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A difference of several tenths of a percent has been observed between the direct CP asymmetries of

D0 ! KþK� and D0 ! �þ��. It has been noted recently that CP asymmetries in such singly Cabibbo-

suppressed decays can affect the determination of the weak phase � using the Gronau-London-Wyler

method of comparing rates for Bþ ! DKþ and B� ! DK�, where D is a superposition of D0 and �D0

decaying to a CP eigenstate. Using an analysis of the CP asymmetries in singly Cabibbo-suppressed

decays based on a c ! u penguin amplitude with a standard model weak phase but enhanced by

CP-conserving strong interactions, we estimate typical shifts in � of several degrees and pinpoint

measurements which would reduce uncertainties to an acceptable level.
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I. INTRODUCTION

The precise determination of phases of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is crucial to the
understanding of CP violation. At present there appears
to be reasonable agreement on magnitudes and phases
of CKM matrix elements [1,2]. However, discrepancies
among different determinations of these quantities can
signal new physics, for example, due to new heavy parti-
cles entering into loop diagrams. Consequently, it is
essential to pursue the widest variety of measurements of
CKM elements.

One quantity which is determined indirectly with rea-
sonable accuracy but whose direct measurement has lagged
with respect to many others is the weak phase �, related
to CKM elements Vij by � ¼ Argð�V�

ubVud=V
�
cbVcdÞ.

A promising method for measuring � directly, proposed
by Gronau-London-Wyler (GLW) [3], compared rates for
Bþ ! DKþ and B� ! DK�, where D is a superposition
of D0 and �D0 decaying to a CP eigenstate. In the initial
formulation of this method, CP violation in charm decays
was assumed negligible, as suggested by standard model
(SM) estimates [4].

Variants of the GLW method include B� ! DK��,
D�ð! D�0; D�ÞK� and B0 ! DK�0 where D decays to
CP eigenstates, and processes of this kind in whichD0 and
�D0 decay to a common flavor state such as K��þ [5] or to
a three-body self-conjugate final state such as KS�

þ��
[6]. Results obtained in these processes have been reported
by the BABAR [7,8], Belle [9,10], CDF [11], and LHCb
[12–15] collaborations.

A value of several tenths of a percent has now been seen
for �ACP, the difference between the CP asymmetries
of D0 ! KþK� and D0 ! �þ�� [16,17]. These two
asymmetries have been included in a recent experimental
study by LHCb of B� ! DK� [13], concluding that their
effect on determining � is marginal at the current level of

experimental precision. References [18,19] have shown
that unless CP violation in D decays is taken into account,
the determination of � via the GLW method can be shifted
from its true value by up to several degrees.
Three of us have previously assumed that CP viola-

tion in charm decays is due to a penguin amplitude with
the SM phase but enhanced by CP-conserving strong-
interaction effects [20–22]. The possibility of such an
enhancement was pointed out some time ago, in analogy
to the likely enhancement of penguin amplitudes in
K ! 2� decays [23,24]. A large number of authors have
suggested that asymmetries at the level observed in �ACP

cannot be excluded within the CKM framework [25]. A
consistent description of singly Cabibbo-suppressed (SCS)
CP-violating charm decays was found in Refs. [20–22],
and predictions were made for correlations between CP
asymmetries in several decays of charmed mesons to pairs
of light pseudoscalar mesons P.
In the present paper we apply this description to

B� ! DK�, D ! �þ��, KþK�, studying within the
CKM framework shifts in � due to CP violation in
D ! PP decays. We find shifts of up to a few degrees as
noted in Refs. [18,19], where no specific scheme has been
used for CP violation and no correlations existed between
CP asymmetries in D decays. We identify the most crucial
measurements for reducing the uncertainty in effects of
these shifts to acceptable levels, i.e., below effects of other
uncertainties.
We review the GLW method in Sec. II allowing for

CP violation in charm decays, using observables involving
minimal systematic uncertainties. Present information
on direct CP asymmetries in SCSD decays to two pseudo-
scalars is summarized in Sec. III. The approach of
Ref. [20] is then outlined in Sec. IV, and applied to obtain
predictions for shifts in � in Sec. V. We summarize
in Sec. VI.
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II. GLW METHOD IN PRESENCE
OF CHARM CP VIOLATION

We shall be concerned with a single source of informa-
tion on �: the decays B� ! DK�, with D decaying to a
CP-even eigenstate such as fD ¼ �þ�� or KþK�. Our
notation will follow that of Ref. [19]. We define

AðB� ! D0K�Þ � AB

AðB� ! �D0K�Þ � ABrBe
ið�B��Þ

AðD0 ! fDÞ � Af;

(1)

where we have taken a strong phase to be zero in
B� ! D0K� with no loss of generality. By CP conjuga-
tion we then have

AðBþ ! �D0KþÞ � AB

AðBþ ! D0KþÞ � ABrBe
ið�Bþ�Þ

Að �D0 ! fDÞ � �Af:

(2)

The parameters rB and �B are measurable by combining
information from B� ! DK�, where neutral D mesons
decay to CP eigenstates, flavor-specific states orKS�

þ��.
Current values taken from Ref. [1] are

rB ¼ 0:099� 0:008; �B ¼ ð110� 15Þ�: (3)

The magnitudes of the amplitudes jAfj and j �Afj are

measurable through the CP-averaged branching ratio for
D0 ! f and �D0 ! f (giving jAfj2 þ j �Afj2) and the direct

CP asymmetry

Adir
CPðfÞ ¼

jAfj2 � j �Afj2
jAfj2 þ j �Afj2

: (4)

We define the weak (CP-violating) phase �f �
ArgðAf= �AfÞ. Its value is, as yet, unspecified. If � is taken

as the phase of Af we have

Af ¼ jAfjei�; �Af ¼ j �Afjeið���fÞ: (5)

Using the above definitions we may now construct the
following amplitudes:

AðB� ! fDK
�Þ ¼ ABAf þ �AfABrBe

ið�B��Þ

¼ ABðjAfj þ j �AfjrBeið�B����fÞÞei�; (6)

AðBþ ! fDK
þÞ ¼ AB

�Af þ AfABrBe
ið�Bþ�Þ

¼ ABðj �Afj þ jAfjrBeið�Bþ�þ�fÞÞeið���fÞ:

(7)

The squared magnitudes of Eqs. (6) and (7) give [19]

jAðB� ! fDK
�Þj2 ¼ jABj2ðjAfj2 þ r2Bj �Afj2

þ 2rBjAfjj �Afj cos ð�B � �� �fÞÞ;
(8)

jAðBþ ! fDK
þÞj2 ¼ jABj2ðj �Afj2 þ r2BjAfj2

þ 2rBjAfjj �Afj cos ð�B þ �þ �fÞÞ:
(9)

Adding and subtracting the above equations we may form
quantities that are relevant in constructing the GLW
observables:

jAðB�!fDK
�Þj2þjAðBþ!fDK

þÞj2
¼jABj2ðjAfj2þj �Afj2Þ

�
�
1þr2Bþ2rBcos�Bcosð�þ�fÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðAdir

CPðfÞÞ2
q �

;

(10)

jAðB� ! fDK
�Þj2 � jAðBþ ! fDK

þÞj2

¼ jABj2ðjAfj2 þ j �Afj2Þ
�
Adir
CPð1� r2BÞ

þ 2rB sin�B sin ð�þ �fÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðAdir

CPðfÞÞ2
q �

: (11)

The last expression differs from a similar one in Ref. [19]
by a term ð1� r2BÞðjAfj2 � j �Afj2Þ, which vanishes only in

the absence of direct CP violation in charm and hence
cannot be neglected.
We now take the expressions for Af and �Af to be [19]

Af ¼ jA0
fjð1þ rfe

ið�f��ÞÞ;
�Af ¼ jA0

fjð1þ rfe
ið�fþ�ÞÞ;

(12)

where A0
f is the amplitude in the absence of a CP-violating

term, and we have assumed that the source of CP violation
has the SM phase �� as in Ref. [20]. The direct CP
asymmetry [Eq. (4)] is then given by

Adir
CPðfÞ ¼

2rf sin�f sin�

1þ r2f þ 2rf cos�f cos�
: (13)

The fact that Adir
CPðfÞ is of order a few times 10�3 in D0 !

�þ�� and D0 ! KþK� (see Tables I and II in Sec. III)
suggests that rf in these processes is also of this order as

argued in Refs. [20,25]. Our subsequent analysis (in par-
ticular the discussion in Secs. IV and V) applies also to
larger values of rf, for instance of order 10

�2, with an order

of magnitude further suppression provided by sin�f. We

ignore the fine-tuned solution where rf is large, but the

strong phases in these decays are of order 10�3. One can
show that

�f ¼ �tan�1

� 2rf cos�f sin�þ r2f sin 2�

1þ 2rf cos�f cos�þ r2f cos 2�

�

� �Adir
CPðfÞ cot�f; (14)

where the last approximation holds to leading order in rf.
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It has been suggested in Ref. [26] that when applying the
GLW method one normalizes the CP-averaged rate for
B� ! fDK

� by that for B� ! fD�
�,

Rf
K=� � �ðB� ! fDK

�Þ þ �ðBþ ! fDK
þÞ

�ðB� ! fD�
�Þ þ �ðBþ ! fD�

þÞ ; (15)

and one takes the ratio of this fraction and a corresponding
fraction for the D0 flavor state,

RðK=�Þ � �ðB� ! D0K�Þ
�ðB� ! D0��Þ : (16)

Significant experimental systematic uncertainties cancel
in these fractions [7,9,11,13]. Defining ratios of ampli-
tudes and strong phases in B� ! D�� in analogy with
B� ! DK�,

AðB� ! �D0��Þ
AðB� ! D0��Þ � rBð�Þeið�Bð�Þ��Þ; (17)

one may express the double fraction

Rf
CPþ � Rf

K=�

RðK=�Þ (18)

in terms of � and these parameters.
In the absence of CP violation inD0 ! fD, one has [26]

Rf
CPþ ¼ 1þ r2B þ 2rB cos�B cos�

1þ r2Bð�Þ þ 2rBð�Þ cos�Bð�Þ cos�
; (19)

where the parameter rBð�Þ is expected to be very

small, rBð�Þ�rBtan
2�C�0:005. [See Eq. (3).] We

note that in the approximation of neglecting CP

violation in D0 ! fD the ratio Rf
K=� may be defined

as Rf
K=� � ½�ðB� ! DCPþK�Þ þ �ðBþ ! DCPþKþÞ	=

½�ðB� ! DCPþ��Þ þ �ðBþ ! DCPþ�þÞ	. Consequently
this ratio and the double ratio Rf

CPþ do not depend on fD.
Including CP violation inD0 ! fD one finds an expres-

sion for Rf
CPþ which depends on fD through the CP

asymmetry Adir
CPðfÞ,

Rf
CPþ ¼ 1þ r2B þ 2rB cos�B cos ð�þ �fÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðAdir

CPðfÞÞ2
q

1þ r2Bð�Þ þ 2rBð�Þ cos�Bð�Þ cos ð�þ �fÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðAdir

CPðfÞÞ2
q : (20)

Neglecting corrections in Rf
CPþ which are quadratic in

Adir
CPðfÞ [Oð10�5Þ	 and using Eq. (14), we note that correc-

tions linear in Adir
CPðfÞ � few� 10�3 are multiplied by rB

and are therefore negligible relative to Rf
CPþ ¼ 1þOðrBÞ.

Thus, a comparison of Eqs. (19) and (20) shows that the
determination of � is not affected in a significant way by
including Adir

CPðfÞ in Rf
CPþ.

The other measurable quantity used in the GLW method

is the CP asymmetry Af
CPþ,

Af
CPþ � �ðB� ! fDK

�Þ � �ðBþ ! fDK
þÞ

�ðB� ! fDK
�Þ þ �ðBþ ! fDK

þÞ : (21)

In the absence of CP violation in D0 ! fD, this asymme-
try may be defined as ½�ðB� ! DCPþK�Þ � �ðBþ !
DCPþKþÞ	=½�ðB� ! DCPþK�Þ þ �ðBþ ! DCPþKþÞ	
which is independent of fD and is given by [26]

Af
CPþ ¼ 2rB sin�B sin�

1þ r2B þ 2rB cos�B cos�
: (22)

When including CP nonconservation in D0 ! fD the

asymmetry Af
CPþ becomes dependent on Adir

CPðfÞ.
Neglecting terms quadratic in Adir

CPðfÞ, one finds

Af
CPþ ¼ Adir

CPðfÞð1� r2BÞ þ 2rB sin�B sin ð�þ �fÞ
1þ r2B þ 2rB cos�B cos ð�þ �fÞ

:

(23)

The two terms in the numerator and the last term in the
denominator involve corrections linear in Adir

CPðfÞ modify-

ing the expression (22) for the case of no direct asymmetry.
We note that an expression independent of Adir

CPðfÞ simi-

lar to (22), but with an opposite overall sign and an Oðr2BÞ
correction with opposite sign, describes the asymmetry for
Cabibbo-favoredD0 decays toCP-odd eigenstates (such as
KS� and KS�

0) where CP violation is negligible in the
CKM framework,

Af
CP� ¼ � 2rB sin�B sin�

1þ r2B � 2rB cos�B cos�
: (24)

A precise measurement of this asymmetry could avoid
uncertainties from Adir

CPðfÞ.
Writing

Af
CPþ ¼ 2rB sin�B sin�eff

1þ r2B þ 2rB cos�B cos�eff

; (25)

we assume a measurement of Af
CPþ from which �eff is

determined. Our purpose is then to study the shift �� �
�� �eff as a function of Adir

CPðfÞ. Defining �þ �f ¼
�eff þ ��þ �f � �eff þ x, we expand the numerator

and denominator in (23) to first order in x. Comparing
this expression with (25), cross-multiplying the two ratios,
canceling the leading terms and keeping terms linear in x
and Adir

CPðfÞ, one finds
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�� ¼ ��f � Adir
CPðfÞ

�
1� r2B

2rB sin�B

1þ r2B þ 2rB cos�B cos�eff

ð1þ r2BÞ cos�eff þ 2rB cos�B

�

� Adir
CPðfÞ

�
cot�f � 1� r2B

2rB sin�B

1þ r2B þ 2rB cos�B cos�eff

ð1þ r2BÞ cos�eff þ 2rB cos�B

�

� 2rf cos�f sin�eff � Adir
CPðfÞ

�
1� r2B

2rB sin�B

1þ r2B þ 2rB cos�B cos�eff

ð1þ r2BÞ cos�eff þ 2rB cos�B

�
: (26)

While both corrections are exhibited as proportional
to Adir

CPðfÞ, the first term appears to diverge as
�f ! 0. Recalling that this correction is actually
� 2rf cos�f sin�eff [Eq. (13)], which is finite at �f ¼ 0,
we will use the last expression in Sec. V. The second term
in (26) illustrates an enhancement by 1=2rB of the shift in
� due to Adir

CPðfÞ [18,19].
We mention in passing two approximations which have

been applied to the CP asymmetry in (23). Neglecting �f

[which is of the same order in rf as Adir
CPðfÞ, but leads to a

correction linear in rB] and approximating the overall
coefficient of Adir

CPðfÞ by one, Eq. (23) reduces to an

expression employed in Ref. [13],

Af
CPþ � 2rB sin�B sin�

1þ r2B þ 2rB cos�B cos�
þ Adir

CPðfÞ: (27)

A further approximation, keeping only OðrBÞ in the first
term, leads to [19]

Af
CPþ ’ 2rB sin�B sin�þ Adir

CPðfÞ: (28)

A CP asymmetry in B� ! fDK
� has been measured

in Refs. [7,11,12] consistent with an estimate Af
CPþðB� !

fDK
�Þ ’ 2rB sin�B sin�� 0:15–0:20. The current error

in the world-averaged value [27], ACPþ ¼ 0:19� 0:03, is
still too large for sensitivity to Adir

CPðfÞ. The corresponding
error in the world-averaged measurement, ACP� ¼
�0:11� 0:05, favoring an opposite sign as anticipated, is
somewhat larger.

A much smaller asymmetry is expected in B� ! D��
where we estimated rBð�Þ � 0:005. This asymmetry is

given by an expression similar to (23),

Af
CPþðB ! fD�Þ

¼ Adir
CPðfÞð1� r2Bð�ÞÞ þ 2rBð�Þ sin�Bð�Þ sin ð�þ �fÞ
1þ r2Bð�Þ þ 2rBð�Þ cos�Bð�Þ cos ð�þ �fÞ

� 2rBð�Þ sin�Bð�Þ sin�þ Adir
CPðfÞ: (29)

The two contributions, which in principle may be
disentangled by measuring also ACP�ðB ! fD�Þ �
�2rBð�Þ sin�Bð�Þ sin�, are of comparable magnitudes,

each less than a percent. Thus, while the CP-averaged
rate for B� ! fD�

� is suitable for normalization [see
Eq. (15)], a useful measurement of the corresponding

asymmetry does not seem feasible in the foreseeable
future.

III. PRESENT INFORMATION ON Adir
CP

Dedicated measurements of the difference �ACP �
Adir
CPðD0 ! KþK�Þ � Adir

CPðD0 ! �þ��Þ (in which many

systematic errors cancel) have been performed by the
LHCb [16] and CDF [17] collaborations, while Belle has
combined independent measurements of the two asymme-
tries [28] to obtain a value of �ACP. The results are shown
in Table I. We shall assume that measured asymmetries are
equal to direct ones, neglecting possible contributions from
indirect (mixing-induced) asymmetries which would lead
to slightly different averages [1,27].
The average in Table I will be used in the next section to

constrain the magnitude of a SM penguin amplitude as a
function of its strong phase. (Slightly different averages
were used in Refs. [18,19].) In addition weak constraints
on this strong phase will be seen to result from measured
CP asymmetries in individual final states, quoted in
Table II.

TABLE I. Experimental results on �ACP�Adir
CPðD0!KþK�Þ�

Adir
CPðD0!�þ��Þ.

Reference Value (%)

LHCb [16] �0:82� 0:21� 0:11
CDF [17] �0:62� 0:21� 0:10
Belle [28] �0:87� 0:41� 0:06
Average �0:74� 0:15

TABLE II. Experimental results on some direct CP asymme-
tries in D decays.

Decay Reference Value (%)

D0 ! �þ�� CDF [29] 0:22� 0:24� 0:11
Belle [28] 0:55� 0:36� 0:09
Average 0:33� 0:22

D0 ! KþK� CDF [29] �0:24� 0:22� 0:09
Belle [28] �0:32� 0:21� 0:09
Average �0:28� 0:16

Dþ ! Kþ �K0a BABAR [30] 0:46� 0:36� 0:25
Belle [28,31] 0:08� 0:28� 0:14

Average 0:21� 0:25

aAfter subtraction of CP asymmetry due to K0– �K0 mixing.
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IV. CHARM CP VIOLATION
WITH ENHANCED SM PENGUIN

In Ref. [20] three of us have calculated CP asymmetries
for several D ! PP decays, where P ¼ �, K, assuming
that the nonzero value of Adir

CP is due to a SM penguin

amplitude with the weak phase of the standard model
c ! b ! u loop diagram, but with a CP-conserving
enhancement as if due to the strong interactions. In this
case the magnitude and strong phase of this amplitude Pb

are correlated in order to fit the observed CP asymmetry,
allowing the prediction of CP asymmetries for other singly
Cabibbo-suppressed modes. We refer the reader to that
work for details, but outline the method briefly here.

For the decay of a charmed meson D to any final state f
we are defining a direct CP asymmetry using the same
convention as in (4)

Adir
CPðfÞ �

�ðD ! fÞ � �ð �D ! �fÞ
�ðD ! fÞ þ �ð �D ! �fÞ : (30)

We take the CP-conserving amplitudes from a flavor-
SU(3) description of charm decays presented previously
[32,33]. A new ingredient [20] with respect to that work is
a U-spin breaking c ! u penguin amplitude whose
V�
cdðsÞVudðsÞ term reproduces satisfactorily decay rates for

singly Cabibbo-suppressed (SCS) processes, while its
V�
cbVub term accounts for �ACP. This scheme allows the

prediction of other CP asymmetries in SCS charmed
meson decays.

Denoting by �f a phase defined in Ref. [20] as �f, we

write the amplitude for a decay D ! f in a manner similar
to (12)

AðD ! fÞ � Af ¼ jTfjei�f
T ð1þ rfe

ið�f��ÞÞ: (31)

Here Tf represents terms with the weak phase of the tree-

level terms contributing to that amplitude, �f
T is its strong

phase, rf is the ratio of the magnitude of the CP-violating

penguin contribution to that of Tf,�� is the weak phase of

the CP-violating penguin, and �f is the strong phase of the

CP-violating penguin relative to Tf. Here one has

�f ¼ ArgðPbÞ ��f
T þ �; Pb ¼ peið���Þ; (32)

leading to the relation �f ¼ ���f
T . The magnitudes Tf

and phases �f
T for some D ! PP processes [20] are sum-

marized in Table III. For D0 ! �0�0, the amplitude must

be multiplied by an additional factor of �1=
ffiffiffi
2

p
[20].

The CP asymmetries are then

Adir
CPðfÞ¼

2rf sin�sin�f

1þr2fþ2rf cos�cos�f

¼ 2pjTfjsin�sinð���f
TÞ

jTfj2þp2þ2pjTfjcos�cosð���f
TÞ
: (33)

Taking � ¼ ð67:2þ4:4
�4:6Þ� from Ref. [1], the world-averaged

asymmetry �ACP ¼ ð�0:74� 0:15Þ% from Table I is
used to constrain the magnitude p of the penguin ampli-
tude as a function of its strong phase �. The value of p,
plotted in Fig. 1, is nearly constant at several tenths of a
percent of the amplitudes in Table III for a wide range of �.
This corresponds to values of rf of this order. The value of

p and corresponding values of rf are about an order of

magnitude larger for extreme values of � in Fig. 1.
The constraint on p as a function of � allows one to predict
asymmetries for (e.g.,) D0 ! �þ��, KþK�, �0�0

and Dþ ! Kþ �K0, as plotted in Fig. 2 for � ¼ 67:2�.
Very similar results (not shown) are found for � ¼ 71:6�
and 62.6�.
For much of the range of �, Adir

CPð�þ��Þ is predicted to

be positive while Adir
CPðKþK�Þ is predicted to be negative.

(In the U-spin limit they would be equal and opposite.)

TABLE III. Magnitudes Tf and phases �f
T for some D ! PP

processes.

Decay jTfj �f
T ¼ ArgðTfÞ

mode (10�7 GeV) (degrees)

D0 ! �þ�� 4.70 �158:5
D0 ! KþK� 8.48 32.5

D0 ! �0�0 3.51 60.0

Dþ ! Kþ �K0 6.87 �4:2

2.5 2.0 1.5 1.0 0.5 0.0

0.01

0.02

0.03

0.04

0.05

0.06

p
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10
7

G
eV

FIG. 1 (color online). Magnitude p of the CP-violating pen-
guin amplitude as a function of its strong phase �. The central
(red) curve was obtained using the value �ACP ¼ �0:74%,
while the inner (blue) and outer (green) bands, respectively,
correspond to �1� and �1:64� shifts from this value, where
�ð�ACPÞ ¼ 0:15%. The plot is shown only for � ¼ 67:2�, as p
is not very sensitive to the exact value of �.
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This is consistent with the central values in Table II.
However, the predicted central values for Adir

CPðKþ �K0Þ
are negative for much of the range of �, whereas the 2�
lower limit Adir

CPðKþ �K0Þ>�0:3would tend to favor values
of � >��=2. Improved measurements of all these indi-
vidual CP asymmetries would of course be highly
desirable.

V. PREDICTIONS FOR SHIFTS
IN WEAK PHASE �

Taking the predicted values of Adir
CP, Eq. (26) implies a

shift in the weak phase � associated with the use of each
D-decay process with a CP-even final state. In Fig. 3 we
present these shifts for the final states �þ�� and KþK�.
In addition to the central value of shifts �� we also present
errors in �� due to the variation of the various measurable

parameters. In our calculations of the shifts �� we have
used the following values of rB, �B, and � taken from
Ref. [1]:

rB¼0:099�0:008; �B¼ð110�15Þ�; �¼ð67:2þ4:4
�4:6Þ�:

(34)

In Fig. 3 the central black curves represent �� as
obtained from Eq. (26) using central values of the mea-
surable parameters rB, �B, �ACP and �. The errors in ��
from the 1� error in the measurement of the first three
parameters are shown in blue using short, medium, and
long dashes, respectively. In order to obtain the effect of
varying � on the shifts �� we use Eq. (26) with the value
of � set to its �1� limits given in Eq. (34), while the
other parameters are held fixed at their respective central
values. This effect is represented by the red dots in Fig. 3.
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FIG. 2 (color online). Direct CP asymmetries for some SCS D ! PP0 decays. Curves and bands as in Fig. 1. � ¼ 67:2� is assumed.
Very similar plots (not shown) are obtained for � ¼ 71:6� and 62.6�. The dashed horizontal (red) lines in the lower right panel denote
90% C.L. limits based on the average of Belle [28,31] and BABAR [30] results.
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In order to obtain the overall error in �� we first add in
quadrature the errors due to rB, �B, and �. We then
estimate the effect of varying � between its �1� limits
on the quadrature sum. This effect is represented by the
solid red curves in Fig. 3.

We see in Fig. 3 that the central value of the shift in � for
the �þ�� state is nearly constant over the entire range of
allowed values of the strong phase �. This appears to be the
effect of an accidental cancellation between a variation of
Adir
CP which is modest to begin with and a compensating

factor due to the variation in �f for � ¼ 67:2�. When the

various sources of errors on �� are included, this no longer
holds, as depicted by the 1� boundary curves in Fig. 3. On
the other hand, �� obtained using the KþK� state shows
appreciable variation (� 7�) over the allowed range of �.
A similar exercise when performed using the �0�0

state yields an even larger variation in ��. However,
rate asymmetries involving multiple neutral pions in the
final state are not expected to be measured with adequate
precision in the foreseeable future. We have therefore
chosen to omit the �0�0 decay mode from the present
discussion.

In view of the variety of dependences of direct CP
asymmetries on �, and different behavior of shifts in �
for �þ�� and KþK� final states, it would be beneficial to
further pin down � [e.g., with a better measurement of
Adir
CPðKþ �K0Þ], and to apply the GLW determination of � to

the widest assortment of CP eigenstates in neutral D
meson decays. After the appropriate shifts �� have been
taken into account, inconsistencies in final values of �
obtained for different charm final states could point the
way to effects of new physics.

VI. DISCUSSION AND SUMMARY

The determination of the weak phase � by means of the
CP asymmetry in B� ! DK�, followed by the decay of
the neutral D meson to a CP eigenstate [3], must take
account of asymmetries in the decays of the neutral D
mesons [13,18,19]. We have calculated the corresponding
shifts �� in an approach which imagines these CP asym-
metries as due to a c ! u penguin amplitude with a weak
phase of the standard model but enhanced by (presumably
nonperturbative) strong interaction effects beyond those
anticipated by the majority of authors. The observed
value �ACP�Adir

CPðD0!KþK�Þ�Adir
CPðD0!�þ��Þ¼

ð�0:74�0:15Þ% has been taken as a constraint, leading
to a correlation between the magnitude p of the
CP-violating penguin and its strong phase �.
For � ¼ 67:2� the central value of the shift associ-

ated with the decay D0 ! �þ�� is approximately
��ð�þ��Þ ’ �4:4�, with little dependence on the
allowed range of the strong phase �. However, the factor
multiplying Adir

CPðfÞ=2rB in the last expression for �� in

Eq. (26) is roughly inversely proportional to cos�, which is
fairly small and fairly sensitive to �. Thus, when � is
varied within its currently allowed range of about �4:5�,
the value of �� varies considerably. It is further affected by
uncertainties in �ACP, rB, and �B, and acquires some
dependence on �.
The shift associated with D0 ! KþK� is of the other

sign (as is Adir
CP) and depends on both�ACP and � as well as

the uncertainties in rB and �B. Using measurements of Adir
CP

for both these two decays, with the help of improved
knowledge of Adir

CPðDþ ! Kþ �K0Þ to pin down �, the
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FIG. 3 (color online). Shifts �� as calculated from Eq. (26) for D0 ! �þ�� (left panel) and D0 ! KþK� (right panel). The solid
central (black) curves denote the central value for ��. Also shown are �1� errors in rB (short dashes [blue]), �B (medium dashes
[blue]), and �ACP (long dashes [blue]). The (red) dots represent the effect of �1� shift in the measured value of � on the central
(black) curve. The solid outer (red) curves denote the effect of a�1� shift in the measured value of � on the curve that is obtained by
adding in quadrature the errors in rB, �B, and �ACP. Here � ¼ ð67:2þ4:4

�4:6Þ�.
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uncertainty in � due to CP violation in charm decay can be
reduced to a level where it is no longer the dominant
uncertainty when applying the GLW method to the decays
B� ! DK�.

Let us be clear about the limitation of our study.
The shift in � we calculate using our c ! u penguin
amplitude model is based on measuring RCPþ and ACPþ
in B� ! ð�þ��ÞDK�, B� ! ðKþK�ÞDK� and their CP
conjugates, taking rB and �B as given. This assumes that
one has measured rB and �B first and then uses only these
GLW processes to determine �.

An actual analysis for determining rB, �B, and � inB
 !
DK
 [8,10–13] combines information fromD decays toCP
eigenstates [3], flavor states [5] and three-body self-conjugate
final states [6]. In this global analysis � is also constrained
by rates and asymmetries in B ! DK where there is no
direct CP violation in D decay, for instance in decays to
flavor states and CP-odd eigenstates. [See Eq. (24).] Thus
any actual determination of � from B ! DK will involve a
considerably smaller shift than we calculate.

Furthermore, it has been noted [26,34,35] that in
the self-tagged decays B0 ! DK�0 the ratio r�B of

B0 ! D0K�0 and B0 ! �D0K�0 amplitudes, both of which
are color suppressed, is expected to be about three times
larger than rB defined in Bþ ! DKþ. We have seen an
enhancement by 1=2rB of the shift in � due to
Adir
CPð�þ��; KþK�Þ in Bþ ! DKþ. This implies that

when applying the GLW method to B0 ! DK�0 the shift
in � due to these direct CP asymmetries in D0 decays is
expected to be about three times smaller than calculated
above. First measurements of relevant observables in
B0 ! DK�0 and its CP conjugate have been reported
very recently by the LHCb collaboration [15]. Early mea-
surements of these processes have been performed by
BABAR [36].
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