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We illustrate how the matrix element method at next-to-leading order can be used to discriminate

between events arising from the production of a Higgs boson, which subsequently decays to a final state

consisting of ‘þ‘��, and the background production of the same final state. We illustrate how the method

could be used in an experimental analysis by devising cuts on the signal (PS) and background (PB)

weights that are computed event by event in this approach. We find that we can increase the S=
ffiffiffiffi
B

p
ratio by

around 50% compared to an invariant mass fit on its own. Considering only statistical uncertainty, this is

equivalent to recording a factor of around two times more integrated luminosity.
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I. INTRODUCTION

The recent discovery of a new boson with properties
consistent with that of the Standard Model (SM) Higgs
boson [1,2] has indicated that the discovery of the electro-
weak (EW) symmetry breaking mechanism may be at
hand. In order to confirm whether the new boson is indeed
the SM Higgs, it is crucial to measure both its properties
and branching ratios for the largest number of experimen-
tally viable decay channels. These analyses could result in
tension with the SM Higgs prediction; for instance, the
boson may differ in parity from the SM Higgs or even be a
mixture of CP-odd and -even states. An additional possi-
bility is that the rate for one or more measured decay
channels is different from the SM prediction. The most
obvious mechanism for such a scenario is an enhancement/
suppression in loop-induced decays that are naturally sen-
sitive to couplings to new virtual particles, for instance, the
decay to two photons (��). This would thus be evidence
for beyond the Standard Model physics.

Another loop-induced Higgs decay is the decay to a final
state containing a Z boson and a photon (H ! Z�) [3,4].
Since it is a loop-induced process, the branching ratio
is small, and the decay of the Z boson to well-measured
final-state particles (�þ�� or eþe�) means that the decay
H ! ‘þ‘�� is a very rare SM process. However, this is
not necessarily the case in extensions of the SM. In addi-
tion, the ratio of �� to Z� branching ratios can be used to
discriminate between certain models of new physics [5–7].

Observing the Higgs in the Z� final state is a difficult
feat. First, the background production of Z� is several
orders of magnitude larger than the Higgs induced rate.
The exact value of this ratio depends on the cuts defining
the background cross section. In the region of invariant

mass near the Higgs mass (m‘‘� � 125 GeV), with typical

LHC cuts, one would usually expect around 500–1000
background events for each signal event. Second, the
kinematics of the decay limit the final-state photon to a
challenging region of phase space. At leading order (LO),
the maximum transverse momentum (pT) of the final-state
photon is restricted, since the final-state invariant mass is
close to mH and includes a pair of charged leptons of mass
close to the Z mass (mZ). Since mZ is not too far from mH,
the remaining energy to be imparted to the photon lies in a
limited range. Therefore, the pT spectrum of the photon
peaks around 30 GeV.
Typically, in such a soft region of phase space, QCD can

provide large backgrounds to searches. This increases the
difficulty in separating signal from background when com-
pared with H ! ��, for which the photon pT from the
signal is significantly harder (p�

T � 60 GeV). Indeed, once
the full detector simulation has been included, there are
only small differences between the signal and background
shapes in the transverse variables [8]. In terms of final-state
kinematics, the main discriminating variable is the angle
between the direction of the photon and the beam [9,10].
A spin-0 scalar is isotropic in this variable, while the
background matrix element prefers emission in the forward
region. A recent CMS study with around 10 fb�1 of 7 and
8 TeV data [8] set a limit around 10 times the SM cross
section. This result already disfavors scenarios in which
the new boson is a pure pseudoscalar since, in some of
these models, the branching ratio to Z� can be enhanced by
up to 170 times the SM prediction [11].
An experimental search for H ! Z� should thus utilize

as much theoretical information as possible in order to
effectively reduce the unwanted background Z� events.
One such method is the matrix element method (MEM)
[12–16]. This method uses the matrix element associated
with a given theoretical hypothesis to assign a probabilistic
weight to an experimental event. Comparing weights
obtained by varying the theoretical hypothesis allows one
to identify the most favorable one. Originally, the method
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was used in order to perform a measurement of a
known theoretical parameter, say, for instance, the top
mass [17–20]. More recently, the method has gained favor
as an event-by-event discriminant [9,21–25]. By using the
matrix element, one naturally includes all of the kinematic
correlations present in the observed final state and thus
gains a large amount of theoretical information. Until
recently, a major drawback of the MEM was its restriction
to LO matrix elements. However, in Ref. [26], a new
version of the MEM was proposed that can be extended
to higher orders in perturbation theory.1 Using the next-to-
leading order (NLO) method provides a much greater
degree of theoretical reliability and control over the theo-
retical systematics.

Recently, the MEM has been used in searches for, and
studies of, the Higgs boson. The MEM at LO has been
applied to Higgs searches in the ZZ [21] and Z� [9]
channels. The MEM has also recently been applied to
study the properties of the Higgs (decaying to two photons)
via vector boson fusion [22] and to investigate its role in
unitarizingWW scattering [23]. The Z� search [9] used an
implementation of the MEM that is restricted to LO
and considered the Z� decay in an effective field theory
approach. The authors found only a marginal improvement
between the MEM and a simpler approach that only used
m‘‘� as the discriminant. With the recent CMS study to

guide us [8], the aim of this paper is to reinvestigate the
channel using the matrix element method at next-to-
leading order (MEM@NLO) algorithm and the full loop
matrix element for the decay.

This paper proceeds as follows. In Sec. II, we discuss the
H ! Z� calculation and the form of the matrix elements
used in our analysis. Section III provides a brief overview
of the MEM@NLO technique, and we present our results
in Sec. IV. Finally, in Sec. V, we draw our conclusions.

II. THE HIGGS DECAY TO Z�

In this section, we briefly discuss the calculation of
H ! Z� as it is implemented in the code MCFM
[27,28]. The H ! Z� decay was first considered over
twenty years ago [3,4]. We consider the process,

Hðp0Þ ! ‘þðp3Þ þ ‘�ðp4Þ þ �ðp5Þ; (1)

where the momenta are shown in parentheses. The squared
matrix element for this loop-induced process has the fol-
lowing form:

jMH!‘þ‘��j2 ¼ e8s34ðs235 þ s245Þ
2sin 2�Wð16�2mWÞ2

ðjF Lj2 þ jF Rj2Þ:

(2)

In this expression, we have introduced the electroweak
coupling e, and the weak mixing angle �W and kinematic
invariants are defined through sij ¼ ðpi þ pjÞ2. The left-

handed and right-handed amplitudes are defined by

F L;R ¼ 4QtNcm
2
t

s34

�
QtQ‘ þ 1

2
ðvt

L þ vt
RÞvL;RP Z

�
Ft

þ ðQ‘ þ v‘
L;R cot�WP ZÞFW; (3)

in terms of the charge of the leptons and top quarks
ðQ‘;QtÞ, the number of colors (Nc), and the top mass
(mt). The vector couplings are defined as

v‘
L¼

�1�2Q‘sin
2�W

2sin2�W
; v‘

R¼�2Q‘sin
2�W

sin2�W
; (4)

vt
L¼

1�2Qtsin
2�W

2sin2�W
; vt

R¼�2Qtsin
2�W

sin2�W
: (5)

Finally, the function P Z describes the Z propagator (with
width �Z),

P Z ¼ s34
s34 �m2

Z þ i�ZmZ

: (6)

The loop integral functions are contained in FW and Ft,
which are defined by

FW ¼ 2

�
s345
m2

W

�
1� 2

m2
W

s34

�

þ 2

�
1� 6

m2
W

s34

��
C2ðp5; p34; mW;mW;mWÞ

þ 4

�
1� 4

m2
W

s34

�
C0ðp5; p34; mW;mW;mWÞ (7)

and

Ft ¼ C0ðp5; p34; mt; mt; mtÞ þ 4C2ðp5; p34; mt; mt; mtÞ:
(8)

In these expressions, C0 and C2 are standard Passarino-
Veltman tensor integrals. Further details can be found
in Refs. [29–31].
In addition to the decay described above, MCFM con-

tains NLO Higgs and QCD Z� production, including the
gg ! Z� loop induced process [28]. We will use these
matrix elements to calculate our weights.

III. THE MEM@NLO TECHNIQUE

This section provides a brief overview of the MEM
technique developed in Ref. [26], to which we refer the
interested reader for a more complete discussion. The crux
of the MEM method is to provide an event—by—event

1With the caveat that the final state of interest should consist of
only EW particles.
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weight using the matrix element. At LO, one defines each
event to be weighted by the following quantity:

~PLOð ~�Þ¼ 1

�LO

Z
dx1dx2d��ðx1x2s�Q2Þ

�fjðx1Þfiðx2ÞBijðx1;x2;�ÞWð�; ~�Þ: (9)

Here, fðxÞ represent the parton distribution function (PDF)
with momentum fraction x, Q2 is the invariant mass of the
EW final state, Bij represents the LO matrix element,

which depends on the final-state phase space point �,

which is derived from the input event from data ( ~�), via

the transfer functionWð�; ~�Þ. The weights are normalized
by the LO cross section �LO. Often in this paper, we will
use the following weight, which is defined in the limit of a

perfect detector setup, i.e., Wð�; ~�Þ ¼ �ð�� ~�Þ,

PLOð�Þ ¼ 1

�LO

Z
dx1dx2�ðx1x2s�Q2Þ

� fjðx1Þfiðx2ÞBijðx1; x2; �Þ: (10)

This weight has the advantage of requiring fewer
Monte Carlo integrations, and hence it is less computation-
ally expensive. However, one must be confident that the
analysis is not sensitive to such a simplifying assumption.
For instance, in this study, the narrow width of the
Higgs would spoil this assumption, since any event with
m‘‘� ¼ mH would result in a large weight compared to the

remaining events in the sample, yielding unrealistic results.
Therefore, in order to use the above definition, care must be
taken with variables (in this case, the invariant mass) that
are extremely sensitive to detector resolution. We shall
discuss this further in the next section.

The observed EW final state typically recoils against
hadronic activity that is not modeled in the leading-order
calculation. In order for the weights to be well-defined and
unique, one must, therefore, perform a boost to ensure that
the final-state � is balanced in pT . Then one can apply the
PDF weighting assuming two beams colliding in the z
direction. Since there are multiple Lorentz transformations
satisfying these requirements which are connected by
longitudinal boosts to each other, we integrate over the
allowed range. This results in the corresponding integra-
tion over x1 (or x2) in Eq. (9). We refer to the set of pT

balanced final-state frames collectively as the MEM frame.
We note that failure to perform this boost and subsequent
integration results in either an ill-defined (no-boost) or
nonunique (no integration over boosts) weights and hence
a theoretically unreliable weight.

The MEM frame allows the calculation of weights
accurate to NLO defined as [26]

~PNLOð ~�Þ ¼ 1

�NLO

Z
d�ðVð�Þ þ Rð�ÞÞWð�; ~�Þ: (11)

The virtual corrections are expressed as

Vð�Þ ¼
Z

dx1dx2�ðx1x2s�Q2Þ

� fjðx1Þfiðx2ÞV̂ ijðx1; x2; �Þ; (12)

where V̂ represents the contributions from the Born
matrix element, the interference between the Born and
one-loop amplitudes and the integrated form of a relevant
subtraction term (in this work, we use a slightly modified
Catani-Seymour [32] dipole approach). The real radiation
pieces involve integration over an unresolved emission for
which we use the forward-branching phase space (FBPS)
generator described in Refs. [33,34],

Rð�Þ ¼
Z

dx1dx2d�FBPS�ðx1x2s�Q2
FBPSÞ

� fjðx1Þfiðx2ÞR̂ijðx1; x2; �;�FBPSÞ: (13)

In the above, R̂ij represents the matrix element for the

Born amplitude plus one additional parton, rendered finite
by the corresponding subtraction terms. Note that the
constraining delta function for the PDFs has changed
definition with respect to LO; Q2

FBPS is the invariant mass

of the Born final state plus the NLO emission. For full
details of the FBPS and subtraction setup, we refer the
reader to Ref. [26].
The main difference between the LO and NLO MEM is

the integration over the real phase space. Some events in
the lab frame, when mapped to the MEM frame, no longer
lie in the fiducial region defined by the lab frame cuts
(which the weights are normalized to) and therefore are
assigned zero weight [26]. At NLO, these events can have
nonzero weights since the real emission contributions can
boost these events back into the fiducial region. A simple
way of interpreting this phenomenon is that NLO covers a
larger kinematic phase space than LO. This larger phase
space manifests itself as an ability to accept events that do
not possess the correct kinematics to have arisen from our
LO discriminant. This is one of the primary advantages
of the MEM@NLO method compared to the MEM@LO
(in addition to the usual increase in confidence in the
understanding of the theoretical systematic error from
using an NLO prediction). Typically, one finds that
Oð�SÞ (i.e., of order 10%) of the events fail the LO cuts.
Each event in the data set can now be assigned a unique

LO or NLOweight associated with a theoretical hypothesis
controlled by the underlying matrix element. In our case,
we will assign it a weight based on the signal matrix
element, or the irreducible background production of Z�.
Throughout the paper, we will refer to these as signal and
background weights as follows:

PS ¼ PH!Z�
NLO ; PB ¼ PZ�

NLO: (14)

The superscript refers to the matrix element that is

implicitly used in Eq. (11), and we take Wð�; ~�Þ ¼
�ð ~���Þ. One can use these individual quantities to build
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discriminants. Unless stated otherwise, our default is to use
NLO matrix elements in our weight calculations.

IV. RESULTS

In order to study the MEM@NLO for the H ! Z�
decay mode, we generate samples of signal and back-
ground events. We do this using the SHERPA event gen-
erator [35]. For the background, we generate a CKKW [36]
matched sample of Z� events. For the signal events, we
generate NLO matched Higgs events for mH ¼ 125 GeV.
These Higgs events are then subsequently decayed to the
Z� final state using the MCFM implementation that is
described in Sec. II. Since the Higgs is a scalar particle,
production and decay are uncorrelated. This allows us to
simply calculate the decay using MCFM in the rest frame
of the Higgs and then boost it so that it has the four-
momentum of the SHERPA event. Throughout our studies,
we will use the CT10 PDF set [37].

The above procedure produces events at the particle
level. However, in order to study the light Higgs in a
meaningful way, one must include some kind of detector
simulation. This is because the light Higgs has such a
narrow width that the m‘‘� spectrum is dominated by

the detector resolution. For example, the CMS technical
design report [38] estimates a resolution of photon energy
using the following:

�
�E�

E�

�
¼ 3:6%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�=GeV
q � 18:5%

E�=GeV
� 0:66%; (15)

where �E� represents the width of the Gaussian smearing

and � indicates that the quantities are to be added in
quadrature. At E ¼ 30 GeV, this provides a width of
around 0.3 GeV. Using this smearing (and the equivalent
leptonic quantity), we find a Higgs boson line shape that is
too narrow compared to that recently reported by CMS [8],
where the effective Gaussian width quoted is around
3–4 GeV. Therefore, in order to match the results of this
paper, we inflate our Gaussian smearing to

�E� ¼ 2 GeV; �E‘ ¼ 0:5 GeV: (16)

Our resulting line shape for the Higgs is now in good
agreement with Ref. [8]. Note that, since our enhanced
width is around a factor of 6 greater than that arising from
the energy-dependent piece, Eq. (15), we drop the energy
dependence for simplicity.

After smearing our events as described above, we apply
the following lab frame cuts:

p�
T > 15 GeV; j	�j< 2; p‘

T > 20 GeV;

j	‘j< 2; 60<m‘‘ < 120 GeV;

115<m‘‘� < 135 GeV; R‘� > 0:7:

(17)

Note that we have kept the cuts on the lepton and photon
pT loose. Part of the attraction of the MEM discriminant is
that it will naturally select events that have the correct
kinematics to be signal events; therefore, one does not
have to spend time attempting to optimize the kinematic
selection criteria. Of course, if some observable clearly
discriminates the signal from the background, cuts on this
quantity should be applied in order to reduce the overall
computational load. For this reason, we impose a tight cut
on the invariant mass of the Z� system, centered on
125 GeV.

A. Generation of reducible background events

In order to effectively simulate LHC conditions, we
must also consider events that do not arise from the irre-
ducible Z� background but instead are misidentified in the
detector. Since they are naturally very dependent on the
exact detector setup and modeling, such events are difficult
to accurately simulate in our study. However, since they are
a large fraction of the resulting event sample [8], it is
necessary to attempt to provide an estimate of our dis-
criminant on a ‘‘fake’’ sample. To this end, we generate a
sample of fake events in the following way. We assume that
the dominant component of the fake events results from
Zþ jet events in which the leptons from the Z decay are
clean, but the jet is mismeasured as a photon. As a crude
model, we use SHERPA to generate Zþ jet events and
then smear the pT and 	 of the (leading) jet by Gaussian
functions with a width of 10 GeV and 0.5, respectively.
Our event sample is then generated by applying the cuts
described in the previous section to the smeared events,
treating the smeared jet as a photon.

B. The MEM@NLO as a kinematic discriminant

We first discuss our definition of the Higgs signal
hypothesis, which is particularly important because of
the very narrow SM width. One approach is to define a
weight for each event by integrating over transfer functions
that model the detector resolution, as in Eq. (9). This
approach allows one to test a single Higgs mass hypothesis
for a given set of events but requires additional integrations
per event. An alternative approach is to change the Higgs
mass hypothesis on an event-by-event basis by choosing
mH ¼ m‘‘�. In this scenario, one effectively changes the

propagator in the matrix element to

1

ðs�mHÞ2 þ i�HmH

! 1

i�Hm‘‘�

: (18)

Since �H is very small, this approach makes each event
have a large PS, and the collection of events can no longer
define a probability density function. In addition, PS * PB

even for background event samples. However, one still
expects discriminating power between the signal and
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background since PS arising from the events that match
the signal hypothesis will be larger than that for PS

from the background. Finally, we note that the (signal)
normalization is defined uniquely for each event by
�ðmH ¼ m‘‘�Þ.

This technique has been used extensively in studies
involving kinematic discriminants in H ! ZZ ! 4‘
[24,25]. The advantage of this technique is that there are
less integrations per event, and thus the weights are com-
putationally less expensive. One can then restore the
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FIG. 1 (color online). Distribution of events in terms of the invariant mass of the final state m‘‘� and our discriminant D defined in
Eq. (19). The two-dimensional histograms (left) present the density of events in the plane of D and m‘‘�. The right-hand panels

represent the distribution of D for our signal (top row), background (middle row), and fake (bottom row) samples. Each sample is
normalized to the total number of events in the sample.
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invariant mass m‘‘� as an additional discriminant since

Higgs events will cluster in invariant mass while the back-
ground will be more diffuse. We will adopt this approach
for the remainder of this paper.

With the event samples generated as described in the
previous sections, we can now introduce our discriminant
D. There is a range of possibilities, but, in this paper, we
will choose
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FIG. 2 (color online). Invariant mass distributions (for m‘‘�) before (left panels) and after (right panels) our analysis cut D> 7:5.
Distributions are shown for the signal events (top row), the irreducible background (middle row), and fakes (final row). The number of
events in each distribution is normalized to the irreducible background sample without application of any cuts on D, as described in
the text. The red curve indicates a Gaussian (polynomial) fit to the signal (background) data.
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D ¼ � log

�
PB

PS þ PB

�
: (19)

Events that arise from the background should have larger
PB than PS so the ratio in the logarithm is near one. As a
result, events with D nearer zero should be more back-
groundlike than the signal.

We present results for D for our three different event
sample classes in Fig. 1. The results are shown as two-
dimensional histograms, binned both by the discriminant
D and the invariant mass m‘‘�. In addition, we also show

one-dimensional projections of these histograms, as a
function of D only. As expected, the signal events peak
at larger D than the corresponding background distribu-
tion. The background and fake samples have roughly simi-
lar shapes (indicating some of the similarities between
Zþ jet and Z�). Although the signal shapes are similar
to the background, there are still significant regions that are
only populated by background events (but which may still
have an invariant mass in the Higgs window). In particular,
both the background and fake samples have significant tails
in the lowerD region, whereas the signal sample does not.
For example, there are barely any (�0:5%) signal events
with D< 6. On the other hand, around 10% of the back-
ground events lie in this region. Cutting at D> 6 would
thus be an almost zero-cost reduction in signal at the
expense of a nontrivial background number of events.

The scales on the two-dimensional histograms illustrate
the stark differences between the signal and background
events in the ðD; m‘‘�Þ plane. The area of highest

density for the signal events (around the truth value,
m‘‘� ¼ 125 GeV) is around three times greater than the

corresponding highest density region for the background
(which is at a much lower invariant mass). Retaining only
the events that satisfy D> 7, one rejects 21% of the
irreducible background events and keeps 93% of the signal.
A higher cut, D> 8, rejects 64% of the background and
retains 55% of the signal. In an experimental analysis, one
would thus choose the optimal value of D at which to cut
in order to optimize the signal-to-background ratio. Since
our model of the fakes is less developed than our signal
and background models, we optimize our cut on the dis-
criminant on the combination of signal and irreducible
background samples. We find a value of the cut at
D> 7:5 corresponds to a signal efficiency of 81%, with
a background rejection of 37%.We note that, here, we have

chosen a fairly simple cut onD that optimizes S=
ffiffiffiffi
B

p
. One

could instead perform counting experiments using con-
tours in the ðD; m‘‘�Þ plane, although such a study is

beyond the scope of this work.
We plot the invariant mass m‘‘� before and after our cut

(D> 7:5) for our three samples in Fig. 2. Each sample is
weighted to reflect the number of events expected, given
the total number of irreducible background Z� events. We
weight our signal sample by the ratio of cross sections

(including a NLO to next-to-next-to-leading-order
[NNLO] K factor of 1.2 [39]). We normalize our fake
sample to be compatible with that reported by CMS [8],
namely, by fixing the number of fake events to be one-third
of the irreducible background. Our cuts have altered the
shape of the background and fake samples, while main-
taining the overall shape of the signal.
Ultimately, we would like to investigate the efficiency

of this method in the vicinity of the Higgs signal at
mH ¼ 125 GeV. We therefore define a window

122<m‘‘� < 128 GeV; (20)

where the width has been optimized for the analysis below.
We attempt to quantify the improvement the cut on D has
made in the following way. We define the quantity

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NZ� þ Nfakes

p
NH

; (21)

where NX represents the expected number of events for
process X. Our measure includes no treatment of system-

atic errors and instead only assumes the S=
ffiffiffiffi
B

p
scaling of

the statistical uncertainty. In spite of its shortcomings
compared to the full experimental analysis, � can provide
us with an estimate of the improvement one might envisage
after applying our cut. We find

�D>0

�D>7:5
¼ 1:52: (22)

Since � scales as L�1=2, using a cut of D> 7:5 is
(statistically) equivalent to taking 2.31 times more data.
Before concluding, we will briefly consider the impact

of using the leading order method, MEM@LO, rather than
the NLO one. We find that the fraction of events that
fail the fiducial cuts at LO is larger for the Higgs signal
than for the irreducible background. As a result, the
MEM@NLO produces slightly better signal over back-
ground ratios than the MEM@LO. For example, we find

�LO
D>0

�LO
D>7:5

¼ 1:41; (23)

which is 7% smaller than the corresponding NLO value.
This small difference, between the LO and NLO analyses,
indicates that the method is perturbatively stable, and the
theoretical systematic uncertainty is under good control.

V. CONCLUSIONS

In this paper, we have presented an application of the
MEM@NLO to searches for the Higgs boson in the decay
channel Z�. This channel is extremely challenging experi-
mentally as can be seen from the preliminary results
from CMS [8]. The reasons for these difficulties are
twofold. First, the H ! Z� branching ratio is already
very small, even before the requirement that the Z-boson
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decays to muons and electrons only. Since the background
production of Z in association with a photon is large,
one naturally has low signal-to-background ratios.
Second, the kinematics of the decay for a Higgs boson
with mass mH � 125 GeV force the final-state photon to
have a relatively soft pT . The matrix element has a soft
singularity as p�

T ! 0, and therefore the background is
very large in the region in which the Higgs signal peaks.
Once detector effects are included, there is very little
difference between the signal and background events in
the transverse variables.

Given these difficulties, it is essential to utilize all the
remaining differences between the signal and background
processes. One approach, the matrix element method, uses
a theoretically defined matrix element to assign a weight to
each experimental event. When there is a good match
between the theoretical hypothesis and the input events,
the weights become larger. Therefore, one can use the
MEM to produce samples of events that increase the
signal-to-background ratio for a certain theoretical hy-
pothesis. Recently, the MEM has been extended to NLO
for electroweak final states [26]. We used this MEM@NLO
to calculate signal and background discriminants for a
sample of events generated using SHERPA. Our event
sample included showered and hadronized Higgs signal
and SM background events as well as a crude model of
Z� fake events. Higgs decays to Z� were generated using
the MCFM implementation. Our estimates of resolution
effects and fake rates were guided by the recent results
from CMS presented in Ref. [8].

We used the MEM@NLO to construct a discriminant
(D) from the event-by-event weights PS (using the signal
matrix element) and PB (the background matrix element).
In defining these weights, we removed the invariant mass
as a discriminating variable. As a result, we were subse-
quently able to create a two-dimensional discriminant inD
andm‘‘�. In this plane, the signal events cluster aroundmH

and at higher D compared to those arising from the back-
ground and fakes. Therefore, by cutting onD andm‘‘�, we

were able to improve our measure of the signal signifi-

cance, S=
ffiffiffiffi
B

p
. We found that S=

ffiffiffiffi
B

p
increased by around a

factor of 1.5 compared to the value obtained without any
cut onD, suggesting that roughly half as much data would
be needed to obtain the same limit on H ! Z�. We found

that the MEM@LO algorithm is also able to provide S=
ffiffiffiffi
B

p
improvements by a factor of around 1.4, approximately
10% less efficient than the MEM@NLO.
This search has provided an example of the power of the

matrix element method in a worst-case scenario for a
traditional analysis. We hope that the ideas presented in
this paper are useful to our experimental colleagues in the
hunt for the Higgs boson in this difficult channel. The code
which calculates the weights described in this paper is
available upon request.
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