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We study the implications of the existence of two equalities between the elements or cofactors of

the neutrino mass matrix. There are 65 structures of this type for each case. Phenomenological

implications for unknown parameters like the effective Majorana mass of the electron neutrino

and CP-violating phases are examined for the viable cases. To illustrate how such forms of the

neutrino mass matrices may be realized, we also present a simple A4 model for one of the classes in

each case.
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I. INTRODUCTION

After the discovery of neutrino oscillations, there has
been tremendous progress in determining neutrino masses
and mixings. Recently, the last unknown mixing angle
ð�13Þ has been measured rather precisely [1–5] and its
relatively large value has also provided an opportunity for
the measurement of CP-violating phase � in the lepton
mixing matrix. The rather large value of �13 has also
forced modifications of models like tribimaximal (TBM)
mixing [6] that predict �13 ¼ 0, by considering deviations
from TBM mixing. On the other hand, schemes like zero
textures [7,8], vanishing minors [9], and hybrid textures
[10], which do not predict definite values of mixing
angles but do induce relations between neutrino masses
and mixing angles, readily accommodate a nonzero and
relatively large value of �13. However, the currently avail-
able data on neutrino masses and mixings are insufficient
for an unambiguous reconstruction of the neutrino mass
matrix. The existing data cannot, without some additional
assumptions, determine all the elements of the Yukawa
coupling matrices for the neutrinos. Thus, theoretical
ideas such as zero textures [7,8], vanishing minors [9],
and hybrid textures [10], which restrict the structure of
the neutrino mass matrix (M�), are important for guiding
future searches.

In this work, we systematically study the implications
of the existence of two equalities between elements
(TEE) of the neutrino mass matrix or two equalities
between cofactors (TEC) of the neutrino mass matrix.
There are 65 such possibilities in each case which have
been listed in Table I. We find that two equalities be-
tween the elements of M� can be obtained through
type-II seesaw mechanism [11], whereas two equalities
between cofactors of M� arise from type-I seesaw
mechanism [12].

In the framework of type-I seesaw mechanism, the
effective Majorana neutrino mass matrix is given by

M� ¼ �MDM
�1
R MT

D; (1)

whereMD is the Dirac neutrino mass matrix andMR is the
right-handed Majorana mass matrix. In the diagonal basis
forMD, the zero textures ofMR show as zero minors inM�

[9]. Here, we consider the possibility thatMR has two equal
elements and MD is proportional to the unit matrix. Such
MD and MR will give rise to the neutrino mass matrix M�,
which has two equalities between the cofactors of M� and
the two equalities of cofactors in M� correspond to the
equal elements inMR. Two equalities between cofactors, in
other words, can be seen as two equalities between ele-
ments of the inverse ofM�. Thus, effectively we are study-
ing all the possible cases of two equalities between the
elements of M� and M�1

� . The condition of two equalities
between the elements or cofactors of M� implies con-
straints on the parameters of the neutrino sector which
lead to a restricted parameter space for these observables.
To demonstrate how such forms of M� can be realized, we
also present a simple A4 model for one of the texture
structures in each case.

II. FORMALISM

We reconstruct the neutrino mass matrix in the flavor
basis, assuming neutrinos to be Majorana particles. In this
basis, a complex symmetric neutrino mass matrix can be
diagonalized by a unitary matrix V 0 as

M� ¼ V0Mdiag
� V0T; (2)

where M
diag
� ¼ diagðm1; m2; m3Þ.

The unitary matrix V 0 can be parametrized as

V0 ¼ PlV with V ¼ UP�; (3)

where [13]
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U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCA; (4)

with sij ¼ sin �ij and cij ¼ cos�ij and

P� ¼
1 0 0

0 ei� 0

0 0 eið�þ�Þ

0
BB@

1
CCA; Pl ¼

ei’e 0 0

0 ei’� 0

0 0 ei’�

0
BB@

1
CCA:

P� is the diagonal phase matrix with the two Majorana-
type CP-violating phases �, � and one Dirac-type
CP-violating phase �. The phase matrix Pl is unphysical
and depends on the phase convention. The matrix V
is called the neutrino mixing matrix or the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [14]. Using
Eqs. (2) and (3), the neutrino mass matrix can be written as

M� ¼ PlUP�M
diag
� PT

�U
TPT

l : (5)

The CP violation in neutrino oscillation experiments
can be described through a rephasing invariant quantity,
JCP [15] with JCP ¼ ImðUe1U�2U

�
e2U

�
�1Þ. In the above

parametrization, JCP is given by

JCP ¼ s12s23s13c12c23c
2
13 sin�: (6)

A. Two equalities between the elements of M�

The simultaneous existence of two equalities between
the elements of the neutrino mass matrix implies

eið’aþ’bÞM�ðabÞ � eið’cþ’dÞM�ðcdÞ ¼ 0; (7)

TABLE I. Sixty-five possible texture structures of M� or MR with two equalities.

A B C D E F

I a a a
a d e
a e f

0
@

1
A a b a

b a e
a e f

0
@

1
A a b c

b a a
c a f

0
@

1
A a b c

b d a
c a a

0
@

1
A a b b

b d e
b e a

0
@

1
A a b b

b b e
b e f

0
@

1
A

II a a c
a a e
c e f

0
@

1
A a b a

b d a
a a f

0
@

1
A a b c

b a e
c e a

0
@

1
A a b b

b d a
b a f

0
@

1
A a b c

b b e
c e a

0
@

1
A a b b

b d b
b b f

0
@

1
A

III a a c
a d a
c a f

0
@

1
A a b a

b d e
a e a

0
@

1
A a b b

b a e
b e f

0
@

1
A a b c

b b a
c a f

0
@

1
A a b c

b d b
c b a

0
@

1
A a b b

b d e
b e b

0
@

1
A

IV a a c
a d e
c e a

0
@

1
A a b a

b b e
a e f

0
@

1
A a b c

b a b
c b f

0
@

1
A a b c

b d a
c a b

0
@

1
A a b c

b c e
c e a

0
@

1
A a b b

b d d
b d f

0
@

1
A

V a a c
a c e
c e f

0
@

1
A a b a

b d b
a b f

0
@

1
A a b c

b a e
c e b

0
@

1
A a b c

b c a
c a f

0
@

1
A a b c

b d c
c c a

0
@

1
A a b b

b d e
b e d

0
@

1
A

VI a a c
a d c
c c f

0
@

1
A a b a

b d e
a e b

0
@

1
A a b c

b a c
c c f

0
@

1
A a b c

b d a
c a c

0
@

1
A a b c

b d d
c d a

0
@

1
A a b b

b d e
b e e

0
@

1
A

VII a a c
a d e
c e c

0
@

1
A a b a

b d d
a d f

0
@

1
A a b c

b a e
c e c

0
@

1
A a b c

b d a
c a d

0
@

1
A a b c

b d b
c b b

0
@

1
A a b c

b b b
b b f

0
@

1
A

VIII a a c
a d d
c d f

0
@

1
A a b a

b d e
a e d

0
@

1
A a b c

b a e
a e e

0
@

1
A a b c

b c e
c e b

0
@

1
A a b c

b c b
c b f

0
@

1
A a b c

b b e
c e b

0
@

1
A

IX a a c
a d e
c e d

0
@

1
A a b a

b d e
a e e

0
@

1
A a b c

b c c
c c f

0
@

1
A a b c

b d c
c c b

0
@

1
A a b c

b d b
c b c

0
@

1
A a b c

b b c
c c f

0
@

1
A

X a a c
a d e
c e e

0
@

1
A a b c

b d c
c c c

0
@

1
A a b c

c c e
c e c

0
@

1
A a b c

b d d
c d b

0
@

1
A a b c

b d b
c b d

0
@

1
A a b c

b b e
c e c

0
@

1
A

XI - a b c
b d c
c c d

0
@

1
A a b c

b c e
c e e

0
@

1
A a b c

b d d
c d d

0
@

1
A a b c

b d d
c d c

0
@

1
A a b c

b b e
c e e

0
@

1
A
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eið’a0þ’b0 ÞM�ða0b0Þ � eið’c0þ’d0 ÞM�ðc0d0Þ ¼ 0 (8)

or

QM�ðabÞ �M�ðcdÞ ¼ 0; (9)

Q0M�ða0b0Þ �M�ðc0d0Þ ¼ 0; (10)

where

Q ¼ eið’aþ’b�ð’cþ’dÞÞ; (11)

Q0 ¼ eið’a0þ’b0�ð’c0þ’d0 ÞÞ: (12)

These two conditions yield two complex equations, viz.,

X3
i¼1

ðQVaiVbi � VciVdiÞmi ¼ 0; (13)

X3
i¼1

ðQ0Va0iVb0i � Vc0iVd0iÞmi ¼ 0: (14)

The above equations can be rewritten as

m1A1 þm2A2e
2i� þm3A3e

2ið�þ�Þ ¼ 0; (15)

m1B1 þm2B2e
2i� þm3B3e

2ið�þ�Þ ¼ 0; (16)

where

Ai ¼ ðQUaiUbi �UciUdiÞ;
Bi ¼ ðQ0Ua0iUb0i �Uc0iUd0iÞ;

(17)

with ði ¼ 1; 2; 3Þ. These two complex Eqs. (15) and (16)
involve nine physical parameters which include m1, m2,
m3, �12, �23, �13 and three CP-violating phases �,� and �.
In addition, there are three unphysical phases (’e, ’�, ’�)

which enter in the mass ratios as two phase differences and,
in some cases, as a single phase difference. The masses m2

and m3 can be calculated from the mass-squared differ-
ences �m2

21 and j�m2
23j using the relations

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ �m2
21

q
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ j�m2
23j

q
; (18)

wherem2 >m3 for an inverted spectrum (IS) andm2 <m3

for a normal spectrum (NS). Using the experimental
inputs of the two mass-squared differences and the three
mixing angles, we can constrain the other parameters.
Simultaneously solving Eqs. (15) and (16) for two mass
ratios, we obtain

m1

m2

e�2i� ¼ A2B3 � A3B2

A3B1 � A1B3

(19)

and

m1

m3

e�2i� ¼ A3B2 � A2B3

A2B1 � A1B2

e2i�: (20)

The magnitudes of the two mass ratios in Eqs. (19) and
(20) are given by

� ¼
��������m1

m3

e�2i�

��������; (21)

	 ¼
��������m1

m2

e�2i�

��������; (22)

while the CP-violating Majorana phases � and � are
given by

� ¼ � 1

2
arg

�
A2B3 � A3B2

A3B1 � A1B3

�
; (23)

� ¼ � 1

2
arg

�
A3B2 � A2B3

A2B1 � A1B2

e2i�
�
: (24)

Since �m2
21 and j�m2

23j are known experimentally, the

values of mass ratios (�, 	) from Eqs. (21) and (22) can
be used to calculate m1. This can be done by inverting
Eqs. (21) and (22) to obtain the two values of m1, viz.,

m1 ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

1� 	2

s
; m1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21 þ j�m2
23j

1� �2

s
: (25)

Similar to the case of zero textures [8], there exists a
permutation symmetry between different patterns of two
equalities in M� corresponding to the permutation in the
2–3 rows and 2–3 columns of M�. The corresponding
permutation matrix is given by

P23 ¼
1 0 0

0 0 1

0 1 0

0
BB@

1
CCA: (26)

For example, the neutrino mass matrix for class IF can be
obtained from class IIIF by the transformation

MIF
� ¼ P23M

IIIF
� PT

23: (27)

This leads to the following relations between the parame-
ters for the classes related by the permutation symmetry:

�IF12 ¼ �IIIF12 ; �IF13 ¼ �IF13 ;

�IF23 ¼ 


2
� �IIIF23 ; �IF ¼ �IIIF � 
:

(28)

The textures related by the 2–3 permutation symmetry are
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IB $ IVA; IC $ ID; IE $ IIIC; IF $ IIIF; IIA $ IIIB; IIB $ IIIA; IIE $ VIIC; IIID $ VID; IIIE $ VIC;

IVB $ VIIA; IVC $ VE; IVD $ VD; IVE $ VC; IVF $ VIF; VA $ VIB; VB $ VIA; VIE $ VIIIC; VIIB $ XA;

VIIE $ IXC; VIIF $ XB; VIIIA $ IXB; VIIIB $ IXA; VIIIE $ IXD; VIIIF $ XC; IXE $ IXF; XD $ XIC;

XE $ XIB; XIE $ XIF: (29)

The remaining textures

IA; IIC; IID; IIF; VF; VIID;

VIIID; XF; XID (30)

transform unto themselves. It is interesting to note that
class VF is the widely studied �-� symmetric texture
structure [16].

B. Two equalities between the cofactors of M�

The simultaneous existence of two equalities between
the cofactors of the neutrino mass matrix implies

ð�1ð��ÞÞðeið’aþ’bþ’cþ’dÞM�ðabÞM�ðcdÞ
� eið’fþ’gþ’mþ’nÞM�ðfgÞM�ðmnÞÞ
� ð�1ð�ÞÞðeið’pþ’qþ’rþ’sÞM�ðpqÞM�ðrsÞ
� eið’tþ’uþ’vþ’wÞM�ðtuÞM�ðvwÞÞ ¼ 0; (31)

ð�1ð�0�0ÞÞðeið’a0þ’b0þ’c0þ’d0 ÞM�ða0b0ÞM�ðc0d0Þ

� eið’f0þ’g0þ’m0þ’n0 ÞM�ðf0g0ÞM�ðm0n0ÞÞ
� ð�1ð 0�0ÞÞðeið’p0þ’q0þ’r0þ’s0 ÞM�ðp0q0ÞM�ðr0s0Þ
� eið’t0þ’u0þ’v0þ’w0 ÞM�ðt0u0ÞM�ðv0w0ÞÞ ¼ 0; (32)

or

ð�1ð��ÞÞðQ1M�ðabÞM�ðcdÞ �Q2M�ðfgÞM�ðmnÞÞ
� ð�1ð�ÞÞðQ3M�ðpqÞM�ðrsÞ �Q4M�ðtuÞM�ðvwÞÞ ¼ 0;

(33)

ð�1ð�0�0ÞÞðQ0
1M�ða0b0ÞM�ðc0d0Þ �Q0

2M�ðf0g0ÞM�ðm0n0ÞÞ
�ð�1ð 0�0ÞÞðQ0

3M�ðp0q0ÞM�ðr0s0Þ �Q0
4M�ðt0u0ÞM�ðv0w0ÞÞ¼0:

(34)

It is inherent in the properties of cofactors that when we
substitute ’j (j ¼ e, �, �), Q1 ¼ Q2, Q3 ¼ Q4, Q

0
1 ¼ Q0

2,

and Q0
3 ¼ Q0

4. Thus, we have

ð�1ð��ÞÞQ1ðM�ðabÞM�ðcdÞ �M�ðfgÞM�ðmnÞÞ
�ð�1ð�ÞÞQ3ðM�ðpqÞM�ðrsÞ �M�ðtuÞM�ðvwÞÞ ¼ 0; (35)

ð�1ð�0�0ÞÞQ0
1ðM�ða0b0ÞM�ðc0d0Þ �M�ðf0g0ÞM�ðm0n0ÞÞ

� ð�1ð 0�0ÞÞQ0
3ðM�ðp0q0ÞM�ðr0s0Þ �M�ðt0u0ÞM�ðv0w0ÞÞ ¼ 0;

(36)

or

ð�1ð��ÞÞQðM�ðabÞM�ðcdÞ �M�ðfgÞM�ðmnÞÞ
� ð�1ð�ÞÞðM�ðpqÞM�ðrsÞ �M�ðtuÞM�ðvwÞÞ ¼ 0; (37)

ð�1ð�0�0ÞÞQ0ðM�ða0b0ÞM�ðc0d0Þ�M�ðf0g0ÞM�ðm0n0ÞÞ
�ð�1ð 0�0ÞÞðM�ðp0q0ÞM�ðr0s0Þ�M�ðt0u0ÞM�ðv0w0ÞÞ¼0; (38)

where Q ¼ Q1

Q3
and Q0 ¼ Q0

1

Q0
3
.

The above two conditions take the following form when
expressed in terms of mixing matrix elements and mass
eigenvalues:

X3
l;k¼1

fð�1ð��ÞÞQðValVblVckVdk � VflVglVmkVnkÞ

� ð�1ð�ÞÞðVplVqlVrkVsk � VtlVulVvkVwkÞgmlmk ¼ 0;

(39)

X3
l;k¼1

fð�1ð�0�0ÞÞQ0ðVa0lVb0lVc0kVd0k�Vf0lVg0lVm0kVn0kÞ

�ð�1ð 0�0ÞÞðVp0lVq0lVr0kVs0k�Vt0lVu0lVv0kVw0kÞg
�mlmk¼0: (40)

The above equations can be rewritten as

m1m2C3e
2i�þm2m3C1e

2ið�þ�þ�Þ þm3m1C2e
2ið�þ�Þ ¼0;

(41)

m1m2D3e
2i�þm2m3D1e

2ið�þ�þ�Þþm3m1D2e
2ið�þ�Þ ¼0;

(42)

where

Ch ¼ ð�1ð��ÞÞQðUalUblUckUdk �UflUglUmkUnkÞ
� ð�1ð�ÞÞðUplUqlUrkUsk �UtlUulUvkUwkÞ
þ ðl $ kÞ; (43)
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Dh ¼ ð�1ð�0�0ÞÞQ0ðUa0lUb0lUc0kUd0k �Uf0lUg0lUm0kUn0kÞ
� ð�1ð 0�0ÞÞðUp0lUq0lUr0kUs0k �Ut0lUu0lUv0kUw0kÞ
þ ðl $ kÞ; (44)

with ðh; l; kÞ as the cyclic permutation of (1,2,3).
Simultaneously solving Eqs. (41) and (42) for the two
mass ratios, we obtain

m1

m2

e�2i� ¼ C3D1 � C1D3

C2D3 � C3D2

(45)

and

m1

m3

e�2i� ¼ C2D1 � C1D2

C3D2 � C2D3

e2i�: (46)

The magnitudes of the above two mass ratios are
given by

� ¼
��������m1

m3

e�2i�

��������; (47)

	 ¼
��������m1

m2

e�2i�

��������; (48)

while the CP-violating Majorana phases � and � are
given by

� ¼ � 1

2
arg

�
C3D1 � C1D3

C2D3 � C3D2

�
; (49)

� ¼ � 1

2
arg

�
C2D1 � C1D2

C3D2 � C2D3

e2i�
�
: (50)

Again there exists a permutation symmetry between the
different classes of two equalities of cofactors inM� which
corresponds to the permutation in the 2–3 rows and 2–3
columns of M�. The classification of these texture struc-
tures is similar to the case of two equalities between
elements of M�.

III. NUMERICAL RESULTS

The current experimental constraints on neutrino pa-
rameters at 1, 2 and 3	 [17] are given in Table II. The
two values ofm1 obtained from Eqs. (21) and (22) for TEE
[or Eqs. (48) and (49) for TEC] must be equal to within the
errors of the oscillation parameters, for the simultaneous
existence of two equalities between elements or cofactors
of M�, respectively. The known oscillation parameters are
varied randomly within their 3	 experimental ranges. The
unconstrained Dirac-type CP-violating phase � is varied
randomly within its full possible range. For the numerical
analysis we generate 107 points (108 when the number of
allowed points is small). For most of the viable cases we
obtain a lower bound on the effective Majorana mass of the
electron neutrino (Mee). The observation of neutrinoless
double beta (NDB) decay would signal lepton number

violation and imply the Majorana nature of neutrinos; for
recent reviews on NDB decay, see Ref. [18]. Mee, which
determines the rate of NDB decay, is given by

Mee ¼ jm1c
2
12c

2
13 þm2s

2
12c

2
13e

2i� þm3s
2
13e

2i�j: (51)

NDB decay provides a window to probe the neutrino mass
scale. Part of the Heidelberg-Moscow Collaboration
claimed a positive signal for NDB decay corresponding
to Mee ¼ ð0:11–0:56Þ eV at 95% C.L. [19]. However, this
claim was subsequently criticized in Ref. [20]. The results
reported in Ref. [19] will be checked in the currently
running and forthcoming NDB decay experiments. There
are a large number of projects, such as CUORICINO [21],
CUORE [22], GERDA [23], MAJORANA [24],
SuperNEMO [25], EXO [26], and GENIUS [27], which
aim to achieve a sensitivity up to 0.01 eV for Mee. In our
numerical analysis, we take the upper limit of Mee to be
0.5 eV. Cosmological observations put an upper bound on
the sum of neutrino masses

� ¼ X3
i¼1

mi: (52)

The nine-year WMAP data alone restrict � to be less than
1.3 eV (95% C.L.) [28]. The combined WMAPþ
eCMBþ BAOþ H0 data limit �< 0:44 eV at 95% C.L.
[28]. However, these limits strongly depend on the details
of the model considered and the data set used. In our
numerical analysis we have taken the upper limit of � to
be 0.9 eV.

A. Numerical results for TEE

In this section, we present the numerical results for
textures with two equalities between the elements of
the neutrino mass matrix. The main outcomes of our
analysis are

TABLE II. Current neutrino oscillation parameters from
global fits [17]. The upper (lower) row corresponds to a normal
(inverted) spectrum, with �m2

31 > 0 (�m2
31 < 0).

Parameter Meanðþ1	;þ2	;þ3	Þ
ð�1	;�2	;�3	Þ

�m2
21½10�5 eV2� 7:62ðþ0:19;þ0:39;þ0:58Þ

ð�0:19;�0:35;�0:5Þ
�m2

31½10�3 eV2� 2:55ðþ0:06;þ0:13;þ0:19Þ
ð�0:09;�0:19;�0:24Þ,

ð�2:43ðþ0:09;þ0:19;þ0:24Þ
ð�0:07;�0:15;�0:21ÞÞ

sin 2�12 0:32ðþ0:016;þ0:03;þ0:05Þ
ð�0:017;�0:03;�0:05Þ

sin 2�23 0:613ðþ0:022;þ0:047;þ0:067Þ
ð�0:04;�0:233;�0:25Þ ,

ð0:60ðþ0:026;þ0:05;þ0:07Þ
ð�0:031;�0:210;�0:230ÞÞ

sin 2�13 0:0246ðþ0:0028;þ0:0056;þ0:0076Þ
ð�0:0029;�0:0054;�0:0084Þ,

ð0:0250ðþ0:0026;þ0:005;þ0:008Þ
ð�0:0027;�0:005;�0:008ÞÞ
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TABLE III. The numerical predictions for the phenomenologically viable textures in the case
of two equalities between the elements of M�.

Texture Spectrum Mee (eV)

Lower bound on

mass scale (eV) Majorana phases

IA NS 0.004–0.12 0.001 � ¼ 0�–70�, 110�–180�

IS 0.02–0.16 0.001 � ¼ 50�–70�, 110�–130�

IB (IVA) NS 0.006–0.14 0.007 � � �
IS 0.02–0.18 0.007 � ¼ 40�–140�

IC (ID) NS 0.02–0.12 0.023 � � �
IS 0.01–0.14 0.007 � ¼ 50�–130�

IE (IIIC) NS 0.004–0.30 0.0030 � � �
IS 0.01–0.30 0.0004 � � �

IF (IIIF) NS 0.004–0.30 0.007 � � �
IS 0.02–0.30 0.001 � � �

IIA (IIIB) NS 0.007–0.12 0.006 � ¼ 30�–80�, 100�–150�

IS 0.02–0.16 0.040 � ¼ 60�–120�

IIB (IIIA) NS 0.01–0.11 0.017 � ¼ 20�–160�

IS 0.02–0.16 0.020 � ¼ 40�–130�

IIC NS 0.01–0.30 0.0100 � � �
IS 0.01–0.22 0.0033 � ¼ 20�–180�

IID NS 0.01–0.30 0.01 � ¼ 0�–80�, 100�–180�

IS 0.01–0.30 0.01 � � �
IIE (VIIC) NS 0.015–0.20 0.02 � � �

IS 0.01–0.18 0.02 � ¼ 20�–160�

IIF NS 0.01–0.30 0.025 � � �
IS 0.03–0.30 0.004 � � �

IIID (VID) NS 0.01–0.30 0.025 � � �
IS 0.01–0.30 0.025 � � �

IVB (VIIA) NS 0.001–0.16 0.0040 � ¼ 0�–160�

IS 0.02–0.16 0.0005 � ¼ 50�–75�, 105�–130�

IVC (VE) NS 0.005–0.25 0.025 � � �
IS 0.02–0.30 0.030 � � �

IVE (VC) NS 0.01–0.18 0.016 � � �
IS 0.02–0.14 0.016 � ¼ 40�–140�

IVF (VIF) NS 0.003–0.30 0.0033 � ¼ 0�–20�, 160�–180�

IS 0.01–0.30 0.00475 � � �
VA (VIB) NS 0.001–0.16 0.005 � � �

IS 0.02–0.14 0.005 � ¼ 40�–140�

VB (VIA) NS 0.0012–0.09 0.0165 � ¼ 40�–140�

VIE (VIIIC) NS 0.006–0.18 0.005 � � �
IS 0.010–0.18 0.0002 � ¼ 30�–140�

VIIB (XA) NS 0–0.12 0.0001 � � �
IS 0.02–0.12 0.0002 � ¼ 40�–140�

VIID NS 0.01–0.30 0.0100 � � �
IS 0.01–0.30 0.006 � � �

VIIE (IXC) NS 0.005–0.16 0.0300 � ¼ 50�–130�

IS 0.03–0.12 0.0003 � ¼ 20�–80�, 100�–160�

VIIF (XB) NS 0.002–0.14 0.0140 � ¼ 40�–160�

IS 0.02–0.14 0.0001 � ¼ 20�–160�

VIIIA (IXB) NS 0.0004–0.10 0 � � �
IS 0.02–0.14 0.0001 � ¼ 40�–140�

VIIIB (IXA) NS 0.001–0.16 0.0001 � � �
IS 0.02–0.16 0.0010 � ¼ 50�–80�, 100�–130�

VIIID NS 0.005–0.30 0.025 � � �
IS 0.028–0.30 0.001 � � �
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(i) Five textures, viz.,
IIIE, VIC, IVD, VD, and VF, are excluded by the
experimental data.

(ii) Textures IXE, IXF, and XID lead to an inverted
spectrum only.

(iii) Textures VB and VIA satisfy a normal spectrum
only.

(iv) The allowed points for the following textures are
very few: IA, IE, IIIC, IIA, IIIB, IID for an
inverted spectrum; IIC, XE, XIB, VIIE, IXC for

Texture Spectrum Mee (eV)

Lower bound on

mass scale (eV) Majorana phases

VIIIE (IXD) NS 0.005–0.14 0.0270 � ¼ 50�–130�

IS 0.03–0.12 0.0002 � ¼ 20�–80, 100�–160�

VIIIF (XC) NS 0.005–0.30 0.0200 � � �
IS 0.02–0.30 0.0003 � � �

IXE (IXF) IS 0.03–0.05 0.005 � ¼ 30�–50�, 130�–150�

XD (XIC) NS 0.002–0.18 0.0010 � � �
IS 0.02–0.13 0.0005 � ¼ 0�–70�, 110�–180�

XE (XIB) NS 0.002–0.30 0.017 � � �
IS 0.02–0.30 0.001 � � �

XF NS 0.005–0.30 0.025 � � �
IS 0.025–0.30 0.002 � ¼ 0�–80�, 100�–180�

XID IS 0.01–0.055 0.0005 � ¼ 70�–110�

XIE (XIF) NS 0.001–0.12 0.0080 � � �
IS 0.01–0.18 0.0002 � � �

TABLE III. (Continued)
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FIG. 1 (color online). The TEE correlation plots for classes IFðaÞðNSÞ, IIIFðbÞðNSÞ, IIIBðcÞðISÞ, and VBðdÞðNSÞ.
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a normal spectrum; and VIIF, XC for both inverted
and normal spectrums. We have generated 108

points for these textures.
(v) All the viable textures except IAðNSÞ, IXE, IXF,

and XID allow a quasidegenerate spectrum.
(vi) The value of Mee is bounded from below for most

of the viable textures.
(vii) It is found that the smallest neutrino mass cannot

be zero for any of the allowed textures except for
VIIIAðNSÞ and IXBðNSÞ.

(viii) For textures
IE, IIIC, IF, IIIF, IIF, IVF, and VIF, a non-
vanishing reactor mixing angle is an inherent
property, since for �13 ¼ 0 these textures predict
m1 ¼ m2, which contradicts the experimental
observations.

The numerical results for all the presently viable classes
are summarized in Table III. We have presented some of
the interesting results in Figs. 1–3. Figures 1(a) and 1(b)
show the 2–3 interchange symmetry between classes IF
and IIIF. From Fig. 1(c), we can see that for IS in class
IIIB, �23 remains below maximal. Figure 1(d) shows the
correlation plot between � and Mee for class VBðNSÞ.

Figures 2(a) and 2(b) show the plots for class IVFðNSÞ,
which is one of the most predictive classes in this analysis.

The predictions for � strongly depend on the value ofMee.

Class VIIID predicts �23 to be near maximal, as shown in

Figs. 2(c) and 2(d). For class IXEðISÞ, there is a strong

correlation between the Dirac-type phase � and the

Majorana-type phase �. Moreover, Mee is restricted to a

very small range in this case [Figs. 3(a) and 3(b)]. For class

XFðNSÞ, �23 near its maximal value is more probable

[Fig. 3(c)]. As shown in Fig. 3(d), there is a strong corre-

lation between the twoMajorana-type CP-violating phases
for class XIDðISÞ.

B. Numerical results for TEC

The numerical results for two equalities between the
cofactors of the neutrino mass matrix are presented here.
The main outcomes are
(i) Five textures, viz.,

IIIE, VIC, IVD, VD, and VF, are excluded by the
experimental data.

(ii) Textures IXE, IXF, and XID lead to a normal
spectrum only.
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FIG. 2 (color online). The TEE correlation plots for classes IVFðaÞðNSÞ, IVFðbÞðNSÞ, VIIIDðcÞðNSÞ, and VIIIDðdÞðISÞ.
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(iii) Textures VB and VIA hold for an inverted spectrum
only.

(iv) The allowed points for the following textures are
very few: IC, ID, IIC, IIID, VID, VIID, VIIE,
IXC, VIIF, XB, VIIIB, IXA, VIIIE, IXD, VIIIF,
XC, XD, XIC, XE, XIB, XIE, XIF for an inverted
spectrum; IIA, IIIB for a normal spectrum; and
IVC, VE for both inverted and normal spectrums.
We have generated 108 points for these textures.

(v) All the viable textures except IXE, IXF, and XID
allow a quasidegenerate spectrum.

(vi) For most of the viable textures, we obtain a lower
bound on Mee, but for texture XID this parameter
can only have a vanishing value.

(vii) It is found that the smallest neutrino mass cannot
be zero for any of the allowed textures.

(viii) For textures
IE, IIIC, IF, IIIF, IIF, IVF, and VIF, a non-
vanishing reactor mixing angle is an inherent
property.

The numerical results for all the classes which satisfy
the present experimental data are summarized in Table IV.
Some of the interesting results are plotted in Figs. 4–6.
Figures 4(a) and 4(b) show correlation plots for classes
IIIB and IIAðNSÞ which are related by 2–3 interchange

symmetry, as the value of �23 is below maximal for class
IIIB, whereas for class IIA it is above maximal. Figures 4(c)
and 4(d) correspond to class VIIID for NS and IS, respec-
tively, and the atmospheric mixing angle �23 is restricted
to the proximity of its maximal value for IS. In Fig. 5,
we have depicted the correlation plots for class
IVF, which is one of the most predictive classes of TEC;
Figs. 5(a)–5(c) correspond to IS, while Fig. 5(d) corre-
sponds to NS. The Dirac-type phase � is correlated
with Mee [Fig. 5(a)]. It is clear from Fig. 5(b) that this
class is necessarily CP-violating because the Jarlskog
CP-violation rephasing invariant cannot vanish in this
case. Figures 6(a) and 6(b) correspond to class IXEðNSÞ
for which the unknown parameter Mee is restricted to a
very small range. In Fig. 6(c), we have plotted m1 and m3

for class VIIDðNSÞ for which the quasidegenerate limit is
allowed, as is the case for most of the classes included in
this analysis. The two Majorana-type CP-violating phases
� and � for class XID are plotted in Fig. 6(d). For this
class, only a normal spectrum is allowed and the unknown
parameter Mee can only have a vanishing value because
the MR corresponding to this texture has a vanishing
cofactor corresponding to the ðe; eÞ entry, which manifests
as a vanishing Mee in the neutrino mass matrix M�.
Comparing the numerical results of TEE and TEC, we
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FIG. 3 (color online). The TEE correlation plots for classes IXEðaÞðISÞ, IXEðbÞðISÞ, XFðcÞðNSÞ, and XIDðdÞðISÞ.
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TABLE IV. The numerical predictions for the phenomenologically viable textures in the case
of two equalities between the cofactors of M�.

Texture Spectrum Mee (eV)

Lower bound on

mass scale (eV) Majorana phases

IA NS 0.0004–0.07 0.003 � ¼ 50�–130�

IS 0.02–0.08 0.001 � ¼ 0�–70�, 110�–180�

IB (IVA) NS 0.005–0.16 0.015 � ¼ 40�–140�

IS 0.015–0.14 0.010 � � �
IC (ID) NS 0.001–0.14 0.018 � ¼ 50�–130�

IS 0.035–0.18 0.020 � � �
IE (IIIC) NS 0.001–0.30 0.010 � � �

IS 0.02–0.30 0.006 � � �
IF (IIIF) NS 0.003–0.30 0.001 � � �

IS 0.010–0.30 0.010 � � �
IIA (IIIB) NS 0.02–0.16 0.040 � ¼ 60�–120�

IS 0.02–0.16 0.006 � ¼ 40�–80�, 100�–140�

IIB (IIIA) NS 0.01–0.12 0.025 � ¼ 50�–140�

IS 0.02–0.14 0.018 � ¼ 20�–160�

IIC NS 0.003–0.30 0.010 � ¼ 20�–160�

IS 0.025–0.25 0.010 � � �
IID NS 0.001–0.30 0.015 � � �

IS 0.030–0.30 0.010 � � �
IIE (VIIC) NS 0.004–0.12 0.020 � ¼ 20�–160�

IS 0.020–0.14 0.020 � � �
IIF NS 0.003–0.30 0.001 � � �

IS 0.010–0.30 0.030 � � �
IIID (VID) NS 0.005–0.25 0.025 � � �

IS 0.025–0.30 0.025 � � �
IVB (VIIA) NS 0.001–0.16 0.003 � ¼ 50�–80�, 100�–130�

IS 0.010–0.16 0.008 � ¼ 40�–140�

IVC (VE) NS 0.01–0.30 0.028 � � �
IS 0.01–0.30 0.028 � � �

IVE (VC) NS 0.007–0.16 0.018 � ¼ 40�–140�

IS 0.01–0.18 0.020 � � �
IVF (VIF) NS 0–0.20 0.0001 � � �

IS 0.04–0.22 0.0001 � ¼ 0�–20�, 160�–180�

VA (VIB) NS 0.002–0.14 0.004 � ¼ 40�–140�

IS 0.02–0.16 0.010 � ¼ 30�–150�

VB (VIA) IS 0.01–0.08 0.020 � ¼ 40�–140�

VIE (VIIIC) NS 0.0001–0.16 0.010 � ¼ 40�–140�

IS 0.01–0.14 0.010 � � �
VIIB (XA) NS 0–0.14 0.002 � ¼ 40�–140�

IS 0.01–0.16 0.001 � � �
VIID NS 0.002–0.30 0.015 � � �

IS 0.025–0.30 0.010 � � �
VIIE (IXC) NS 0.001–0.16 0.001 � ¼ 0�–80�, 100�–180�

IS 0.01–0.18 0.030 � ¼ 50�–130�

VIIF (XB) NS 0.001–0.14 0.003 � � �
IS 0.010–0.18 0.014 � ¼ 20�–160�

VIIIA (IXB) NS 0–0.08 0.001 � ¼ 40�–140�

IS 0.01–0.16 0.001 � � �
VIIIB (IXA) NS 0–0.12 0.001 � ¼ 50�–130�

IS 0.01–0.18 0.002 � � �
VIIID NS 0.002–0.30 0.002 � � �
VIIID IS 0.015–0.30 0.027 � � �
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find that the phenomenological predictions for a texture
are in general similar for both cases (i.e., TEE and TEC)
except for the mass hierarchy which gets reversed. For
example, the disallowed classes are the same in both cases.
The textures which only satisfy NS in the case of

TEE get replaced by IS for TEC and vice versa. The textures
for which a nonvanishing reactor mixing angle is an inher-
ent property are the same in both cases. Thus, the distin-
guishing feature between TEE and TEC for a texture, in
general, is the neutrino mass hierarchy. The reason for the

Texture Spectrum Mee (eV)

Lower bound on

mass scale (eV) Majorana phases

VIIIE (IXD) NS 0.001–0.14 0.001 � � �
IS 0.01–0.20 0.025 � ¼ 50�–130�

VIIIF (XC) NS 0.002–0.30 0.0014 � � �
IS 0.01–0.30 0.0200 � � �

IXE (IXF) NS 0.005–0.03 0.004 � ¼ 20�–50�; 130�–160�

XD (XIC) NS 0.001–0.10 0.0010 � � 90�

IS 0.01–0.18 0.0135 � � �
XE (XIB) NS 0.001–0.30 0.001 � � �

IS 0.01–0.30 0.020 � � �
XF NS 0.002–0.30 0.001 � ¼ 0�–80�, 100�–180�

IS 0.01–0.30 0.025 � � �
XID NS 0 0.0005 � ¼ 60�–120�

XIE (XIF) NS 0.001–0.16 0.001 � � �
IS 0.01–0.16 0.010 � ¼ 20�–160�

TABLE IV. (Continued)
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FIG. 4 (color online). The TEC correlation plots for classes IIIBðaÞðNSÞ, IIAðbÞðNSÞ, VIIIDðcÞðNSÞ, and VIIIDðdÞðISÞ.
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similar phenomenological predictions (and for the reversal
of the mass hierarchy) of corresponding textures of TEE and
TEC can be understood in the following way. The diago-
nalization equation of M� [Eq. (2)] is

M� ¼ V0Mdiag
� V 0T: (53)

Taking the inverse of M� gives

M�1
� ¼ V0�ðMdiag

� Þ�1V 0y: (54)

For two equalities between the elements of M�, M
�1
� has

two equalities between the cofactors and vice versa. Thus,
TEE and TEC textures are just the inverse of each other. It
can be seen from the above equations that the mixing
matrices are complex conjugates of each other. Thus, they
span the same parameter space for mixing angles and it is
expected that the corresponding textures of TEC and TEE

have similar phenomenological predictions for the mixing
angles. However, it is not necessary that the allowed values
of mixing angles are exactly the same in both cases because
the mass eigenvalues are inversely related and different
regions of mixing angles may be allowed from the whole
parameter space when we use the input of mass squared
differences.

IV. SYMMETRY REALIZATION

Here we present a simple A4 � Z2 model for one
of the cases, viz., IIC of TEC studied in this analysis.
All the leptonic fields are assigned to the triplet represen-
tation of A4. The transformations of various fields are
given in Table V. These transformation properties lead
to the following A4 � Z2 invariant Lagrangian for the
leptons:

L¼Y1ð �DeLeRþ �D�L
�Rþ �D�L�RÞ1�1þY2ð �DeLeRþ! �D�L

�Rþ!2 �D�L�RÞ10�3þY3ð �DeLeRþ!2 �D�L
�R

þ! �D�L�RÞ100�2þY4ð �DeL�eRþ �D�L
��R

þ �D�L��RÞ1 ~�4þMM

2
ð�T

eRC
�1�eRþ�T

�R
C�1��R

þ�T
�RC

�1��RÞ1

þYM1

2
½ð�T

�R
C�1��Rþ�T

�RC
�1��R

Þ�1þð�T
�RC

�1�eRþ�T
eRC

�1��RÞ�2þð�T
eRC

�1��R
þ�T

�R
C�1�eRÞ�3�1þH:c:; (55)
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FIG. 5 (color online). The TEC correlation plots for classes IVFða; b; cÞðISÞ and IVFðdÞðNSÞ.
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where ~�4 ¼ i�2�
�
4. The Z2 symmetry is used to prevent

the coupling of the Higgs doublet �4 with the charged
leptons so that it only contributes to the Dirac neutrino
mass matrix and vice versa. When the various Higgs fields
acquire nonzero vacuum expectation values (VEVs), the
A4 � Z2 invariant Yukawa Lagrangian leads to a diagonal
charged lepton mass matrix

Ml ¼
me 0 0

0 m� 0

0 0 m�

0
BB@

1
CCA; (56)

where me ¼ Y1h�1io þ Y2h�3io þ Y3h�2io, m� ¼
Y1h�1io þ !Y2h�3io þ !2Y3h�2io, andm� ¼ Y1h�1io þ
!2Y2h�3io þ!Y3h�2io. The Dirac neutrino mass matrix
is proportional to the 3� 3 identity matrix

MD ¼ Y4h�4ioI: (57)

The right-handed Majorana mass matrix MR has the form

MR ¼
a b c
b a d
c d a

0
@

1
A: (58)

The diagonal entries in MR come from the bare Majorana
mass term and the off-diagonal entries arise via the Yukawa
couplings with �i. Since the off-diagonal elements of MR

are supposed to be all different, the scalar potential must be
rich enough for the VEVs of �i to be all different. After the
type-I seesaw, the effective neutrino mass matrix M� has
TEC corresponding to the 11, 22, and 33 entries.
For class IIC of TEE, the transformations of various

fields are given in Table VI. We have pointed out earlier
that such textures in M� may arise through a type-II
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FIG. 6 (color online). The TEC correlation plots for classes IXEðaÞðNSÞ, IXEðbÞðNSÞ, VIIDðcÞðNSÞ, and XIDðdÞðNSÞ.

TABLE VI. Transformation properties of various fields for
case IIC of TEE.

Fields DlL lR �lR �1 �2 �3 4i 44

SUð2ÞL 2 1 1 2 2 2 3 3

A4 3 3 3 1 10 100 3 1

TABLE V. Transformation properties of various fields for case
IIC of TEC.

Fields DlL lR �lR �1 �2 �3 �4 �i

SUð2ÞL 2 1 1 2 2 2 2 1

A4 3 3 3 1 10 100 1 3
Z2 þ þ � þ þ þ � þ
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seesaw, for which we need to add four Higgs SUð2ÞL
triplets4i, and no right-handed neutrino fields are needed.
Three of the SUð2ÞL triplets transform in combination as
the A4 triplet and the fourth one is a singlet of A4. A
diagonal charged lepton mass matrix arises exactly in the
same way as in the case IIC of TEC, since the trans-
formation properties of charged lepton fields remain the
same as in the earlier case. The A4 invariant Lagrangian for
neutrinos is

L ¼ ML1

2
½ðDT

�L
C�1i�2 41 D�L þDT

�LC
�1i�2 41 D�L

Þ
þ ðDT

�LC
�1i�2 42 DeL þDT

eLC
�1i�2 42 D�LÞ

þ ðDT
eLC

�1i�2 43 D�L
þDT

�L
C�1i�2 43 DeLÞ�1

þML2

2
ðDT

eLC
�1i�2 44 DeL þDT

�L
C�1i�2 44 D�L

þDT
�LC

�1i�2 44 D�LÞ1 þ H:c:; (59)

where the SUð2ÞL triplets are written in 2� 2 matrix
notation:

4 ¼ Hþ ffiffiffi
2

p
Hþþffiffiffi

2
p

H0 �Hþ

 !
: (60)

When the neutral components of the SUð2ÞL triplet Higgs
fields acquire small but nonzero and distinct VEVs, we get
the neutrino mass matrix having the form IIC of TEE

M� ¼
a b c

b a d

c d a

0
BB@

1
CCA: (61)

V. SUMMARY

We studied in detail the implications of the presence of
two equalities between the elements or the cofactors of the
neutrino mass matrix. Two equalities between the elements
of the neutrino mass matrix can be obtained through the
type-II seesaw mechanism, whereas two equalities be-
tween the cofactors are obtained through the type-I seesaw
mechanism when the right-handed neutrino mass matrix
has two equalities between elements and the Dirac neutrino
mass matrix is proportional to the unit matrix. A total of 65
texture structures are possible for each case. Predictions for
Mee are given for the allowed texture structures. This
parameter is expected to be measured in the forthcoming
NDB decay experiments. To illustrate how such texture
structures can be realized, we presented a simple A4 model
for the texture structure IIC. The viability of these textures
suggests that there are still rich, unexplored structures of
the neutrino mass matrix from both the phenomenological
and theoretical points of view. Future data from various

experiments, along with the input of flavor symmetry, will
help in deciding the form of the neutrino mass matrix.
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APPENDIX: THE GROUP A4

A4 is the group of even permutations of four objects
having 12 elements. Geometrically, it can be viewed as the
group of rotational symmetries of the tetrahedron. A4 has
four inequivalent irreducible representations (IRs) which
are three singlets 1, 10, and 100, and one triplet 3. A4 is
generated by two generators S and T such that

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1: (A1)

The one-dimensional unitary IRs are

1 S ¼ 1 T ¼ 1; 10 S ¼ 1 T ¼ !;

100 S ¼ 1 T ¼ !2:
(A2)

The three-dimensional unitary IR is

S ¼
1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA; T ¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA: (A3)

The multiplication rules of the IRs are as follows:

10 � 10 ¼ 100; 100 � 100 ¼ 10; 10 � 100 ¼ 1: (A4)

The product of two 3’s gives

3 � 3 ¼ 1 � 10 � 100 � 3s � 3a; (A5)

where s (a) denotes a symmetric (antisymmetric) product.
Let ðx1; x2; x3Þ and ðy1; y2; y3Þ denote the basis vectors of
two 3’s. Then the IRs obtained from their products are

ð3 � 3Þ1 ¼ x1y1 þ x2y2 þ x3y3; (A6)

ð3 � 3Þ10 ¼ x1y1 þ!x2y2 þ!2x3y3; (A7)

ð3 � 3Þ100 ¼ x1y1 þ!2x2y2 þ!x3y3; (A8)

ð3�3Þ3s ¼ðx2y3þx3y2;x3y1þx1y3;x1y2þx2y1Þ; (A9)

ð3�3Þ3a ¼ðx2y3�x3y2;x3y1�x1y3;x1y2�x2y1Þ: (A10)
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