (FAC) criterion to the
three-dimensional gauge coupling g3, resulting in
��central � 1:445� 2�T [30]. For simplicity, we use this
value in both of our computations.
For the dependence of the gauge coupling constant on

the renormalization scale, we use a one-loop perturbative
expression in the HTLpt result and a two-loop one in the
DR case. This is in accordance with the usual rule that the
uncertainties originating from the running of the gauge
coupling should not exceed those due to the perturbative
computation itself. Finally, for the choice of the QCD scale
�MS, we use a recent lattice determination of the strong

coupling constant at a reference scale of 1.5 GeV [37].
Requiring that our one- and two-loop couplings agree
with this, we obtain the values �MS ¼ 176 and 283 MeV

in the two cases, respectively. To be conservative, we vary
the value of the parameter around these numbers by
30 MeV, which is somewhat larger than the reported lattice
error bar.

V. RESULTS

In Fig. 1, we finally display our predictions for the
second order light quark number susceptibility �uu �
�u2, normalized by the noninteracting Stefan-Boltzmann
(SB) limit �u2;SB ¼ T2. The results are subsequently

compared with the recent N
 ¼ 8 lattice data of the
BNL-Bielefeld collaboration, obtained using the highly
improved staggered quark (HISQ) action [38,39], as well
as with the continuum extrapolated results of the
Wuppertal-Budapest (WB) collaboration [2]. As the widths
of the red and blue bands—corresponding respectively
to the HTLpt and DR calculations—demonstrate, the
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dependence of our results on the renormalization scale and
the value of�MS is rather mild. For instance, a comparison

of the DR band with the unresummed four-loop result of
Ref. [3] shows a reduction of the uncertainty by a factor
larger than 5 in this temperature range. Our two results are
in addition in impressive agreement with each other at
temperatures of the order of 300MeVand higher, deviating
significantly only in the direct vicinity of Tc. The results
are in addition seen to be in good agreement with lattice
data, with the DR band even reproducing the decreasing
trend of the lattice results at small T.

Moving on to the fourth order susceptibilities, in Fig. 2
we show our results for the quantity �uuuu � �u4, also
scaled by the corresponding SB value �u4;SB ¼ 6=�2.

The continuum extrapolated WB lattice data are this time
taken from Ref. [40], while the N
 ¼ 8 BNL-Bielefeld
results are again from Refs. [38,39]. Both data sets
are seen to reside inside our HTLpt band down to
T � 200 MeV, and in fact almost coincide with its central
value in this interval. This fact may, however, be to some
extent coincidental, considering its dependence on our

(rather arbitrary) choice of ��central. The DR prediction is
again seen to reproduce the qualitative trend of the lattice
results, but is observed to slightly overestimate them in the
relevant temperature range. This disagreement, however,
slowly decreases with temperature, and it is plausible that
the DR band and the lattice error bars start to overlap
already at temperatures below 500 MeV once new data
for higher temperatures emerge.

To highlight the difference between our two perturbative
calculations, in Fig. 3 we consider the ratio of the fourth
and second order susceptibilities, for which much of the

dependence of our results on the renormalization scale and
�MS cancels. Indeed, the HTLpt and DR predictions for

this quantity are seen to be highly robust, and in addition
in disagreement with each other for all temperatures
considered. The HTLpt result is observed to be consistent
with the lattice data down to temperatures close to
200 MeV, even though it does not reproduce the increasing
trend of the latter close to Tc. At the same time, the DR
band resides above the lattice data for most of the interest-
ing temperature range, and while displaying a modest
increase at low temperatures, is clearly not consistent
with the lattice measurements. Considering the increase
of the lattice data at temperatures close to 500 MeV, it
would nevertheless be of some interest to see whether they
continue to favor the HTLpt prediction in the interval of
500–1000 MeV; this issue remains to be decided by future
lattice simulations.
The physical origins of the behavior described above are

clearly interesting to analyze. Inspecting the DR result at
different orders of the weak coupling expansion, it is seen
to consistently improve both in the sense of approaching
the lattice data and in exhibiting a decreasing dependence

on �� and �MS. The fact that for the fourth order suscep-

tibility the lattice points lie outside the displayed perturba-
tive band for most temperatures may of course appear
troublesome and indicative of an underestimation of the
systematic uncertainties in the calculation; if so, this can
clearly be attributed to the resummation performed, which
has a dramatic effect on the size of the error bars. At the
same time, the apparent success of our HTLpt result should
be taken with some reservations, considering that it is
only a LO one. It has after all been repeatedly seen in
perturbative calculations that the transition from LO to
next-to-leading order may shift the result considerably
and sometimes even increase its renormalization scale
dependence. Indications of such behavior have indeed
been recently reported in Refs. [41,42].
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FIG. 2 (color online). As in Fig. 1, but for the fourth order light
quark number susceptibility �u4. The WB lattice data has been
taken from Ref. [40]. Here the HTLpt band is the lower one,
while the DR one is upper.
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FIG. 1 (color online). A comparison of our HTLpt (red band,
upper) and DR (blue band, lower) results for the second order
light quark number susceptibility �u2 with the recent lattice
results of the BNL-Bielefeld [38,39] (black dots) and
Wuppertal-Budapest (WB) [2] (green dots) collaborations. All
results have been normalized by the noninteracting Stefan-
Boltzmann limit, while the bands corresponding to the pertur-
bative results originate from varying the values of �� and �MS

within the ranges indicated in the text.
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VI. CONCLUSIONS

In the present paper, we have applied two types of re-
summed perturbation theory to the determination of the
second and fourth order light quark number susceptibilities
in thermal QCD.Ourmain results are shown in Figs. 1–3, of
which in particular the last one, displaying the ratio of the
two quantities, shows an interesting pattern. It is
observed that the lattice data agree with our one-loop
HTLpt result over awide range of temperatures, while there
is a slight, yet visible discrepancy between them and the
four-loopDR result belowT � 500 MeV. It is obviously an

important task to attempt to explain this observation, and in
particular see whether the present success of HTLpt still
prevails once higher order corrections are included.
Clearly, the most important virtue of weak coupling

methods is their versatility. Indeed, as soon as the quark
number susceptibilities for the three-flavor case treated
here have been computed, it is straightforward to extend
the results to other theories of interest, such as two-flavor
or quenched QCD (or even QCDwith a different number of
colors), as well as to other quantities, such as higher order
susceptibilities or the pressure as a function of chemical
potentials. All of these cases, as well as a further study of
the Nf ¼ 3 results displayed above, are examples of direc-

tions we will pursue in a forthcoming publication [43]. Our
hope is these results will eventually find phenomenological
use in the study of the current and future heavy ion data
from RHIC, LHC, and FAIR.
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